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Abstract Integrating LTE sub-6 GHz and millimeter wave

(mmWave) bands brings great benefit in increasing com-

munication bandwidth, reliability, and better coverage of

future smart intelligent network and its applications.

However, finding the right mmWave remote radio units

(RRUs) is challenging due to coverage blindness of

directional beams. Further, the mmWave network depends

on edge cloud deployment for satisfying low latency

requirement of future smart applications. Along with,

reducing energy consumption for handover execution is

important due to the battery constraint of IoT (Internet of

Things) device. Thus, it is important to reduce the signaling

overhead of the handover process. First, this paper presents

an efficient handover mechanism between LTE and

mmWave; second present automatic handover execution

mechanism between LTE and mmWave using a machine

learning algorithm. Third presented improved XGBoost

classification algorithm for predicting handover success

rate using channel information collected through sampling

window. Lastly, showed combining machine learning

prediction model with standard handover execution model

reduces signaling overhead and improves the handover

success rate. The experiment is conducted by varying IoT

device the result achieved shows XGBoost-based handover

execution model achieves much superior performance than

existing KNN-based handover execution algorithm.

Keywords Handover execution � Heterogeneous wireless

network � Energy efficiency � Radio access technology

selection � Machine learning

1 Introduction

A future requirement for building smart societies utilizes

technologies such as large scale sensor networks [1] and

IoT [2], are continuously being evolved. The growth of

self-governing smart robots and vehicle has enabled wide

attention across the various area for enhancing the data

commination and vehicle safety. The smart self-governing

vehicle such as Google Car [3] is being constructed using

cognitive (observation) architecture/framework that

includes various information collected from different

onboard sensor and using artificial intelligence (AI) such

machine learning (ML) and deep learning (DL) model for

smart manoeuvring on road with other vehicles. Nonethe-

less, the smartness of autonomous vehicle can be addi-

tionally improved by the usage of effective computing and

network capability of the smart transport system. The

vehicle driving safety majorly depends on low-latency and

highly reliable wireless communication environment for

efficient transmission of control packets (CP) due to the

constraint of on-board sensors [4]. Further, for avoiding

high management cost and achieve completely self-sus-

tainable low-cost ubiquitous systems for the IoT and smart

cities, research communities have devoted a considerable

interest in ambient energy-saving technologies.

The Internet of Things (IoT) paradigm envisions a wide

infrastructure network of ‘‘things’’ that forms a pervasive

computing environment [5]. It is defined as a global net-

work with an infrastructure that has self-configuring

capabilities [6]. The IoT is an intelligent network that
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connects billions of things via the Internet by using a

variety of communications technologies, such as conven-

tional long term evolution (LTE), Wi-Fi, ZigBee, wireless

sensor networks (WSNs), Ethernet, as well as specially

developed Internet Protocol Version 6 (IPv6) over low-

power wireless personal area networks (6LoWPAN), the

low-power wide-area network from the LoRa Alliance

(LoRaWAN), LTE machine type communications (LTE-

MTC), narrowband IoT (NB-IoT), mmWave and many

other communications technologies. Therefore, the IoT is

rapidly transforming into a highly heterogeneous ecosys-

tem that provides interoperability among different types of

devices and heterogeneous communications technologies

as shown in Fig. 1. Many interconnected objects will be

able to sense physical phenomena and exchange data,

information and knowledge through the network, to

leverage the user experience of the surrounding environ-

ment. Energy efficiency is a key aspect for these IoT bat-

tery-powered devices, which feature sensing,

communication and processing capabilities. As most of the

information in IoT application is transferred through edge

network that connects different RATs; energy-efficient

handover mechanism is required for catering these low-

power devices.

This paper specifically focuses on handover (HO)

operation of IoT device from LTE to mm-Wave (i.e., 5th

generation (5G)) technologies [7]. The performance met-

rics here are achieving high throughput, very low latency,

high-quality streaming, good availability, robust connec-

tivity, and low energy dissipation [8, 9]. For meeting above

requirement new methodologies have been modelled [9].

First, the network density will result in increased reuti-

lization spatial mmWave frequencies [10]. This will create

added challenges for handover (i.e., mobility) management

[11]. Second, the data will be much closer to the user for

reducing latency with the adoption of the Mobile Edge

Cloud (MEC) [9]. Third, automatic decision making using

Software Defined Networking (SDN) and ML methodolo-

gies have resulted in increasing the complexity of the

handover operation of a heterogeneous cellular network.

