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Abstract Accurate and precise trajectory tracking is cru-

cial for unmanned aerial vehicle (UAVs) to operate in

disturbed environments. This paper presents a novel

tracking hybrid controller for a quadrotor UAV that com-

bines the robust adaptive neuro-fuzzy inference system

(ANFIS) controller and Improved Particle Swarm Opti-

mization algorithm (IPSO) model based on functional

inertia weight. The controller is implemented in a three

degrees of freedom (3 DOF) quadrotor symbolized with its

non-linear dynamical mathematical model. To achieve

Cartesian position trajectory tracking capability, the con-

struction of the controller can be divided into two stages: a

regular ANFIS controller to guarantee fast convergence

rapidity and IPSO aims to facilitate convergence to the

ANFIS’s optimal parameters to accurately reproduce a

desired reference trajectory. Simulation results are given to

confirm the advantages of the proposed intelligent control,

compared with ANFIS and PID control methods.

Keywords Unmanned aerial vehicle (UAV) � Robust

control � Adaptive neuro-fuzzy inference system (ANFIS) �
Improved particle swarm optimization (IPSO)

1 Introduction

Unmanned Aerial Vehicles (UAVs) commonly called

drones are aerial vehicles capable of carrying out a mission

more or less autonomously [1]. These vehicles come from

all sizes and shapes [2–6]. Their primary function is to

extend human vision beyond the natural horizon, to per-

form risky or hostile environments works [7, 8]. They have

been mostly used by military for surveillance use or

reconnaissance missions [9], without the risk of loss of life.

More recently, civilian applications have emerged such as

forest fire prevention [10], structures inspection [11, 12],

traffic monitoring [13, 14], photography and filmmaking

[15], safety and security [16], mapping [17], and agricul-

ture [18, 19].

In recent years, trajectory control has become one of the

important problems in the study of the UAV. Advances in

computer science and electronic technologies have facili-

tated development in automation control, and intelligent

algorithms, some significant works have been implemented

on the trajectory control of UAV. Authors of [20] studied

the trajectory tracking control problem of a six-degree of

freedom (6-DOF) quadrotor unmanned aerial vehicle

(UAV) with input saturation by using a backstepping

approach. In [21] authors proposed a robust nonlinear

controller which combines the sliding-mode control tech-

nique and the backstepping control technique for UAV

trajectory tracking. A robust decentralized and linear time-

invariant controller is proposed [22] for quadrotors with

multiple uncertainties to achieve trajectory tracking. The

research [23] presents a detailed comparison between two

state-of-the-art model-based control techniques for Micro

Air Vehicles trajectory tracking; a linear versus nonlinear

Model Predictive Controller is presented and compared. A

continuous sliding-mode control strategy for quadrotor
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robust tracking under the influence of external disturbances

and uncertainties in real-time is proposed in [24]. In [25] a

continuous multivariable finite-time output feedback is

developed for trajectory tracking control and attitude sta-

bilization of quadrotor helicopters. A PD-type trajectory

tracking controlling with the extended state observer is

proposed [26] for the quadrotor UAV to deal with the wind

disturbance.

The strongest arguments for the use of intelligence

controllers is that classical controllers mentioned above

require the knowledge of the controlled system in term of a

set of algebraic and differential equations, which analyti-

cally relate inputs and outputs. However, these models can

become complex and may contain parameters which are

difficult to measure or may change significantly during

operation. These problems can be overcome by using

intelligence based control techniques.

Intelligent control refers to approaches to control systems

design, modeling, identification, and operation that use arti-

ficial intelligence techniques, such as fuzzy logic, neural

networks, machine learning, evolutionary computation, and

metaheuristics. Intelligent control techniques are often cap-

able of controlling dynamical systems that, because of their

complexity, are very difficult to control by other techniques.

Generally, the following two types of intelligence based

systems are used for estimation and control of drives,

namely:

• Artificial neural networks (ANNs)

• Fuzzy logic systems (FLSs)

Neural networks suffer from the difficulty to deal with

imprecise information and the ‘‘black box’’ syndrome that

more or less has limited their applications in practice. To

overcome this drawback, NNs are integrated with fuzzy

inference to form Fuzzy Neural Networks (FNNs). Such

hybrid systems combining fuzzy logic, neural networks,

optimization techniques, and expert systems are proving their

effectiveness in a wide variety of real-world problems.

In recent years, Adaptive Neuro-Fuzzy Inference Sys-

tem (ANFIS), developed by JANG, 1993 [27], has gained

more attraction than other types of Fuzzy Inference Sys-

tems (FIS), because the results obtained from it are more

robust then of the statistical methods [28–40].

