
ORIGINAL RESEARCH

Identification and integration of security activities for secure agile
development

Amit Sharma1 • R. K. Bawa1

Received: 16 May 2019 / Accepted: 26 February 2020 / Published online: 5 March 2020

� Bharati Vidyapeeth’s Institute of Computer Applications and Management 2020

Abstract Agile software development is receiving the

attention of software developers and researchers thanks to

its fast software delivery and flexible development plan

capabilities. The fast release and simplified documentation

thus leads to the preference of the agile development model

over several other traditional models. This, however, also

raises critical concerns about the security issues. In this

research work, we propose a framework for secure agile

development. The selection of development methodology

among agile versus plan driven approaches and the par-

ticular agile development method among Extreme Pro-

gramming (XP), Crystal Clear, Scrum, Lean Development,

Dynamic Software Development Method and Feature-

Driven Development is made on the basis of the specific

requirements of the project using empirical methods like

AHP and PROMETHEE. Systematic Literature Review

(SLR) and survey study are used to obtain the authentic

industrial feedback, followed by the application of non-

parametric statistical tests to identify and select the most

suitable and beneficial security activities from well known

security engineering processes like CLASP, Common

Criteria, Cigital Touchpoints and Microsoft’s SDL. A

lightweight method is also introduced for integrating these

security activities identified from SLR and survey study,

using a dynamic integration algorithm without

compromising the agility of the process. The proposed

framework for integration of these security activities is

implemented in java to automate the entire process and

provides maximum benefit at a low integration cost.

Keywords Agile development � Security engineering �
Agile security � CLASP � Common Criteria � Cigital

Touchpoints � Microsoft SDL

1 Introduction

Agile development follows an informal and flexible

approach which is different from plan-driven development

which relies on extensive formalization and documenta-

tion. A very limited amount of formalization is required in

agile development wherever necessary. It usually lays

emphasis on informal, dynamic and tacit knowledge-driven

methods to develop high business-value projects. The

Agile Manifesto [1] clearly describes these core values.

The highest priority is given to continuous and early

delivery of the software to satisfy the customer. Changing

requirements are welcomed, even late in the development.

For the customer’s competitive advantage, agile processes

accommodate these changes. The primary measure of the

progress is the working software. The best designs and

architectures evolve from self-organizing teams.

Although the agile development approach is getting

acceptance across the globe, it is found to have certain

disadvantages related to security in software development

[2, 3]. The main security issues with agile development

arise from the informal communication, self-organizing

team, tacit knowledge-driven methods and trust on indi-

viduals, as they conflict with the assurance and quality

activities as required by conventional secure software

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s41870-020-00446-4) contains sup-
plementary material, which is available to authorized users.

& Amit Sharma

amitsharmapkl@gmail.com

R. K. Bawa

rajesh.k.bawa@gmail.com

1 Punjabi University, Patiala, Punjab, India

123

Int. j. inf. tecnol. (March 2022) 14(2):1117–1130

https://doi.org/10.1007/s41870-020-00446-4

https://doi.org/10.1007/s41870-020-00446-4
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-020-00446-4&domain=pdf
https://doi.org/10.1007/s41870-020-00446-4

development methods. Some limitations are imposed on

the projects by the agile processes, as all the requirements

are not known in advance. Thus, it is not possible to create

a complete picture of a product. Security Engineering (SE)

processes are the collection of activities performed to

deliver secure software, throughout the different phases of

development process. As stated in many other studies

[4, 5], the restriction of having the complete overview of

the project creates hindrance while performing Security

Engineering practices in an agile model. The fact is that

there are no specific Security Engineering processes which

are developed for agile development methods; companies

are using existing security processes developed for water-

fall model in their agile model.

In this paper, we have used a Systematic Literature

Review and Survey Study to identify the most suitable and

beneficial security activities from well-known waterfall

Security Engineering processes like CLASP, Common

Criteria, Cigital Touchpoints, Microsoft SDL and some

other commonly used practices. Developers working in

different agile development projects have participated from

all over the world, and the majority of them are from India.

By using the survey, we aim to identify and select the

security activities of the existing SE processes which are

most suitable in terms of benefit as well as cost, and also to

identify the activities which cannot be performed in an

agile model. The motive of this study is to use the expe-

rience of the industry to select those activities which can be

easily integrated with agile projects. Instead of blindly

integrating the security practices into agile processes, the

framework provides an overall approach for secure devel-

opment starting from the decision of selecting a develop-

ment methodology between agile and plan-driven approach

and then the selection of the most suitable agile develop-

ment method among Extreme Programming (XP), Crystal

Clear, Scrum, Lean Development, Dynamic Software

Development Method (DSDM) and Feature-Driven

Development (FDD) for the given particular project using

empirical methods like AHP and PROMETHEE. Artificial

Neural Network and Fuzzy Logic are also used to com-

pensate the subjectivity of human decision-making. The

main menu with sub menus is shown in Fig. 1. Multi cri-

teria decision making in itself is a vast topic, hence making

a detailed discussion is out of the scope of this paper.

However, the most useful and widely used security activ-

ities are identified from the Systematic Literature Review

and Survey Study. Based on the level of preference of the

security activity in terms of cost as well as benefit, the

statistical tests were conducted to find out the most bene-

ficial and suitable security activities for each development

phase. Thereafter, these security activities were selected for

integration with the agile activities using a dynamic inte-

gration algorithm. Thus, this framework provides an

integrated approach which covers the entire life cycle of a

project and considers security throughout as its integral

part. It is implemented in java with more than 15,000 lines

of code to automate the entire process.

The rest of the paper is organized as follows. Section 2

presents the related work done in the field and Sect. 3

discusses the Security Engineering Processes. Section 4

covers the research methodology including a Systematic

Literature Review and Survey method. The results from the

empirical studies are provided in Sect. 5 along with the

identification and then integration of security activities.

Finally, Sect. 6 concludes the paper with the summary of

the major findings and suggestions for the future work.

2 Related work

Most of the previous work regarding security issues in

agile has focused mainly on literature survey and few

researchers have also used industry feedback along with

empirical methods for concluding their results. Beznosov

and Kruchten [6] worked towards agile security assurance.

