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Abstract Plant pathologists desire an accurate and reliable

soybean plant disease diagnosis system. In this study, we

propose an efficient soybean diseases identification method

based on a transfer learning approach by using pretrained

AlexNet and GoogleNet convolutional neural networks

(CNNs). The proposed AlexNet and GoogleNet CNNs

were trained using 649 and 550 image samples of diseased

and healthy soybean leaves, respectively, to identify three

soybean diseases. We used the five-fold cross-validation

strategy. The proposed AlexNet and GoogleNet CNN-

based models achieved an accuracy of 98.75% and 96.25%,

respectively. This accuracy was considerably higher than

that for conventional pattern recognition techniques. The

experimental results for the identification of soybean dis-

eases indicated that the proposed model achieved highest

efficiency.

Keywords Deep CNN � Machine learning � AlexNet �
GoogleNet � Detection

1 Introduction

Soybean crops are highly affected by diseases, which

causes intense losses in agriculture economy [1]. For

instance, bacterial blight, frogeye leaf spot (FLS), and

brown spot, are the most common diseases that cause

considerable damage to crops and a decrease in yield [1, 2].

The proposed pretrained AlexNet and GoogleNet convo-

lutional neural networks (CNNs) model was used for the

classification of these three common diseases. Thus,

accurate identification and diagnosis of soybean diseases

are vital for high crop yield. In the naked eye approach,

which is usually preferred by plant pathologists for

detecting soybean diseases, subjective bias can occur

because the decision is based on the experience and

knowledge of experts [2].

To obtain accurate diagnosis results, several researchers

have deliberated automated soybean diseases diagnosis

based on digital image processing [3], pattern recognition

[4], and computer vision [6]. Moreover, these advanced

techniques are used to analyze various fruit and crop spe-

cies, such as grapes [7], pomegranates [8], tomato [9],

maize [6], and wheat [19].

Deep learning is a new trend in machine learning (ML),

and it achieves state of-the-art results in many research

fields, such as computer vision, drug design, and bioin-

formatics [11, 17]. Deep learning enables the direct use of

raw data without using handcrafted features [11, 12]. In

recent years, deep learning has been extensively studied in

computer vision, and therefore, a large number of related

approaches have emerged [13]. Yang Lu et al. [16] pro-

posed a system based on CNNs to recognize 10 common

diseases which distinguish between rice blast, rice false

smut, rice brown spot, rice bakanae disease, rice sheath

blight, rice sheath rot, rice bacterial leaf blight, rice
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bacterial sheath rot, rice seeding blight and rice bacterial

wilt.; it achieves an accuracy of 95.45%.

Mohanty et al. [20] used pre-trained AlexNet CNN, for

disease classification using transfer learning approach. The

proposed system was able to classify 26 different diseases

in 14 crop species using database of 54,306 images with a

classification accuracy of 99.35%.

Konstantins P. Ferentinos [21] presented convolutional

neural network models to perform plant and disease,

detection and classification task using simple leaves images

of healthy and diseased plants, it achieves accuracy of

99.53%.

Aravind Krishnaswamy et al. [22] presented AlexNet

and VGG16 CNNs models to identify tomato disease

which achieves 97.29% for VGG16 net and 97.49% for

AlexNet.

This study aims to introduce CNN transfer learning as

an approach for classifying three soybean plant diseases

according to sample leaf images. This study presents two

main contributions in plant disease classification: (1)

implementation of the transfer learning technique by using

the already trained AlexNet and GoogleNet CNN models

on a large data set and (2) identification of accurate disease

symptoms in the soybean infected leaves by using the

proposed AlexNet and GoogleNet CNN models, which

could assist plant pathologists in diagnosing diseases.

2 Materials and methods

2.1 Materials

2.1.1 Data set

The proposed pretrained AlexNet and GoogleNet deep

CNNs were used to classify defined test images from a test

database. Data of soybean images were collected from

soybean fields in Kolhapur district, Maharashtra, India. In

this study, 80 testing data sets of soybean leaf images were

used for testing the AlexNet and GoogleNet CNNs. The

training data sets for AlexNet consisted of 199 bacterial

blight disease images, 200 FLS disease images, 150 brown

spot disease images, and 100 non-disease (healthy) images.

The GoogleNet training data consisted of 150 bacterial

blight disease images, 150 FLS disease images, 100 brown

spot disease images, and 150 non-disease (healthy) images.