The major problem with Neuro-Fuzzy system including

ANFIS is the number of rules which increase exponentially

as the number of inputs increase. Thus, the more number of

rules, the more is the complexity of ANFIS architecture

and its computational cost. But, it is also noteworthy that

over reducing the number of rules results in the loss of

accuracy. To overcome this issue, this research proposes

optimization technique using Improved Particle Swarm

Optimization algorithm (IPSO). IPSO algorithm is a bio-

inspired swarm intelligence optimizer introduced by

Kennedy and Eberhart in 1995 [41]. This algorithm has

proved its effectiveness in wide range of applications. The

inertia weight is an important parameter of the IPSO. It is

responsible for determining the operating results. In IPSO,

the model based on functional inertia weight improvement.

This optimization technique is used to guarantee the con-

vergence to the optimum ANFIS parameters that permit the

controller to reproduce accurately the UAV trajectory and

reduce tracking error.

This paper presents an effective method using IPSO for

designing an ANFIS controller of type Takagi–Sugeno first

order by optimizing the parameters of membership func-

tions and the fuzzy rules. The remaining of this paper is

organized as follows: The description of the UAV model

and the problem formulation are given in Sect.2. ANFIS

system with its architecture and learning algorithm are

introduced in Sect. 3. The purpose of Sect. 4 is to present

the IPSO algorithm that will later be used for the opti-

mization of ANFIS parameters. Section 5 details the pro-

posed control design and strategy. In Sect. 6, comparisons

and numerical simulations results are given in order to

demonstrate the optimal effectiveness of the proposed

controller. Section 7 gives the conclusions.

2 Modeling of a quadrotor and problem
formulation

The class of aerial vehicles considered in this work can be

described as rigid bodies using a simplified dynamic model

via affine parameterization for a multivariable nonlinear

UAV modeled to fly in 2D space.

2.1 Dynamical model

The motion of a quadrotor as a rigid body is described by

the motion of a body-fixed frame of reference

FB ¼ OB; b1; b2f gð Þwith respect to an inertial reference

frame FI ¼ OI; y; zf gð Þ;as shown in Fig. 1.

Fig. 1 Quadrotor configuration scheme
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The origin located in the center of the quadrotor. It is

known that the quadrotor is a 3-DOF object. The Euler

angle / represent the orientation of the quadrotor, where it

is roll angle about the y-axis. So the quadrotor is modeled

to fly in 2 dimensions yz plane with an angle / witch is the

roll angle as shown in Fig. 1.

Therefore, the state of the quadrotor is y; z;/½ �T and

there are two inputs u1 and u2 the thrust and the moment

about the x-axis respectively.

The equations of motion are described by the following

system;

€y ¼ u1

m
sin /ð Þ: ð1Þ

€z ¼ g� u1

m
cos /ð Þ: ð2Þ

€/ ¼ u2

Ixx
: ð3Þ

where m and Ixx are the mass and the moment of inertia of

the rigid body, respectively.

It is assumed to be the UAV is near hover condition and

commanded roll angle / is calculated based on desired y

component and is used to calculate u2 which is net moment

acting on center of gravity (CoG).

The equations of motion have been rewriting as follows;

€y
€z
€/

2
4

3
5 ¼

0

g

0

2
4
3
5þ �

1

m
sin/ 0

1

m
cos/ 0

0
1

Izz

2
666664

3
777775

u1

u2

� �
ð4Þ

The state space description of the quadrator;

x ¼ x1

x2

� �
¼

y

z

u
_y
_z
_u

2
6666664

3
7777775

ð5Þ

The first derivative of the state vector is presented in

Eq. (12). The first three elements of the vector represent

velocities and the last three elements represent

accelerations.

_x ¼

_y
_z
_u
0

g

0

2
6666664

3
7777775
þ

0 0

0 0

0 0
1

m
sin/ 0

� 1

m
cos/ 0

0
1

Izz

2
666666666664

3
777777777775

u1

u2

� �
ð6Þ

3 Structure of the Neuro-Fuzzy controller

The structure of the Neuro-Fuzzy controller that imple-

ments a Takagi Sugeno type fuzzy inference system (FIS)

is shown in Fig. 2. However, for the simplicity of the

presentation, we developed an ANFIS with two inputs and

only one output. The generalization for the multi-variable

case is direct. The structure of the ANFIS consists of five

layers:

Layer 1 (fuzzification): In this layer, the nodes are

adaptive with a function. The outputs are the fuzzy mem-

bership grade of the inputs, which are given by:

O1
i ¼ lAi

xð Þ; i ¼ 1; 2 ð7Þ

O1
j ¼ lBj

ðyÞ; j ¼ 1; 2 ð8Þ

Fuzzifying the inputs is conducted by MF such as

Piecewise linear, triangular, trapezoidal, Gaussian and

Singleton. Among the abovementioned MFs, this paper has

used the gaussian function because of its smooth and

concise notation. Therefore, as lAi
ðxÞ, given that

Triangular: lAi
xð Þ ¼ max min

x� ai

bi � ai
;
ci � x

ci � bi

� �
; 0

� �
; i

¼ 1; 2

ð9Þ

Trapezoidal: lAi
xð Þ ¼ max min

x� ai

bi � ai
; 1;

di � x

di � ci

� �
; 0

� �
; i

¼ 1; 2

ð10Þ

Gaussian: lAi
xð Þ ¼ exp � x� cið Þ2

r2
i

 !
; i ¼ 1; 2 ð11Þ

where ai ai, bi,bi ci ci and ri are the antecedent (premise)

parameters.

Layer 2 (Weighting of fuzzy rules): The symbol M

shows every fixed node in this layer. This layer calculates

the firing strength wk by using membership values com-

puted in fuzzification layer, and the outputs are computed

as the following:

O2
k ¼ wk ¼ lðAiÞðxÞ � lðBjÞðyÞ; i; j ¼ 1; 2: ð12Þ

Layer 3 (normalization): Every node is fixed node and

called by N. Each node obtains the normalization by cal-

culating the ratio of the kth rule’s firing strength to the sum

of all rules firing strength. The output O3
i at this step is

given by:

O3
k ¼ wk ¼

wkP
wi

¼ wk

w1 þ w2

; k ¼ 1; 2: ð13Þ
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Layer 4 (defuzzification): Weighted consequent values

of rules are calculated in each node of this layer as given in

(20).

O4
k ¼ wkfk ¼ wk pkxþ qkyþ rkð Þ; k ¼ 1; 2: ð14Þ

where wk represents the output of the third layer, and

pk; qk; rkf g are consequent parameters.

Layer 5 (summation): The actual output is obtained by

summing the outputs of all incoming signals that coming

from the defuzzification layer to produce the overall

ANFIS output.

O5 ¼
X2

k¼1

wkfk ¼
P2

1¼1 wk � fk
w1 þ w2

ð15Þ

where wk is the output of the third layer, and pk; qk; rkf g
is the set of parameters. These parameters refer to as the

consequent parameters.

4 Particle swarm optimization

Particle swarm optimization (PSO) is evolutionary algo-

rithm belongs to the family of stochastic iterative opti-

mization methods. An essential advantage is that these

methods can be applied to both discrete and continuous

variable problems. In our case, we wanted to apply the PSO

method to the problem of optimizing fuzzy logic con-

trollers that were introduced in Sect. 3 and it’s entirely

described by the boundaries of fuzzy partitions introduced

for each performance indicator for the database (continu-

ous variables).

4.1 Introduction to particle swarm optimization

Swarm particle optimization is an optimization technique

based on a set of fixed size agents, called particles, moving

in the D-dimensional search space. The position of each

particle corresponds to a setting of the fuzzy logic con-

troller. The speed of each particle corresponds to the

modifications of this parameterization between two simu-

lations. The velocity and position of each particle are

randomly initialized. The entire particles move in the

search space, and the performance of each particle is reg-

ularly evaluated using cost functions. The evolution of each

particle allows an intelligent exploration of the research

space. All the particles form the swarm, of size S fixed at

the beginning.

4.2 Principles of evolution of the particle swarm

We consider a research space of dimension D. A particle i

of the swarm is modeled by a vector of position xi ¼
ðxi1; xi2; . . .; xiDÞ and a velocity vector noted

vi ¼ ðvi1; vi2; . . .; viDÞ. Each particle saves in memory the

best position by which it has passed, noted

Pbesti ¼ ðpbesti1; pbesti2; . . .; pbestiDÞ. All the best posi-

tions reached by the swarm are noted by

Gbesti ¼ ðgbesti1; gbesti2; . . .; gbestiDÞ. At the beginning of

the solution search process, all the particles in the swarm

are randomly initialized in the search space. Then, at each

iteration, any particle of the swarm moves, linearly com-

bining the three components of Eq. (16).