They studied the mismatches between agile development

methods and the security assurance techniques. Based on

the literature studies, few techniques which are identified fit

well with agile methods and the other few are rejected

since they mismatch with agile. Siponen et al. [7]

demonstrated how the security features can be integrated

into agile methods. They identified the key security ele-

ments in agile software development and then illustrated

how these can be implemented in FDD. Keramati et al. [8]

used two SE processes namely, Comprehensive Light-

weight Application Security Process (CLASP) and

Microsoft SDL to identify and evaluate security activities

and practices. The paper has presented an algorithm, which

uses calculation of Agility Degree based on nine agility

features and further using this for extending agile processes

with security activities. Another approach is to integrate

security activities from well established SE processes. Baca

[9, 10] and Carlsson [11] studied different known Security

Engineering processes and identified the security activities.

Then, they produced a security based agile development

process which is based on the activities from the famous

security engineering processes. They claimed to provide

the desired results by enhancing the security and without

obstructing the agile process. Bartsch [12] provided per-

spectives from the practitioner’s viewpoint on agile

development security and report on the qualitative,

exploratory results of interviews. Their results expanded

the conceptual prior work and proposed concentrating on

sufficient customer engagement, knowledge and compe-

tence of developer security and continuous improvement of

the software development process. Shackleford [13] looked

1118 Int. j. inf. tecnol. (March 2022) 14(2):1117–1130

123

at the development of software from both development and

security perspectives, and then analyzed which tools and

technologies might contribute towards incorporating secu-

rity into development cycles without overloading the sys-

tem or causing too much overhead. Savola et al. [14]

carried out an industrial pilot study in agile software

development on risk-driven security metrics. The results

showed that risk-driven security metrics had a practical

potential, especially in providing early visibility of security

effectiveness and performance. Wolff [15] explained how

formal methods can be applied to the Scrum, which is one

of the most popular agile development processes. The

experiences of using a strategy variant in an industrial

situation were summed up. GAO [16] submitted a report on

federal challenges and effective practices in the imple-

mentation of agile processes. GAO recognized 32 tech-

niques and practices beneficial in applying agile methods

of software development to IT projects. Munetoh and

Yoshioka [17] introduced a framework for developing Web

applications through a model-assisted security testing

process. They developed a tool called ‘‘RailroadMap,’’

which extracted behavior model automatically from the

Ruby-on-Rail code base. Rindell [18] presented a literature

review of a selected set of agile methods to develop secure

software. The results show a wide and well-documented

adaptation of security activities in the development of agile

software, with the observed activities covering the entire

security life cycle of development. Harrison and Tzounis

[19] discussed the pros and cons of Waterfall before

moving on to the Agile Scrum methodology. A framework

was created using the Application Security Verification

Standard (ASVS) of the Open Web Application Security

Project (OWASP). Rindell [20] worked on a project case

consisting of a multi-team, multi-location, security engi-

neering work, and development efforts, which were carried

out according to the Scrum Framework. In this case

research, the experiences of combining security engineer-

ing with agile development are reported, challenges are

discussed and some security improvements to the Scrum

are proposed.

This section covers the related work in detail along with

the major differences with our work wherever applicable.

Most of the above research work takes security aspects in

bits and pieces that on a very small sample size. There is no

comprehensive approach which takes care of the security in

agile development throughout the development life cycle.

Beznosov and Kruchten worked towards agile security

assurance but eventually could not suggest any concrete

solution to gap down the mismatches and only proposed a

compromise for these mismatches. Siponen et al. suggested

the use of abuse cases by illustrating how they can be

implemented in FDD. The scope of this approach is very

narrow as the use of abuse cases is just one of the several

security measures which should be taken for secure agile

development. Keramati et al. suggests security activities

from two SE processes but without considering the fact that

these security activities are originally meant for plan-dri-

ven approach, and the selection criteria for calculating the

agility of these activities is also decided by a project ana-

lyst, which again does not fit with the agile principle of

team work and decision-making. Dejan Baca suggested the

integration of security activities from three SE processes by

conducting an interview of 12 developers from a single

telecommunication company Ericsson AB. His work

focused mainly on Scrum agile method and a total of 10

activities were selected. In another work, Bengt Carlsson

conducted a survey to identify and evaluate the security

activities mainly from telecommunication and software

companies with a small sample size of 41. As a result, a

total of 16 security activities were identified. Firstly, the

sample size in both the studies is very small, and this is not

enough to generalize the results for such a huge software

industry. They have applied t test for their analysis, but for

an ordinal data, a non-parametric test is more powerful and

appropriate to produce better results. Moreover, some of

the selected security activities like counter measure graphs

Fig. 1 Main menu of the framework for secure agile development

Int. j. inf. tecnol. (March 2022) 14(2):1117–1130 1119

123

seem to be selected because of local influence as they are

the result of their own work. This makes it difficult to

generalize them for the entire software development

industry. In our work, we have considered four SE pro-

cesses namely like CLASP, Common Criteria, Cigital

Touchpoints, Microsoft SDL. Systematic Literature

Review is done in order to get a firm base for conducting

survey study. To get a large number of participants, we

have used professional networks like Academia, Facebook,

LinkedIn and Twitter. A total of 97 respondents, which

provide a reasonable sample size, participated in the sur-

vey. As a result, the 20 security activities are selected that

are both beneficial and compatible with agile process. Due

to the data being ordinal, its normality was not fulfilled.

Thus, the non-parametric test Wilcoxon–Mann–Whitney

test was applied to find the significant difference between

any two security activities. Effect-size was also calculated.

Although security activities identified through the survey

are selected, there is also a provision of adding and

removing security activities, depending upon whether the

project require some other more specific security activities.

Further, to automate the process, an additional algorithm is

also provided to integrate the selected security activities

with agile activities.

3 Security engineering processes

This section covers the four Security Engineering processes

namely the Microsoft’s Secure Development Lifecycle

(SDL), Comprehensive Lightweight Application Security

Process (CLASP), Cigital Touchpoints (CT) and Common

Criteria (CC). These are the four most popular and widely-

accepted SE processes throughout the world. Different

activities have been extracted from these SE processes and

have been mapped to different phases of the development

cycle starting from pre requirement till release. This

information has also been presented to the respondents

through our website (http://www.agilesecurity.esy.es). This

gives the information about the activities such as the def-

inition of the security activity along with its purpose and

use.

Microsoft Security Development Lifecycle Process [21]

has been proposed by Microsoft to increase the reliability

of the process along with reducing the maintenance cost.

This software development process has basically been

derived from the classical spiral model and has been used

for reducing software security related bugs. Many attempts

have been made in order to make it more Agile friendly

[22]. It contains the following security activities: Role

Matrix, Security Requirements, Core Security Training,

Quality Gates, Threat Modeling, Design Requirements,

Attack Surface Reduction, Cost Analysis, Security Tools,

Coding Rules, Static Analysis, Dynamic Analysis, Fuzzy

Testing, Incident Response Planning, Attack Surface

Review, Code Review and Final Security Review.