The usage of artificial intelligence (AI) methodologies for

carrying out automatic decision making in the cellular

network have been modelled in recent time for optimizing

handover operation, resource allocation [12], energy-effi-

cient RAT selection [13]. Further, a huge amount of data is

being collected for analyzing the characteristics of

heterogeneous wireless networks [14].

Recently several handover mechanisms have been pre-

sented which requires accurate measurement [16]. How-

ever, not every parameter can be modelled accurately in

HWNs and requires manual optimization procedure and

constraining/limiting the usage of these methods for prac-

tical application usages [15]. Further, the majority of the

existing handover execution method [16–19] are designed

considering meeting QoS parameter of network criteria.

Very limited work is carried out for RAT selection con-

sidering user preference under HWN [20, 21], and [22] and

handover execution does not bring good tradeoffs between

energy minimization and handover efficiency (success

rate). In [23] presented a KNN-based handover execution

model for 5G cellular network with good target discovery

performance and showed the benefit of using the ML

technique for decision making. However, the model is

designed considering a homogeneous network. However,

the research still lacks how to successfully employ ML

methodologies into a heterogeneous cellular network [24].

For overcoming research challenges this paper presents a

handover execution algorithm for a heterogeneous cellular

network using a machine learning algorithm. Further, this

paper presented an improved XGBoost classification

algorithm for addressing data imbalance issues affecting

prediction accuracy. The proposed XGBoost-based han-

dover execution algorithm reduces the signalling overhead

of heterogeneous cellular networks.

The contribution of work is as follows:

• Presented efficient handover execution technique using

a machine learning technique.

• Modelled improved XGBoost algorithm for carrying

out handover operation even with the presence of

imbalance feature.

Fig. 1 The architecture of

Heterogeneous wireless

communication network
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• Achieve much better handover success rate probability,

reduces handover failures, reduce handover execution

energy and energy overhead.

The paper is organized as follow. Section 2 present

efficient radio access technology selection algorithm. The

result and analysis are described in Sect. 3 and last section

conclusion of research work and future work for enhancing

handover performance is described.

2 An efficient radio access technology selection
method using machine learning algorithm

This section present efficient radio access technology

selection (i.e., handover) mechanism using a machine

learning algorithm. First, the system model for carrying out

a handover operation is presented. Second, discusses the

machine learning model used for carrying out handover

execution. Third discusses standard and proposed handover

execution model. Finally, discusses the improvement of

XGBoost algorithm for enhancing handover execution

performance.

2.1 Sysem and radio model

Let consider a dense heterogeneous wireless communica-

tion network (HWCN) where the LTE and mmWave (5G)

network overlap each other with radius S. The IoT device is

placed randomly in HWCN environment that follows

Poisson distribution [25] and is mobile. Both LTE and

mmWave (5G) operate with different frequency bands and

technologies. The IoT device connected with any current

cellular network will report the measured downlink radio

frequencies to the respective base stations (BSs). However,

the major difference here is that the BS can decide to

reconfigure measurement gap in LTE; this is because usage

of machine learning models will aid models in knowing

mmWave band might not possess feasible signal power for

maintaining present ongoing communication. Further, once

the IoT device reaches the edge of the network, the IoT

device must handover to other radio access technology

(RAT) for continuing the services. The expected number of

IoT device that can be handled per unit area is described by

process l and intensity parameter u. This wok describes

the process l for respective IoT devices O in cellular

communication environment X. The IoT devices informa-

tion are obtained through Poisson distribution with mean

uX described using the following equation

uX ¼ ups2 ð1Þ

where S depicts a cellular network radius. The jth IoT

device location is obtained through continuous uniform

distribution in S2 applying polar coordinates sj; hj
� �

, where

0� sj � s, 0� hj � 2p and j ¼ 1; 2; 3; . . .;O.

The improved extreme gradient boosting (IXGBoost)

classification model is modelled for overriding handover

decision making using historical data of handover success

probability of respective IoT device. For machine learning

models to be applied, the collection session U cannot

surpass the channel coherence time.

For the model to be valid, the session U cannot exceed

the channel coherence time. Further, the sample size col-

lected cannot surpass total attempted handovers as not

every IoT device needed handover operation. The LTE

network executed an HO execution algorithm for respec-

tive IoT device every instance a new IoT device enters an

LTE network or handoff to a new LTE network.

2.2 Machine algorithm for handover generation

The existing model has used the KNN machine learning

model for carrying out handover operation dense hetero-

geneous wireless communication environment with good

efficiency. However, processing them in parallel fashion is

difficult and when there exist data imbalance the accuracies

of their handover execution model will be impacted sig-

nificantly. Thus, affecting the user quality of experience.