We labeled black blight disease as class 1, Brown spot

disease as class 2, Frogeye leaf spot disease as class 3, and

healthy as class 4. Fig. 1 depicts the leaf samples of the

testing data.

The summary of our data sets for the AlexNet and

GoogleNet CNNs are provided in Tables 1 and 2, respec-

tively. The total number of sample images in our data sets

was 649 for AlexNet and 550 GoogleNet. The images were

fragmented into three disease categories and one non-dis-

ease category.

2.2 Methods

In this study, two pre-trained deep learning models, namely

GoogleNet and AlexNet, were used for the classification of

soybean diseases through the transfer learning approach. In

the first phase of the study, the preprocessed images were

applied as input to the proposed pretrained GoogleNet

CNN architecture. The proposed models were retrained for

classifying the four class categories of objects from the

defined disease data set. The last layer was reconfigured

and modified to the 4, which is set to the defined number of

class categories (Fig. 3). The four class categories in this

study consisted of three disease classes, namely bacterial

blight, brown spot, and FLS, and one healthy class.

The last three layers of the GoogleNet model were

modified. To increase the performance of the proposed

models, some parameters of the CNNs were modified. The

modification included setting the learning rate of the

models as 0.0001 and setting the bias learning rate as 20 for

the four fully connecter layers. The minibatch size was set

to 64, the number of epochs was fixed to 30, and the

number of iterations was set to 150. A minibatch was

obtained by splitting the training data set into batches, and

the gradient descent was applied for a model coefficient

update. This resulted in an overall classification accuracy

of 96.25% with the GoogleNet deep neural network.

2.2.1 Architecture of the AlexNet and GoogleNet deep

CNN models

The AlexNet and GoogleNet CNNs were tested in the

experiment problem, which involved the identification of

soybean plant diseases from their leaf images. A CNN

passes a raw image through the network layers and pro-

vides a final class as an output. The proposed AlexNet and

GoogleNet networks consisted of 25 and 145 layers,

respectively, with each layer network learning to detect

different features. Filters were then applied to each training

image at different resolutions, and the output of each

convolved image was used as the input to the next layer.

Brightness and edge features were detected. The com-

plexity of features that uniquely define the leaf object

increases as the layers progress. Figure 2 shows the pro-

posed pretrained AlexNet and GoogleNet general CNN

model included three main neural layers, namely convo-

lutional layers, pooling layers, and fully connected layers.

The three commonly used neural layers are discussed as

follows [15, 16]:
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2.2.2 Convolutional layers

Convolution layers process the input images through a set

of convolutional filters, each of which activates certain

features from the images. Generally, the convolutional

layer output can be represented by Eq. (1)

Mp
j ¼ f

X

i2Mj

Mp�1
i � kpij þ Np

j

 !
ð1Þ

where p represents the pth layer, k ij denotes convolu-

tional kernel, Nj denotes bias and Mj denotes a set of input

maps. The various parameters of architecture, such as the

bias and the weight of the kernel, are typically trained

using unsupervised learning approach [13, 18]. The raw

input image applied to convolutional layer through a set of

filters, each of which activates certain features from the

raw input image. In the convolutional layers, a CNN uti-

lizes various kernels to convolve the whole raw input

image as well as the intermediate feature maps, generating

various feature maps.

2.2.3 Pooling layers

Pooling layers simplify the output by performing nonlinear

down sampling, which reduces the number of parameters

that the network must learn. In stochastic pooling, the

probability p should first be computed for each region

j according to Eq. (2)

Pi ¼
aiP
keSjak

ð2Þ

where Sj is pooling region j, F is feature map, and i is the

every element index inside region j. Stochastic St, is, used

in pooling operation for each future map F, the stochastic

(St) is expressed by:

ap;kxy ¼ Stðm; n; x; yÞeP ap�1;F
m;n w x; yð Þ

� �
ð3Þ

where a p, k x, y is the neuron activation at coordinate (x,

y) in feature map F in pt h layer, w (x, y) is the weighing

function.

Fig. 1 Random samples output

of testing AlexNet CNN model

Table 1 Training and test data set of AlexNet CNN

Sr. no. Disease class Training samples Test samples

1 Bacterial blight 199 20

2 Brown spot 150 20

3 Frogeye leaf spot 200 20

4 Healthy 100 20

Total 649 80

Table 2 Training and test data set of GoogleNet CNN

Sr. no. Disease class Training samples Test samples

1 Bacterial blight 150 20

2 Brown spot 100 20

3 Frogeye leaf spot 150 20

4 Healthy 100 20

Total 550 80
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2.2.4 Fully connected layers

Fully connected layers ‘‘flatten’’ the network’s 2D spatial

features into a 1D vector that represents image-level fea-

tures for classification purposes.