Common Criteria [23] is an ISO certified mature pro-

cess. It is a framework that allows the user of the computer

system to specify their security assurance and functional

requirements. It consists of the following security activi-

ties: Agree on Definitions, Security Requirements, Critical

Assets, Risk Analyses, UMLSec, Requirements Inspection,

and Repository Improvement.

Cigitel Touchpoints [24] are described as lightweight

best practices that are applied to various software artifacts.

It improves the various security and quality aspects of the

end product. It consists of the following security activities:

Security Requirements, Risk Analyses, Abuse Cases,

Assumption Documentation, Static Code Analyses, Pene-

tration Testing, Red Team Testing, External Review, and

Risk Based Testing.

CLASP is a Security Engineering process [25] that

originates from the OWASP i.e. Open Web Application

Security Project. It consists of the following security

activities: Periodical Education, Initial Education, Detail

Misuse Cases, Identify Resources and Trust Boundaries,

Perform Security Analysis of System Requirements and

Design, Security Metrics, Specify Operational Environ-

ment, Identify Global Security Policy, Identify User Roles

and Resource Capabilities, Identify Attack Surface, Apply

Security Principles to Design, Security Architecture, Per-

form Code Signing, Identify, Implement and Perform

Security Tests, Perform Source-level Security Review,

Operational Planning and Readiness.

Few other (O) security activities that are being used in

the industry but are not a part of any of the above SE

processes are: Redesign of the Internal Development Pro-

cess, Meets Existing Security Framework, Adaptive Mon-

itoring, Acceptance Criteria, Risk Metrics, Security

Measurement Based on Risk Indicators, Pair Programming,

Automated Acceptance and Unit Tests, Countermeasure

Graphs.

A total of 65 security activities have been included out

of these Security Engineering processes. Because of

redundancy, incompatibility and results of previous studies,

35 security activities, which could be used for agile model,

have been selected for further consideration in survey

study. Although, depending upon the requirement of a

particular project there is always a chance to include or

exclude certain security activities. Therefore, during inte-

gration, provision is made to include or exclude such

security activities as shown in Fig. 1. Furthermore, to

diversify the scope of the study and to get comprehensive

data about the other widely used security activities, two

open-ended questions are also asked in the survey. Ques-

tion 7 collects data regarding the Security Activities/

1120 Int. j. inf. tecnol. (March 2022) 14(2):1117–1130

123

http://www.agilesecurity.esy.es

Methods which are used in the projects taken up by the

participants and question 15 further asks for the recom-

mendation regarding the security in agile development

process. Hence, many other security activities have come

out as the result of these questions, but they are subject to

the need of a particular project, and for coming to any

concrete conclusion, it needs further study and detailed

analysis which is out of the scope of this paper.

4 Research methodology

The research work has been carried out using two

approaches shown in Fig. 2. The use of the qualitative

method is followed by the use of quantitative method.

Systematic Literature Review is used from the qualitative

method which focuses on the identification and analysis of

data in different forms, which is usually non-numeric.

Empirical approach of survey study has been used from the

quantitative method. The main advantage of quantitative

method is that it allows the statistical analysis for more

accurate results using statistical tools like SPSS.

4.1 Systematic Literature Review

Systematic Literature Review is designed in three steps

which include Planning, Conducting and Reporting. In the

first step, a review protocol is developed after identifying

the need of the review. In the second step, Data Extraction

strategy, quality assessment and data analysis are per-

formed. Finally, the third step is to report the review in a

single phase. From the result of this Systematic Literature

Review, the high profile Security Engineering processes

and their activities are identified for further investigation.

Moreover, the previous work done in this field is also

identified and is used to further enhance the findings.

4.1.1 Need for Systematic Literature Review

The primary reasons for performing a Systematic Litera-

ture Review include identifying any deficiencies in the

present research areas in terms of security in agile devel-

opment and identifying the world-widely used Security

Engineering processes along with their security activities.

These security activities are further used for conducting a

survey study in order to get the real industry feedback

about the practical implementation of these security

activities.

4.1.2 Search strategy

The search strategy shown in Fig. 3 is used to find the

articles. The keywords to search are shown in Table 1.

These are used either independently or in combination with

others, to identify the articles related to secure software

development, security engineering and security aspects in

agile process and agile methods. The trial search is carried

out using a variety of combinations of search terms in order

to verify the quality of the search string. If the match comes

out to be less than 90%, the keywords are modified to

carry out the search again. If the match is more than 90%,

the papers are stored for further investigation.

Fig. 2 Overview of research design Fig. 3 Search strategy

Int. j. inf. tecnol. (March 2022) 14(2):1117–1130 1121

123

4.1.3 Selection criteria

The primary goal of the selection criteria for the study was

to find and select the papers which were studied ini-

tially and were actually helpful in finding the relevant

information for agile security aspects. This selection cri-

terion ensured that legitimate and relevant studies could

become component of the literature review. Furthermore, it

also ensured that the review could not cover irrelevant and

insignificant papers. To make this review more compre-

hensive, studies conducted in both academics and industry

were included. The following types of articles were

included: journal article, conference article and conference

proceeding. It also excluded the articles on general dis-

cussions about agile adoption, as the primary focus was on

identifying the Security Engineering processes and security

practices in agile development. Hence, a selection proce-

dure consisting of three phases was followed. In the first

phase, duplicates and non-English papers were discarded

from a total of 912 papers collected. During the second

phase, a total of 597 papers and 30 non-comprehensive

papers were excluded, based on inclusion/exclusion crite-

ria. After this, the remaining 80 papers were selected for

full text reading. In the final phase, insignificant papers

were discarded after reviewing the full text. At the end,

after following the above steps, only 20 papers remained

for further studies.

4.2 Survey study

A survey is one of the best methods to get information and

feedback in both qualitative and quantitative forms. It

consists of five distinct steps: Design Survey Process,

Develop Questions, Test and Train, Collect Data and

Analyze Data. An online survey questionnaire has been

used for data collection. This is an effective way to collect

responses on the current security practices across the world

from a large number of practitioner’s working in different

organizations.