Thus, this paper uses XGBoost classification algorithm for

predicting handover execution because the individual tree

can be executed in a parallel manner adopting parallel

computing platforms. Thus, can be adopted for the real-

time requirement of HWNs under distributed BSs. The

model can be scaled up concerning input and can learn high

correlation among feature set. More detail of XGBoost

which is an ensemble learning classifier can be obtained

from section D. The model minimizes the objective

parameter with differentiable regularization term and

convex loss function, bkxk1 þ 1
2
ukxk2

2 þ uU where U

depict leaves size and x is a vector composed of leafs

weights of respective gradient boosted tree. Usage of reg-

ularization term aid in avoiding overfitting problem and

optimize the computational complexities. The n� 0 matrix

of feature set to be learned is described using the following

equation

Y ¼ Yj
� �o

j¼1
ð2Þ

where o depicts several feature set considered for learning

and Yj is a multi-dimension feature vector obtained for time

instance. The supervised labelled vector is defined by y

where 1 depicts handover is executed and 0 define han-

dover is not executed. This paper considers total five fea-

ture such as coordinate of IoT device, the distance among

IoT device and the BS, reference symbol received power

(RSRP) in LTE and mmWave, RSRP measurement update
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based on X1, and RSRP measurement update based on X2.

The last three-parameter can be collected directly from IoT

devices and the first two feature are obtained through RRC

(radio resource control) message using observed arrival

time difference or global navigation system [26]. The

hyperparameters are optimized using a grid search con-

sidering K-fold cross-validation for achieving improved

handover execution accuracies. Using [10], the time com-

plexity of our model can be described using the following

equation,

C ¼ O mn e"F þ n log n
� �� �

ð3Þ

where e" described boosted tree maximum depth, F de-

scribed the overall size of trees. The computation com-

plexities are measured concerning total IoT device size

covered within a cellular network and measured conveyed

frequency.

2.3 Handover mechanism

As described in LTE standard [27] the IoT device measure

RSRP of LTE network which is lesser than handover

quality specifier for initializing RRC X2. Then the LTE

network reconfigures RRC based on measurement gap.

Further, IoT device measure an RSRP higher than han-

dover quality specifier, it initializes RRC X1. If mmWave

power is higher than predefined quality specifier, IoT

device initializes RRC Y2, randomly select a slot in

mmWave channel for carrying out communication and HO

is successfully carried out. The complete process of the

standard handover execution process is shown in Fig. 1.

From Fig. 3 is seen the HO attempt is done in phase A and

handover execution is done at phase Y where LTE network

decided to allow HO.

Using the traditional model will introduce slight over-

head. Thus, this paper presents a machine learning-based

handover execution algorithm. The algorithm of the pro-

posed machine learning-based handover execution tech-

nique of HWNs is shown in Algorithm 1. The decision

making to accept IoT device measurement or use machine

learning-based handover success rate accuracies is done

using Algorithm 1. The ROC curve is utilized for pre-

dicting HO will fail or succeed is computed considering

tenfold cross-validation using improved XGBoost algo-

rithm. Then, if LTE received measured power is lesser than

standard handover quality specifier and forecasted received

power of mmWave is higher than predefined handover

quality specifier the HO algorithm will proceed with the

standard execution process. Otherwise, if forecasted

mmWave received power lesser when compared with

handover quality specifier, the LTE network prevents the

IoT device request of being HO from LTE to mmWave.

Thus, aid IoT device in overcoming likely handover fail-

ures. Figure 2 shows the handover execution process using

the proposed handover execution model using machine

learning algorithm for HWNs.

2.4 Improved XGBoost classifier model

The XGBoost classifier model utilizes additive learning

mechanism considering the second-order derivative. The

first- and second- derivative (i.e., sigmoid and hessian) loss

function concerning prediction are needed for fitting the

automatic handover execution methodologies. Let n

describe sample data size considered, o depict feature size

considered. The initial prediction before applying a sig-

moid function is described by aj, and probability-based

prediction are described by ẑj ¼ a aj
� �

, where að�Þ is uti-

lized for defining the sigmoid function. Further, b and u
are used for describing two loss functions, respectively

(Fig. 3).