2.3 Image preprocessing and labeling

To improve the recognition accuracy of the proposed

models during feature extraction, the final images intended

to be used as the training and testing data sets for the

proposed deep neural network classifier were preprocessed

for consistency. A total of 649 and 550 soybean leaf sample

images were preprocessed to input image dimensions of

227 9 227 9 3 for the AlexNet architecture model and

224 9 224 9 3 for the GoogleNet architecture model.

Then, the preprocessed sample images from the training

data set were used to train the AlexNet and GoogleNet

CNN models. The output of random testing samples with

data labeling through the AlexNet network is displayed in

Fig. 1. To improve the recognition accuracy of the pro-

posed models, the conventional ML model training

parameters, such as the max epoch, minibatch size, and

learning rate, were modified.

2.4 AlexNet and GoogleNet CNN training

Network training involves two stages: a forward stage and

backward stage. First, the main goal of the forward stage

is to represent the input image with the current parameters

(weights and bias) in each layer. Then, the prediction

output is used to compute the loss cost with the ground

truth labels. Second, according to the loss cost, the

backward stage computes the gradients of each parameter

by using chain rules. All the parameters are updated

according to the gradients and are prepared for the next

forward computation. Network learning can be halted

after sufficient iterations of the forward and backward

stages.

In feedforward pass stage, we consider a soybean dis-

ease multiclass task with N classes andT training samples.

The squared-error function is given by

ET ¼ 1

2

XT

t¼1

XN

k¼1

dtk � ytk
� �2 ð4Þ

where dtk is the k th dimension of the t th pattern’s corre-

sponding label, and ytk is the value of the k th output layer

unit in response to the t th input pattern. We have used

supervised learning techniques to train the proposed CNNs

to learn classification of 4 various soybean diseases. Thus,

from the image futures CNNs learned to recognize soybean

diseases based on maximized activation neurons with

stochastic response in next higher layer Regression is

applied in soybean multiclass disease classification task.

Suppose H(m) and J(m) are defined training dataset, then

{(H (1), J (1)),..., (H (m), J(m))}, Ji [ (1, 2,..., k). The

probability of classifying m as class J is:

P ðnðiÞ ¼ JjmðiÞ; hÞ ¼ ehTJ mi

Pk
p¼1 e

hT
J mi

ð5Þ

2.4.1 Retraining of pre-trained AlexNet and GoogleNet

layers

In the pretraining phase, we have used trained deep

architectures on a large data set, such as ImageNet, by

using powerful machines [18, 19]. The objective of this

phase was to initialize network weights for the next phase.

Our aim was to use the advantages of these pretrained

architectures to enhance the results in the proposed disease

classification task.

Figure 3 depicts the process of retraining the AlexNet

and GoogleNet models from the raw input image with the

predicted output probabilities of each disease. The input

Fig. 2. Proposed AlexNet and GoogleNet CNN general architecture
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images of the network were resized to 227 9 227 pixels

for AlexNet and 224 9 224 pixels for GoogleNet respec-

tively. The output results represent the probabilities of each

disease. We proposed retraining the deep CNN for devel-

oping an image classification model from the data set

described in Table 1.

We retrained the AlexNet and GoogleNet networks to

classify four categories of soybean leaf diseases (Fig. 3)

[15]. The following steps were involved in retraining the

networks:

1. Loading the pretrained network.

2. Reconfiguring the last three layers to perform a new

recognition task.

3. Training the model with new data.

4. Testing the performance result.

The architectures were reconfigured, modified, and

adjusted to support the four defined classes shown in

Tables 3, 4.

3 Experimental results and discussion

3.1 Results

3.1.1 Plot of the training progress

Our aim was to improve the performance accuracy of the

model over time. Progress plots were obtained for the

network training [15]. Figure 4 depict the training progress

for the bacterial blight, disease category. Our model seems

to have improved after the 50th iteration and then increased

up to approximately 98% accuracy. It means the network is

able to converge on a solution. We have modified the

training options and the network configuration as a result of

changing training parameter; we get a much better result

more than 95% accuracy.