So as to obtain the accurate results, the Survey Design

was initiated by identifying the target population which

consists of industry professionals with an experience in

agile development. The inclusion criterion was formulated

to include the professionals working for agile projects and

who were familiar with the security aspects of the agile

development. The non-probabilistic sampling method was

used to gather the data, which included snowball sampling

and availability sampling. The major consideration behind

choosing this sampling technique against random sampling

was the constraints like time, secrecy and unwillingness to

respond to unfamiliar sources, faced in case of software

engineers.

The next step is the Construction of Survey Instrument.

An online survey tool SurveyMonkey was used to design

the survey. This tool is one of the most popularly-used

online survey tool among professionals because of its

advanced features which include filters, crosstabs, data

exports, text analysis etc. The survey questionnaire con-

sisted of total 16 questions in all. Four of these questions

were regarding the information about the respondents, 4

questions about the agile development efforts made by

them, 6 concerning selection and evaluation of security

activities and 2 optional questions one of which was open-

ended. In addition to these questions, a cover note, which

explains the purpose of the survey along with assurance to

maintain the confidentiality, has also been attached. A link

to our website (http://www.agilesecurity.esy.es) has been

mentioned in the survey so as to expound the definitions

and other information about the security activities. A total

of 97 software professionals from agile industry partici-

pated in the survey.

The selection and evaluation of the security activities in

the survey were based on the likert scale format. These

activities were tested on the basis of two factors which

include benefit and cost. The five-grade scale, of which the

range varies from 1 (low) to 5 (high), was used. The survey

instrument was evaluated and refined using a pilot study

conducted with five industry professionals working for

agile projects. The respondents were contacted through

personal contacts and through other professional networks

like Academia, Facebook, LinkedIn and Twitter. Invite

features of SurveyMonkey, such as web link, email invi-

tation and hyperlink were used to obtain the data from the

respondents. The Reminder feature of SurveyMonkey was

also utilized to send reminders to the respondents for

completion of the survey. For data validation and access

control, the URL of the survey link was shared and each

participant was allowed to participate only once. This is

one of the features provided by SurveyMonkey.

Table 1 Search terms

S. no. Search terms

1 Secure software development

2 Security engineering processes

3 Agile development

4 Extreme Programming/XP

5 Scrum

6 Feature Driven Development/FDD

7 3 OR 4 OR 5 OR 6

8 1 AND 7

9 2 AND 7

1122 Int. j. inf. tecnol. (March 2022) 14(2):1117–1130

123

http://www.agilesecurity.esy.es

4.3 Validity evaluation

This section discusses the validity threats to Systematic

Literature Review and Survey Study. While designing the

study plan, threats to the validity of the results are very

important to be taken into consideration so that the

appropriate actions can be taken in advance to mitigate

them. For SLR, three main threats were identified [26].

These include Threats to the Identification of Primary

Studies, Publication Bias and Threat to Selection and Data

Extraction Consistency. These validity threats were han-

dled by adopting a transparent and unbiased data collection

procedure to conclude the valid results, while considering

at the same time, the trade-off of including peer-reviewed

articles, accumulating reliable information and by formu-

lation of systematic review protocol. As per Wohlin et al.

[27], four important validity threats were taken into con-

sideration for the survey study. These included External

Validity, Internal Validity, Construct Validity and Con-

clusion Validity. First, the threat to external validity mainly

concerned with generalizing the survey findings beyond the

selected sample. This was mitigated by taking a large

sample size and heterogeneous distribution of the samples

from diverse industrial settings. Second, the threat to

internal validity was mitigated by designing an under-

standable and readable survey which was further refined by

pilot study. Further restriction of filling the survey only

once, high completion rate and selection of respondents

through professional networks like Academia, LinkedIn,

Twitter and use of statistical hypothesis testing reduced the

chances of causal relationship between the treatment and

the results. Thirdly, the threat to construct validity was

mitigated by clearly representing the survey objectives.

The definition of each security activity was explained

through a link to our website and the aim of the research

was clearly defined through cover note, Mono operation

bias was avoided by using SLR to collect data prior to

survey design and the survey responses were completely

anonymous. Finally, the threat to conclusion validity was

mitigated by choosing high power statistical tests and the

risk of violation of the statistical test assumption was

limited by having a sufficiently large sample size. The Help

link in the survey along with the provision to clarify any

doubts through email and website mitigated the threat to

the reliability of measures. Learning effect was minimized

through the high response count and a restriction upon

filling the survey not more than once.

5 Results and discussion

This section covers the details of the statistical tests applied

as well the results produced by them. On the basis of the

results, the Security Engineering processes are evaluated

and the security activities, which are agile integrable and

beneficial, are identified. Finally in Sect. 5.6, the process to

integrate security activities using a dynamic integration

algorithm is discussed.

5.1 Demographic data

A total of 97 software professionals participated in the

survey. A majority of respondents being from India, several

others from countries like the USA, Canada, England,

Germany and Netherlands participated through LinkedIn,

Twitter, Academia and other professional networks. Most

of them are working in medium to large organizations like

Xerox, HSBC Bank, Infosys, Cognizant, Accenture, Tech

Mahindra, Wipro and HCL. More than 40% of the software

professionals have an experience of more than 5 years.

However 60% of the participants have about 1–3 years of

experience in agile development. This shows that software

professionals are shifting from traditional development

methodology to agile development. In addition, Scrum, XP

and Lean have emerged as the most popular agile devel-

opment methods in use.

5.2 Statistical test

The security activities in each phase were compared with

each other to find out the most beneficial and compatible

security activity. The hypothesis thus derived mainly

focused on whether there exists any significant difference

among any two security activities belonging to the same

development phase. The statistical analysis was carried out

using IBM SPSS (Statistical Package for Social Sciences)

statistical version 20. The analysis included frequency

tables and bar graphs. All variables like Cost and Benefit

were evaluated on the Likert scale. As the data was ordinal,

its normality was not fulfilled. As a consequence, the non-

parametric inference was used. For such data, the Median

was compared using the Mann–Whitney test [28] and the

Kruskal–Wallis test [29]. All statistical tests were seen at

two-tailed level of significance (p B 0.01 and p B 0.05).

Thereafter, the Wilcoxon rank test [30] was used. This is a

non-parametric statistical hypothesis test used to compare

two related samples and to find out whether their popula-

tions mean ranks differ. The Mann–Whitney test was used

to find a significant difference among cost and benefit

groups and then Kruskal–Wallis test was applied to find out

the significant difference among the security activities

Int. j. inf. tecnol. (March 2022) 14(2):1117–1130 1123

123

within a development phase. Wilcoxon rank test was fur-

ther used to categorize different security activities into

strongly preferable (???), highly preferable (??) and

merely more preferable (?) for both cost and benefit. A

particular security activity was selected based on whether it

is preferable in terms of both benefit and cost.