As described in [27], the additive learning mechanism

can be obtained using the following equation,

M uð Þ ¼
Xo

j�1

m zj; a
u�1ð Þ
j þ gu yj

� �� �
þ d guð Þ ð4Þ

where u represent the iteration number for training auto-

matic handover execution model. Then, by Taylor second-

order expansion on Eq. (1) we can obtain the following

equation

M uð Þ �
Xo

j�1

m zj; a
u�1ð Þ
j

� �
þ hjgu yj

� �
þ 1

2
ij gj yj

� �� �2

� 	
þ d guð Þ

/
Xo

j�1

hjgu yj
� �

þ 1

2
ij guyj
� �2

� 	
þ d guð Þ;

ð5Þ

where hj depict gradient function which can be established

using the following equation

hj ¼
oM
oaj

: ð6Þ

And ij describes hessian function which is established

using the following equation

ij ¼
o2M
oa2

j

: ð7Þ

The function hj and ij are scalar parameter; this is

because individual boosting tress are applied for solving

binary problems. As XGBoost doesn’t offer automotive

differential operation, this paper present manual derived

derivatively. For the loss function, the sigmoid is chosen as
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an activation function as derivative as described in the

below equation

oẑ

oa
¼ oa að Þ

oa

¼ a að Þ 1 � a að Þð Þ
¼ ẑ 1 � ẑð Þ:

ð8Þ

The weighted loss function for handover decision

making in a heterogeneous wireless network can be

obtained using the following equation

Mv ¼ �
Xn

j¼1

bzj log ẑj
� �

þ 1 � zj
� �

log 1 � ẑj
� �� �

ð9Þ

where b depicts the bias parameter that describes imbal-

ance features. Automatically whenever b goes beyond 1,

the additional loss parameter will be considered by clas-

sifying 1 as 0. Similarly, if b is lesser than 1, in such cases

the loss function weight is optimized concerning data

features with label 0 are classified correctly.

The first-order derivative is described below

oMx

oaj
¼ �bzj zj � ẑj

� �
: ð10Þ

The above equation is similar to oM
oa a term used in

computing general cross-entropy loss. A major difference

here is that the parameter bzj is used for controlling the

present parameter. The second derivative is obtained by

again derivating concerning aj concerning Eq. (8) as

follows

oM2
x

o2aj
¼ �bzj 1 � ẑj

� �
ẑj
� �

: ð11Þ

In the next section performance achieved by proposed

improved XGBoost-based handover mechanism over

existing KNN-based handover mechanism is presented.

3 Result and discussion

This section present experiment analysis of handover per-

formance of proposed improved XGBoost-based handover

execution model over existing KNN-based handover

Fig. 2 Standard Handover

execution algorithm for

Heterogeneous wireless

communication network

Fig. 3 Handover execution

algorithm using a machine

learning algorithm for

Heterogeneous wireless

communication network

Int. j. inf. tecnol. (August 2021) 13(4):1431–1439 1435

123



execution model. Both the model is implemented using

Python framework for carrying out a simulation. The

simulation parameter considered is described as follows.

The LTE centre frequency is set to 2.1 GHz, 5G centre

frequency is set to 28 GHz, LTE bandwidth is set to

20 MHz, 5G bandwidth is set to 100 MHz, COST 231 is

used for modelling LTE propagation model, model pre-

sented [28] is used as 5G propagation model, simulation

time is set to 50 ms, cell radius is set to 350 m, LTE BS

power is set to 46 dBm, 5G BS power is set to 46 dBm,

RRC even X1, X2, and Y2 is set to - 125 dBm, - 130

dBm, and - 95 dBm respectively. Here experiment is

conducted to evaluate performance in terms of handover

success rate, handover failures, energy overhead, and total

energy consumption for carrying out handover operation by

varying IoT device size.

3.1 Handover success rate performance considering

varied IoT device

This section presents handover success rate performance

achieved proposed improved XGBoost-based handover

execution model over existing KNN-based handover exe-

cution model. Here experiment is conducted by varying the

IoT device size and handover success rate obtained is noted

and is graphically shown in Fig. 4. From Fig. 4 it can be

seen the XGBoost-based handover execution model

improves handover success rate by 0.3745%, 0.7006%,

1.1486%, and 0.8388% over KNN-based handover execu-

tion model when IoT device size is 50 m 100, 150, and

200, respectively. An average handover success rate per-

formance improvement of 0.765% is achieved by

XGBoost-based handover execution model over KNN-

based handover execution model. From the graph it is seen

as the number of IoT device size increases the handover

success probability decreases for both existing and pro-

posed handover execution algorithm model. From result

achieved it can be stated that XGBoost based handover

execution model achieves much superior handover success

rate performance irrespective of IoT device size.