3.1.2 Inception layer and lgraph

Implementation of GoogleNet CNN for proposed soybean

disease task, we have used inception model which was

Google recently released a model called Inception v3 with

Tensor flow. We have used this model by retraining the last

3 layers per our defined four category classification

requirements. Inception modules are basically mini models

inside the bigger model. The same Inception architecture

was used in the GoogleNet model which was state of the art

image recognition net [18, 19]. The inception model itself

select type of convolution (1 9 1 or 3 9 3 or 5 9 5), done

in parallel and concatenating the resulting feature maps

before going to the next layer. Then each of the convolu-

tion’s feature maps will be passes through the mixture of

convolutions of the current layer. This architecture allows

the model to recover both local feature via smaller con-

volutions and high abstracted features with larger convo-

lutions. Figure 5 shows the graph of inception model of an

Fig. 3 Retraining process of

AlexNet and GoogleNet CNNs

model

Table 3 Architecture of retrained AlexNet model

Layer Function Filter size Stride

Conv 1 Convolution 11 9 11 9 3 4

Pool 1 Max pooling 3 9 3 2

Conv 2 Convolution 5 9 5 9 48 1

Pool 2 Max pooling 3 9 3 2

Conv 3 Convolution 3 9 3 9 256 1

Conv 4 Convolution 3 9 3 9 192 1

Conv 5 Convolution 3 9 3 9 192 1

Pool 5 Max pooling 3 9 3 2

Table 4 Architecture of retrained GoogleNet model

Layer Function Filter size Stride

Conv 1 Convolution 11 9 11 9 3 4

Pool 1 Max pooling 3 9 3 2

Conv 2 Convolution 5 9 5 9 48 1

Pool 2 Max pooling 3 9 3 2

Conv 3 Convolution 3 9 3 9 256 1

Conv 4 Convolution 3 9 3 9 192 1

Conv 5 Convolution 3 9 3 9 192 1

Pool 5 Max pooling 3 9 3 2
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entire inception module. We have used 1 9 1, 3 9 3, and

5 9 5 convolutions along with a 3 9 3 max pooling.

3.1.3 Soybean disease classification

Total 649 data samples for four data class are considered to

train the AlexNet CNNs model and total of 80 data samples

are considered to test the performance of system. From

which, there are 1 data sample misclassified, 1data in

class2 misclassified, and for all other class no data were

misclassified, shown in Fig. 7 of confusion matrix of

AlexNet CNN. So, classification accuracy for disease class

1 is 100%, disease class 2 is 95% disease class 3 is 100%

and non-disease (healthy) class4 is 100% respectively for

leaf with Bacterial Blight, leaf, leaf with Brown, spot and

leaf with healthy summarized in Table 5.

Similarly, the training data set of the GoogleNet CNN

model included 550 samples for the four data classes, and

Fig. 4. Plot of training progress for bacterial blight class using GoogleNet model.

Fig. 5 Inception model graph

of pre-trained GoogleNet

architecture
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80 data samples were considered to test the performance of

the system. Of these 80 samples, three were misclassified.

One data sample each in class 1, class 2, and class 3 was

misclassified, as depicted in confusion matrix of the Goo-

gleNet CNN (Fig. 7). Thus, the classification accuracy for

class 1, class 2, class 3, and class 4 were 95%, 95% 95%,

and 100%, respectively. The classification results for bac-

terial blight, FLS, brown spot, and healthy leaves are

summarized in Table 5.

3.1.4 Confusion matrix

The confusion matrix of the predicted and actual class

categories obtained using the AlexNet CNN (Fig. 6) was

used for classifying 80 disease sample test images into each

class category. For class 1 (bacterial blight), class 3 (FLS),

and class 4 (healthy), the values on the diagonal were 20,

which indicated that each test image in these categories

was correctly classified. For class 2 (brown spot), 19 out of

20 samples were correctly classified and one sample was

misclassified.

The confusion matrix of predicted and Actual class

category classified using GoogleNet, shown in Fig. 7 for

predictions of 80 disease sample test images in each class

category. For healthy class category the values on the

diagonal were 20, this would indicate that each test image

in this category was correctly classified. For bacterial

blight, brown spot and frogeye spot disease class categories

out of 20 samples, 19 samples from each category were

correctly classified, and 1 from each class category getting

misclassified.