5.3 Statistical test results

Based on the level of preference of the security activity in

terms of cost as well as benefit, the statistical tests have

been conducted to find out the most beneficial and suit-

able security activities for each development phase. Based

on the level of confidence, a security activity is categorized

into strongly preferable (???) for confidence level greater

than 99.3%, highly preferable (??) for confidence level

99% to \ 99.3% and merely more preferable (?) for

confidence level 95% to\ 99%, as shown in Table 2.

In the pre requirement phase, all the stakeholders get

knowledge about the product as well as the entire devel-

opment process. For this phase, using Kruskal–Wallis Test,

three security activities are taken into consideration with

mean ranks, as shown in Fig. 4. Using the Kruskal–Wallis

test, a significant difference between the security activities

in terms of cost with p value 0.0001 is discovered. Nev-

ertheless, there is no significant difference among them in

terms of benefit as the p value is found out to be 0.169.

Initial education is strongly preferable in terms of cost,

as compared to other two activities based on the significant

difference among them in the Mann–Whitney test with

p values 0.002 and 0.0001 respectively. The effect size of

initial education come out to be 0.64 as compared to Re-

design of the Development Internal Process and Meets

Existing Security Framework with effect sizes as 0.26 and

0.06 respectively. In case of benefit, all the three activities

provide reasonable benefit even though there is no signif-

icant difference found between them. The effect sizes of all

the three activities come out to be 0.71, 0.61 and 0.63.

Hence, in pre requirement phase, initial education is

selected as the most suitable and beneficial security

activity. Providing initial education to the team is very

useful for the success of the project as it makes the team

aware about the importance of security and Security

Engineering. This initial education includes the basic

security concepts and types of security breaches with their

possible solutions. Redesign of the Development Internal

Process and Existing Security Framework are beneficial but

their implementation requires a huge amount of expensive

resources and also poses threat to the agility of the process.

Similarly, in the requirement phase, the requirements of the

stakeholders are collected, understood and documented. In

this phase, a total of 8 security activities are considered and

among them 5 security activities namely Role Matrix,

Agree on Definitions, Security Requirements, Identify

Resources and Trust Boundaries, Specify Operational

Environment are strongly preferred with significant dif-

ference among them both in terms of cost and benefit. For

selected activities the effect sizes come out in the range of

Table 2 Security activities evaluation

Security activities Cost Benefit

Pre requirement

Initial Education ??? ???

Redesign of the Internal Development Process ???

Meets Existing Security Framework ???

Requirement phase

Role Matrix ?? ???

Design Requirements ???

Security Requirements ? ???

Agree on Definitions ??? ???

Identify Resources and Trust Boundaries ? ??

Specify Operational Environment ?? ???

Adaptive monitoring ??

Abuse Cases ?

Design

Security Architecture ???

Secure Design Principles ? ???

Assumption Documentation ?? ??

Requirements Inspection ?? ???

Risk Analyses ? ???

Critical Assets ???

Quality Gates ? ?

Countermeasure Graphs ??

Acceptance Criteria ???

Risk Metrics ???

Security Measurement Based on risk Indicators ??

Implementation

Coding Rules ?? ???

Security Tools ? ???

Automated Acceptance and Unit Tests ???

Static Code Analyses ? ???

Pair Programming

Testing

Dynamic Analysis ?? ???

Security Testing ? ???

Vulnerability and Penetration Testing ? ???

Release

Operational Planning and Readiness ?? ???

Signing the Code ??? ???

Incident Response Planning ? ???

Repository Improvement ?? ??

Final Security Review ???

1124 Int. j. inf. tecnol. (March 2022) 14(2):1117–1130

123

0.5–0.7 in terms of benefit. In terms of cost, the effect sizes

come out in the range of 0.4–0.6. In Role Matrix, all user

roles and their software access level are identified. Thus,

Role Matrix plays a very important role for authentication

and authorization at a very low cost. Definitions Agreement

defines stakeholders and agrees on a common set of

security definitions, together with the definition of orga-

nizational security policies and vision. Therefore, the

Vision Document artifact is created in this activity to

provide a solid foundation for implementing security.

Additionally, since most of the resources required are

already available for implementing various other projects

being undertaken by the organization, it is much less

expensive. Security Requirements assign security experts

to a particular software project, identify and enumerate

security and privacy functionality. This provides an edge to

the project’s security concerns and the security experts are

assigned to different projects simultaneously. As a conse-

quence, this activity provides high benefits with a relatively

less cost. Identify Resources and Trust Boundaries defines

the system architecture from a network view, identify data

resources that a program can use and define where trusted

and untrustworthy entities interact. Specify Operational

Environment documents the operating environment’s

assumptions and requirements to assess the impact on

security. Both of these activities provide considerable

security benefits to an organization with relatively less

resource requirement. In next phase, i.e., Design a total of

11 security activities are taken for statistical test and

among them 4 security activities are selected. These

include Secure Design Principles, Assumption Documen-

tation, Requirements Inspection and Risk Analyses. In the

implementation phase, a total 5 security activities are

considered out of which 3 securities namely Coding Rules,

Security Tools and Static Code Analyses are highly

preferable based upon significant difference among them in

terms of both cost and benefit. In terms of benefit, the effect

sizes of the selected three activities are in the range of

0.65–0.8, and in terms of cost, the effect sizes are in the

range of 0.3–0.45. Secure Design Principles make the

design of applications more difficult by implementing

security design principles and identifying security risks in

third party components. Architects, designers and analysts

should recognize potential attacks and clearly document

assumptions in order to assess the effect on security.

Requirements Inspection is performed to validate all the

artifacts produced and is produced as a validation report.

Its objective is to evaluate the quality of the work and

outcomes of the team. Security analysts discover archi-

tectural flaws and prioritize them so that suitable mitigation

can actually begin. In the early stages, disregarding risk

analysis leads to expensive concerns down the path. In

Coding Rules, the list of unsafe functions is determined and

the same are replaced with safer options. Security Tools

describes and publishes a list of authorized security tools to

support the project (i.e. open source, commercially avail-

able and in-house developed) and related safety checks. In

Static Code Analysis, tools for static analysis scan the

source code and find prevalent vulnerabilities. Although all

the three activities are highly beneficial from the imple-

mentation point of view, but coding rules are less costly to

implement as compared to security tools and static code

analyses. In the testing phase, among 3 security activities

all the 3 are selected. These are Dynamic Analysis, Secu-

rity Testing, Vulnerability and Penetration Testing, based

on reasonable benefit and considerable cost of integration.