3.2 Handover failure performance considering

varied IoT device

This section presents handover failure performance

achieved proposed improved XGBoost-based handover

execution model over existing KNN-based handover exe-

cution model. Here experiment is conducted by varying the

IoT device size and handover failure obtained is noted and

is graphically shown in Fig. 5. From Fig. 5 it can be seen

the XGBoost-based handover execution model reduces

handover failures by 100%, 46.43%, 34.43%, and 15.625%

over KNN-based handover execution model when IoT

device size is 50, 100, 150, and 200, respectively. An

average handover failure reduction of 49.12% is achieved

by XGBoost-based handover execution model over KNN-

based handover execution model. From the graph it is seen

as the number of IoT device size increases the handover

failure increases for both existing and proposed handover

execution algorithm model. From result achieved it can be

stated that XGBoost based handover execution model

achieves much superior handover failure reduction irre-

spective of IoT device size.

3.3 Handover energy consumption performance

considering varied IoT device

This section presents handover energy consumption per-

formance achieved proposed improved XGBoost-based

handover execution model over existing KNN-based han-

dover execution model. Here experiment is conducted by

varying the IoT device size and handover energy con-

sumption is noted and is graphically shown in Fig. 6. From

Fig. 6 it can be seen the XGBoost-based handover execu-

tion model reduces handover energy consumption by

0.373%, 0.6853%, 0.63%, and 0.763% over KNN-based
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handover execution model when IoT device size is 50, 100,

150, and 200, respectively. An average handover energy

consumption reduction of 0.612% is achieved by

XGBoost-based handover execution model over KNN-

based handover execution model. From the graph it is seen

as the number of IoT device size increases the handover

energy consumption also increases for both existing and

proposed handover execution algorithm model. From result

achieved it can be stated that XGBoost based handover

execution model achieves much superior handover energy

consumption reduction irrespective of IoT device size.

3.4 Handover energy overhead performance

considering varied IoT device

This section presents handover energy overhead perfor-

mance achieved proposed improved XGBoost-based han-

dover execution model over existing KNN-based handover

execution model. The energy overhead is measured for

reconnecting IoT device of failed handovers. Here exper-

iment is conducted by varying the IoT device size and

handover energy consumption is noted and is graphically

shown in Fig. 7. From Fig. 7 it can be seen the XGBoost-

based handover execution model reduces handover energy

overhead by 87.1795%, 55.88%, 40.3%, and 20.59%, over

KNN-based handover execution model when IoT device

size is 50, 100, 150, and 200, respectively. An average

handover energy overhead reduction of 50.99% is achieved

by XGBoost-based handover execution model over KNN-

based handover execution model. From the graph it is seen

as the number of IoT device size increases the handover

energy overhead for both existing and proposed handover

execution algorithm model. From result achieved it can be

stated that XGBoost based handover execution model

achieves much superior handover energy overhead reduc-

tion irrespective of IoT device size.
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4 Conclusion

This work first conducted a deep-rooted survey of various

existing handover mechanism for heterogeneous network.

From the survey, it saw an existing handover mechanism

failed to bring good tradeoffs between performance

requirement and energy reduction. Further, the existing

model induces energy overhead because of additional sig-

naling overhead. For reducing signaling overhead auto-

matic handover mechanism adopting machine learning

have been modelled. KNN-based handover mechanism

failed to provide accurate prediction because the model

could not handle feature imbalance issues. For addressing

the research issues this paper presented a new handover

mechanism adopting machine learning technique namely

XGBoost. Further, for addressing feature imbalance an

improved XGBoost algorithm is modelled in this paper.

The proposed XGBoost-based handover mechanism

achieves much better accuracies of handover success rate

when compared with KNN-based Handover mechanism.

The experiment is conducted by varying IoT device to

evaluated handover performance. The result achieved

shows XGBoost-based handover mechanism improves

handover success rate by 0.765% when compared with

KNN-based Handover mechanism. Further, XGBoost-

based handover mechanism reduces handover failure by

49.12% when compared with KNN-based Handover

mechanism. Then XGBoost-based handover mechanism

reduces energy consumption and energy overhead by

0.612% and 50.99% over KNN-based Handover mecha-

nism, respectively due to reduction of additional signaling

overhead. The overall result achieved proposed model is

robust and scalable irrespective of IoT device size

operating in a heterogeneous network. Future work would

consider performance evaluation and RAT selection con-

sidering diverse QoS constraint in a heterogeneous cellular

network.
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