Fig. 6 Confusion matrix of AlexNet CNN (Predicted vs. Actual

class)
Fig. 7 Confusion matrix of GoogleNet CNN (Predicted vs. Actual

class)

Table 5 Classification result of AlexNet and GoogleNet CNN’s classification

Image dataset Total testing data

samples (actual)

Predicted samples using

AlexNet CNN

% accuracy

AlexNet CNN

Predicted samples using

GoogleNet CNN

% Accuracy

GoogleNet CNN

Bacterial blight 20 20 100 19 95

Frogeye leaf

spot

20 19 95 19 95

Septoria brown

spot

20 20 100 19 95

Healthy 20 20 100 20 100

Combined 4

Data class

80 79 98.75 77 96.25
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3.1.5 Sophisticated Confusion Matrix

Figure 8 depicts the sophisticated confusion matrix of

GoogleNet CNN which shows summary of results of soy-

bean leaf disease classification for the 4 classes. The

accuracy is improved and reaches to 96.3% which is a good

amount as shown in diagonal gray box. It clearly shows

that class 1 is one time misclassified as class 2 by 1.3%,

class2 is one time misclassified as class 1 by 1.3%, and

class 3 is one time misclassified as class 1by 1.3% but class

4 is correctly classified as class 4 by 100%.

3.1.6 Comparative analysis with ML system

The performance of the proposed CNN model was com-

pared with that of a previous ML system implemented by

Al-Bashish and et.al.[1]. The comparison is presented in

Table 7, which indicates that the proposed model outper-

formed the ML system.

Fig. 8 Sophisticated confusion matrix of output class vs. Target class

of GoogleNet CNN

Table 7 Comparative study of Proposed CNNs model with ML system

Particulars Previous implemented system by Al-Bashish and et al. [1] Proposed AlexNet and GoogleNet CNNs classifier model

disease detected Early scorch, cottony mold and late scorch etc Bacterial blight, brown spot and frogeye leaf spot

No. of samples per class 25 20

Feature extracted Color and texture-manually extracted Automatically extracted by model

Classifier Neural network with back propagation AlexNet and GoogleNet CNN Classifier

Accuracy 93% 98.75 and 96.25

Table 8 Training performance of AlexNet CNN

Epoch Iteration Time elapsed (hh: mm: ss) Mini-batch accuracy Mini-batch loss Base learning rate

1 1 00:00:20 26.56% 1.9013 0.0010

7 50 00:15:28 82.81% 0.4054 0.0010

13 100 00:30:06 81.25% 0.4138 0.0010

19 150 00:44:45 98.44% 0.0355 0.0010

20 160 00:47:36 98.44% 0.0370 0.0010

Table 9 Training performance of GoogleNet CNN

Epoch Iteration Time Elapsed (hh: mm:

ss)

Mini-batch

accuracy

Validation

accuracy

Mini-batch

loss

Validation

loss

Base learning

rate

1 1 00:00:20 42.19% 46.36% 1.2863 1.9734 0.0010

10 50 00:15:28 89.06% 70.45% 0.3471 0.6279 0.0010

20 100 00:30:06 96.88% 72.73% 0.0878 0.7278 0.0010

30 150 00:44:45 100.00% 72.73% 0.0257 0.8870 0.0010
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3.1.7 Training performance and accuracy result

Tables 8 and 9 present the training performance of the

AlexNet and GoogleNet CNNs with hyper parameter

details. The tables indicate the elapsed time of training and

the overall classification accuracy after testing new data.

In this study, 80 samples were considered for the

AlexNet and GoogleNet CNNs. A total of 20 samples were

tested in each disease class category. Figures 9, 10 depict

the overall classification accuracy of the defined disease

class categories when using the proposed CNN model.

4 Conclusion

In this study, we proposed a deep learning approach that

involved using the AlexNet and GoogleNet CNN archi-

tectures to build a classifier model for the defined one non-

disease and three disease classes (bacterial blight, brown

spot, and FLS). The classification accuracies for the

AlexNet and GoogleNet CNN models were 98.75% and

96.25%, respectively. Classification was performed with

the AlexNet and GoogleNet models by modifying various

hyper parameters, such as the minibatch size, max epoch,

and bias learning rate. Our experimental results indicate

that the proposed deep convolutional neural network model

outperformed the machine learning model in soybean dis-

ease classification. Future studies can attempt to increase

the performance rate of the model by varying the minibatch

size, bias learning rate, and weight.
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