Dynamic Analysis uses dynamic testing tools and track

memory corruption, user privilege issues and other critical

safety issues. It also explains the outcomes and develops a

mitigation approach for a specific software program. Pen-

etration Testing offers a useful insight into the software in

its real environment. This is done by simulating

Fig. 4 Security activities

analysis in the pre requirement

phase

Int. j. inf. tecnol. (March 2022) 14(2):1117–1130 1125

123

real working conditions and attack patterns. The Release

phases consists of total 5 security activities in all, and

among them 4 security activities, including Operational

Planning and Readiness, Signing the Code, Incident

Response Planning and Repository Improvement, are

selected. The effect sizes of the selected activities in terms

of cost come out to be in the range of 0.4–0.6. In terms of

benefit, the effect sizes come out in the range of 0.5–0.75.

Operational Planning and Readiness involves user manual

writing, security architecture documentation, and so on.

Incident response planning offers a response checklist that

provides clear action rules for a security emergency. New

model elements are found in Repository Improvement

throughout the development of previous activities that

could be considered to be used in future applications. In

addition, the model elements already in the repository

could be modified to improve their quality. These security

activities are strongly preferable as there are significant

differences among them both in terms of benefit and cost.

Both of these activities provide considerable security

benefits to an organization with relatively less resource

requirement.

In a nutshell, 35 security activities are taken initially

from a total of 65 security activities identified from Secu-

rity Engineering Processes and Literature Survey. From

these 35 security activities, 20 security activities are short

listed based on cost and benefit in terms of significant

difference among them through statistical tests. In terms of

cost, 3(8.5%) activities are strongly preferable, 9(25.7%)

activities are highly preferable and 10(28.6%) activities are

merely more preferable. In terms of benefit, 74.2% activ-

ities are strongly preferable, 14.3% activities are highly

preferable and no activity is selected as merely more

preferable. Thus, it is very evident from the statistics that

most of the security activities are highly beneficial even

though many among them have considerably high cost of

integration.

5.4 Security engineering processes evaluation

In this section, based on the results, the four Security

Engineering processes Cigital Touchpoints, Microsoft’s

SDL, CLASP and Common Criteria are evaluated in terms

of security activity coverage in agile model. As shown in

Fig. 5, Microsoft’s SDL and CLASP have dominated the

overall activity coverage with 29% and 32% respectively

while Common Criteria and Cigital Touchpoints have less

security activity coverage with 18% each. Security activi-

ties from other SE processes have not been preferred at all.

When it comes to considering each individual phase of the

development cycle, the pre requirement phase is mainly

dominated by Microsoft’s SDL and CLASP with 50%

coverage. In requirement phase, CLASP covers 44% while

Microsoft’s SDL and Common Criteria cover 22% each.

Cigital Touchpoints covers the least with 11%. In Design

phase, Common Criteria and Cigital Touchpoints dominate

the activity coverage with 40% each while CLASP cov-

erage is 20%. Implementation phase is mainly covered by

Microsoft’s SDL and Cigital Touchpoints with 75% and

25% coverage respectively. In testing phase, all the three

Security Engineering processes; Cigital Touchpoints,

Microsoft’s SDL and CLASP, have the maximum activity

coverage with 33% each. In release phase, CLASP is the

most dominated with 50% while Common Criteria and

Microsoft’s SDL have security activity coverage with 25%

each.

5.5 Agile integrable security activities

In this section, the most beneficial and compatible security

activities are selected based on Table 2. The criteria for

selecting a particular security activity is that it should be

strongly, highly or more preferable in terms of cost. This

means that he cost of integrating that security activity

should be considerably low and in terms of benefit; it

should be either strongly or highly preferable. Thus, it

should provide high benefits to the security aspects of agile

process. Based on these criteria, a security process cover-

ing beneficial and compatible security activities for each

phase of software development is shown in Table 3.

5.6 Integration of security activities

In this section we propose an optional customized method

to integrate security activities with agile activities apart

from the agile security process shown in Table 3. As dis-

cussed in earlier section that however there are some best

practices, guidelines and methods in security engineering

which could be used to develop secure software. Unfortu-

nately these security engineering activities are meant for

the traditional waterfall approach. Therefore, there is need

to arm agile methods with these security features and it

seems perfectly acceptable to use these experienced and

tested activities to ensure the secure development of soft-

ware. But on the other hand, by integrating of some heavy

weight activities may result in a process that will not

remain agile and will eventually be unacceptable to the

project. Thus, in order to deal with this problem, firstly

these security activities have to be sorted according to

agility. This can be defined by using the two parameters of

cost and benefit. Cost can be measured by the level of

difficulty of integration with agile process while benefit can

be measured by the extent of value of using the activity

with agile process. This can easily be decided by a panel of

security experts along with the team members. Lower the

cost, more it is preferable. Higher the benefit, the more it is

1126 Int. j. inf. tecnol. (March 2022) 14(2):1117–1130

123

preferable. In order to put them in the same scale for fur-

ther summative assessment, the values are normalized. We

cannot select an activity which is beneficial but very costly.

Also, we cannot even select the one which has less cost but

is less beneficial. So the agility value of these security

activities is calculated by summing up the values of both

cost and benefit for each activity. Greater value of agility

indicates that the activity is more agile and preferable.

Although most beneficial security activities are selected

through SLR and survey study in previous section, an

optional provision could also be provided for selection and

Fig. 5 Security activity coverage in SE processes

Table 3 Agile security process
Product Owner

Pre requirement Requirement phase

Initial Education (C, MS) Role Matrix (C, MS)

Security Requirements (MS, CC, C, CT)

Agree on Definitions (CC)

Identify resources and trust boundaries (C)

Specify Operational Environment (C)

Development Team

Design Implementation

Secure Design Principles (C) Coding Rules (MS)

Assumption Documentation (CT) Security Tools (MS)

Requirements Inspection (CC) Static Code Analyses (MS, CT)

Risk Analyses (CT, CC)

Test Team

Testing

Dynamic Analysis (MS)

Security Testing (C)

Vulnerability and Penetration Testing (CT)

Release

Operational Planning and Readiness (C)

Signing the Code (C)

Incident Response Planning (MS)

Repository Improvement (CC)

Int. j. inf. tecnol. (March 2022) 14(2):1117–1130 1127

123

integration of security activities to automate the entire

process.

Similarly, the list of agile activities is also obtained

according to their agility value, which can be calculated

using defined parameters. The agility value of an activity

can be defined as the measure of its agile behavior. It

represents the degree of activity compatibility with agile

methodology. It is calculated using features like Iterative,

Adaptive, Customer Interaction, Modularity, Frugality,

Flexibility and Less Formalization. Using these character-

istics of agile methodologies the project team assigns a

value between 1 and 10. This leads to a one-column matrix

named AgilityVector. Greater value of agility feature rep-

resents a higher level of compatibility with that feature and

vice versa.

Any security activity cannot be integrated with all agile

activities. Thus, there is a requirement to define a com-

patibility matrix. For example, vulnerability testing may be

integrated with Final Test activity but it may not be com-

patible with Design Activity. Moreover, the compatibility

cannot be defined in terms of only crisp values, i.e., only

yes or no. Hence, Fuzzy Compatibility Matrix is used to

define the extent of compatibility using membership value,

which is named as Fuzzy Compatibility Matrix (FCM).

Further, in order to avoid the selection of some heavy

security activities, which would endanger the agile activity

to remain agile, a Threshold value (TV) is introduced. This

value could vary according to the need of the project. Thus,

the dynamic integration algorithm is implemented in java

which automates the whole process. Figure 6 shows the

menu of integration tool, which includes adding and

viewing security and agile activities. Figure 7 demonstrates

the output of the integration algorithm.

6 Conclusion and future work

This paper provides an integrated framework for secure

agile development according to the need of a particular

project while keeping in consideration the requirement of

every stakeholder including customer, team and project

analyst. Initially, a systematic selection process is used to

choose a development methodology between agile and plan

driven approach. Thereafter, an appropriate agile devel-

opment method among Extreme Programming (XP),

Crystal Clear, Scrum, Lean development, Dynamic Soft-

ware Development Method (DSDM) and Feature-Driven

Development (FDD) is selected for the particular project

based upon its specific requirements. Because of the

absence of any analytical work on this topic we have used

tested and widely used methods like AHP, PROMETHEE,

ANN and Fuzzy Logic. By using these empirical methods,

we have addressed the reliability issues which are ques-

tioned in case of agile development approach. Systematic

Literature Review and Survey Study have been used to

obtain the authentic industrial feedback followed by the

application of statistical tests to identify and select the most

suitable and beneficial security activities from well-known

security engineering processes like CLASP, Common

Criteria, Cigital Touchpoints and Microsoft’s SDL. A

lightweight method has also been introduced for integrat-

ing these security activities identified from SLR and Sur-

vey Study, using a dynamic integration algorithm without

compromising the agility of the process. The proposed

framework for integration of these security activities has

been implemented in java to automate the entire process

and provide maximum benefit at a low integration cost.

Previous works have focused on security issues in bits and

Fig. 6 Menu for adding and

running algorithm for

integration of security activities

1128 Int. j. inf. tecnol. (March 2022) 14(2):1117–1130

123

pieces. There was no comprehensive and integrated

approach that covered security throughout the development

cycle. However, this framework provides security at the

project level as well as process level without even com-

promising the agility of the whole process.

To develop a secure agile development model there is a

need to extract the most beneficial and easily integrable

security activities from the well known SE processes, as

there are no specific security activities developed espe-

cially for agile processes. If these security activities are

blindly integrated into the agile process, it would result in

making the agile process very heavy, thus not letting it

remain agile. So based upon the industry experience and

usage, a total of 20 such lightweight and beneficial security

activities have been selected from an overall collection of

65 security activities. Most of the security activities are

selected from CLASP and Microsoft’s SDL. The main

reason for this inclination is that CLASP activities do not

need a sequential approach unlike others. Thus, this inde-

pendent approach suits well with agile environment.

Microsoft’s SDL, on the other hand, is a tight process for

constructing a software and moreover it is also modified to

suit to agile environment by categorizing security activities

based upon frequency of use.

For future work, there is a need to develop agile specific

security activities either by modifying the existing security

activities by making them light weight with similar benefits

or by developing specialized lightweight security activities

for agile model specifically. Furthermore, the security

activities suggested in this paper need to be tested and

evaluated in real industry environment. Apart from these

security activities, many more security features are sug-

gested in open-ended questions of the survey which need

detailed analysis to come to any conclusion. There is also a

scope to use artificial intelligence/soft computing for

automatically selecting appropriate security activities

according to the need of a particular project.

References

1. Beck K et al (2001) Manifesto for agile software development.

Accessed 10 June 2019

2. Beznosov K, Kruchten P (2004) Towards agile security assur-

ance. In: Proceedings of the 2004 workshop on new security

paradigms, pp 47–54. ACM 1-59593-076-0/05/05

3. Bartsch S (2011) Practitioners’ perspectives on security in agile

development. In: Sixth international conference on availability,

Fig. 7 Algorithm for integration

Int. j. inf. tecnol. (March 2022) 14(2):1117–1130 1129

123

reliability and security (ARES), pp 479–484. https://doi.org/10.

1109/ares.2011.82

4. Wayrynen J, Boden M, Bostrom G (2004) Security engineering

and eXtreme Programming: an impossible marriage? Extreme

programming and agile methods, Calgary, Canada, August

15–18. https://doi.org/10.1007/978-3-540-27777-4_12

5. Bostrom G, Wayrynen J, Boden M, Beznosov K, Kruchten P

(2006) Extending XP practices to support security requirements

engineering. In: ACM SESS 06, Shanghai, China, May 20–21,

pp 11–17. https://doi.org/10.1145/1137627.1137631

6. Beznosov K, Kruchten P (2004) Towards agile security assur-

ance. In: Proceedings of the workshop on new security para-

digms, September

7. Siponen M, Baskerville R, Kuivalainen T (2005) Integrating

security into agile development methods. In: Proceedings of the

38th Hawaii international conference on system science. https://

doi.org/10.1109/hicss.2005.329

8. Keramati H, Hassan S, Hosseinabadi M (2008) Integrating soft-

ware development security activities with agile methodologies.

In: IEEE/ACS international conference on computer systems and

applications, AICCSA, pp 749–754

9. Baca D, Carlsson B (2011) Agile development with security

engineering activities. In: Proceeding of the 2nd workshop on

software engineering for sensor network applications,

pp 149–158. https://doi.org/10.1145/1987875.1987900

10. Baca D (2012) Developing secure software in an agile process.

Computer Science Department, Blekinge Institute of Technology

Sweden, Karlskrona, pp 129–149

11. Carlsson B, Ayalew T, Kidane T (2013) Identification and eval-

uation of security activities in agile projects. In: 18th Nordic

conference. https://doi.org/10.1007/978-3-642-41488-6_10

12. Bartsch S (2011) Practitioners’ perspectives on security in agile

development. In: Sixth international conference on availability,

reliability and security (ARES), pp 479–484. https://doi.org/10.

1109/ares.2011.82

13. Shackleford D (2011) Integrating security into development, no

pain required. A SANS whitepaper

14. Savola R, Frühwirth C, Pietikäinen A (2012) Risk-driven security

metrics in agile software development—an industrial pilot study.

J Univers Comput Sci 18:1679–1702. https://doi.org/10.3217/

jucs-018-12-1679

15. Wolff S (2012) Scrum goes formal: agile methods for safety-

critical systems. In: IEEE formal methods in software engineer-

ing: rigorous and agile approaches (FormSERA), pp 23–29

16. GAO (2012) Effective practices and federal challenges in

applying agile methods. Report to the Subcommittee on Federal

Financial Management, Government Information, Federal Ser-

vices, and International Security, Committee on Homeland

Security and Governmental Affairs United States Senate. www.

gao.gov/assets/600/593091.pdf. Accessed May 2017

17. Munetoh S, Yoshioka N (2013) RAILROADMAP: an agile

security testing framework for web-application development. In:

IEEE sixth international conference on software testing, verifi-

cation and validation (ICST), pp 491–492. https://doi.org/10.

1109/icst.2013.80

18. Rindell K, Hyrynsalmi S, Leppänen V (2017) Busting a myth:

review of agile security engineering methods. ACM. https://doi.

org/10.1145/3098954.3103170

19. Harrison S et al (2016) A security evaluation framework for U.K.

E-government services agile software development. Int J Netw

Secur Appl (IJNSA) 8(2):51–69. https://doi.org/10.5121/ijnsa.

2016.8204

20. Rindell K, Hyrynsalmi S, Leppänen V (2019) Challenges in agile

security engineering: a case study. In: Felderer M, Scandariato R

(eds) Exploring security in software architecture and design. IGI

Global, Hershey, PA, pp 287–312. https://doi.org/10.4018/978-1-

5225-6313-6.ch012

21. Howard M, Lipner S (2006) The security development lifecycle.

Microsoft Press, Redmond. https://doi.org/10.1016/S0925-

7535(03)00047

22. Sullivan B (2008) Streamline security practices for agile devel-

opment. MSDN Mag. https://doi.org/10.4018/jsse.2010070105

23. Keblawi F, Sullivan D (2006) Applying the common criteria in

systems engineering. IEEE Secur Priv 4(2):50–55. https://doi.org/

10.1109/msp.2006.35

24. McGraw G (2006) Software security: building security in.

Addison-Wesley, Boston. https://doi.org/10.1109/msecp.2004.

1281254
25. ‘Category:CLASPActivity-OWASP’. https://www.owasp.org/

index.php/CLASP_Concepts. Accessed 11 Feb 2019

26. Kitchenham B, Charters S (2007) Guidelines for performing

systematic literature reviews in software engineering. Keele

University, UK EBSE-2007-1. https://www.elsevier.com/__data/

promis_misc/525444systematicreviewsguide.pdf

27. Wohlin C (2000) Experimentation in software engineering: an

introduction, vol 6. Springer, Berlin

28. Fay MP, Proschan MA (2010) Wilcoxon–Mann–Whitney or

t-test? On assumptions for hypothesis tests and multiple inter-

pretations of decision rules. Stat Surv 4:1–39. https://doi.org/10.

1214/09-SS051

29. Kruskal W (1952) Use of ranks in one-criterion variance analysis.

J Am Stat Assoc 47(260):583–621. https://doi.org/10.2307/

2280779

30. Dalgaard P (2008) Introductory statistics with R. Springer, Berlin,

pp 99–100. https://doi.org/10.1007/978-0-387-75936-4

1130 Int. j. inf. tecnol. (March 2022) 14(2):1117–1130

123

https://doi.org/10.1109/ares.2011.82
https://doi.org/10.1109/ares.2011.82
https://doi.org/10.1007/978-3-540-27777-4_12
https://doi.org/10.1145/1137627.1137631
https://doi.org/10.1109/hicss.2005.329
https://doi.org/10.1109/hicss.2005.329
https://doi.org/10.1145/1987875.1987900
https://doi.org/10.1007/978-3-642-41488-6_10
https://doi.org/10.1109/ares.2011.82
https://doi.org/10.1109/ares.2011.82
https://doi.org/10.3217/jucs-018-12-1679
https://doi.org/10.3217/jucs-018-12-1679
http://www.gao.gov/assets/600/593091.pdf
http://www.gao.gov/assets/600/593091.pdf
https://doi.org/10.1109/icst.2013.80
https://doi.org/10.1109/icst.2013.80
https://doi.org/10.1145/3098954.3103170
https://doi.org/10.1145/3098954.3103170
https://doi.org/10.5121/ijnsa.2016.8204
https://doi.org/10.5121/ijnsa.2016.8204
https://doi.org/10.4018/978-1-5225-6313-6.ch012
https://doi.org/10.4018/978-1-5225-6313-6.ch012
https://doi.org/10.1016/S0925-7535(03)00047
https://doi.org/10.1016/S0925-7535(03)00047
https://doi.org/10.4018/jsse.2010070105
https://doi.org/10.1109/msp.2006.35
https://doi.org/10.1109/msp.2006.35
https://doi.org/10.1109/msecp.2004.1281254
https://doi.org/10.1109/msecp.2004.1281254
https://www.owasp.org/index.php/CLASP_Concepts
https://www.owasp.org/index.php/CLASP_Concepts
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://doi.org/10.1214/09-SS051
https://doi.org/10.1214/09-SS051
https://doi.org/10.2307/2280779
https://doi.org/10.2307/2280779
https://doi.org/10.1007/978-0-387-75936-4

	Identification and integration of security activities for secure agile development
	Abstract
	Introduction
	Related work
	Security engineering processes
	Research methodology
	Systematic Literature Review
	Need for Systematic Literature Review
	Search strategy
	Selection criteria

	Survey study
	Validity evaluation

	Results and discussion
	Demographic data
	Statistical test
	Statistical test results
	Security engineering processes evaluation
	Agile integrable security activities
	Integration of security activities

	Conclusion and future work
	References