At iteration t, the velocity vector is calculated as follows

[42, 43]:

vij t þ 1ð Þ ¼ wvij tð Þ þ c1r1 pbestij tð Þ � xij tð Þ
� �

þ c2r2 gbestij tð Þ � xij tð Þ
� �

ð16Þ

Fig. 2 The equivalent typical

ANFIS architecture
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with j 2 1; 2; :::;Df g and w a constant, called the coef-

ficient of inertia.

The degree of attraction towards the best position of a

particle and that of these informants is respectively repre-

sented by two coefficients of cognitive confidence c1 and

social c2. The good exploration of particles in the search

space is guaranteed by the coefficients r1 and r2 which are

two random numbers drawn uniformly in the interval 0; 1½ �.
Equation (16) is composed of three terms which are:

wvij tð Þ a displacement physical component of which w is a

variable parameter allowing to control the displacement of

the particle at the next iteration, c1r1 pbestij tð Þ � xijðtÞ
� �

a

cognitive component of displacement and

c2r2 gbestijðtÞ � xijðtÞ
� �

a social component of displace-

ment [44]. The position at the iteration t þ 1ð Þ of the par-

ticle i is then defined by the following equation:

xij t þ 1ð Þ ¼ xij tð Þ þ vij tð Þ; j 2 1; 2; . . .;Df g ð17Þ

As already mentioned, the PSO algorithm is population-

based. In fact, all the particles are randomly positioned in

the D-dimensional search space. At each iteration, the

particles move according to the motion Eqs. (16) and (17),

as shown in Fig. 3. Once the position change has taken

place, an update affects the two vectors Pbesti and Gbesti.

At the iteration t þ 1, the latter two vectors will be updated

according to the two Eqs. (18) and (19).

Pbesti t þ 1ð Þ ¼ Pbesti tð Þ; if f xi tð Þð Þ� f Pbesti tð Þð Þ
xi tð Þ; otherwise

�

ð18Þ
Gbesti t þ 1ð Þ ¼ Argmin

i
Pbesti t þ 1ð Þ½ � ð19Þ

In the literature, the stopping criterion of a PSO algo-

rithm can be defined in different ways. The algorithm is

executed as long as one of the three stops criteria, or all at

once, of the following convergence criteria are verified

[45]:

a. The maximum number of iteration defined is not

reached;

b. The variation of the particle velocity is close to zero;

c. The value of the objective is satisfactory with respect

to the following relation:

f gbestij tð Þ
	 


� f gbestij t � að Þ
	 
�� ��� e;witha 2 1;K½ � ð20Þ

The parameter e represents a tolerance chosen most

often of the order of 10�5 and K a number of iterations

chosen of the order of 10.

4.3 The IPSO algorithm

In this section, the different steps of an IPSO algorithm in

the case of single-objective optimization were presented in

order:

a. At the beginning, all the parameters of the algorithm

are declared; the cognitive coefficients c1 and social c2,

the inertia factor w, the size of the population that is

normally defined according to the optimization

problem

Fig. 3 Determination of the new position of a particle in a PSO

process (illustration of the displacement of a particle in the research

space by combining the three movement trends)

Fig. 4 The block diagram of

the control scheme

Int. j. inf. tecnol. (June 2020) 12(2):383–395 387

123



b. Each particle has initial position x0 and initial velocity

v0 that are randomly initialized to be updated accord-

ing to Eqs. (18) and (19)

c. Evaluate all the particles of the population in the

search space to be able to determine the vectors of the

best initial positions Pbest0 and Gbest0

d. Calculate the velocities and positions of the particles at

each iteration according to the motion Eqs. (16) and

(17). Then, evaluate the positions of the particles and

update the sizes Pbest and Gbest

e. Repeat the fourth step as long as the stopping criterion

is not met

Inertia weight is an important parameter of the standard

IPSO. It determines the operating results of IPSO. Fixed

inertia weight make the particles always have the same

exploration competence in flight. Currently,the conven-

tional strategy of improving inertia weight is LDIW (Liner

Decreasing Inertia Weight) [46].

Table 1 Parameters of

quadrotor
Symbol Value

m 0.2 kg

Ixx 0.1/kg.m2

g 9.81 m/s2

Fig. 5 Measured zðtÞ trajectory

with PID controller

Fig. 6 Measured yðtÞ trajectory

with PID controller

Fig.7 Measured /(t) trajectory

with PID controller
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5 Controller design

5.1 ANFIS modeling

In a neuro-fuzzy controller, fuzzy rules are applied to lin-

guistic terms. These terms, which make it possible to

qualify a linguistic variable, are defined through member-

ship functions.

First, we define for each variable the discourse universe

a; b½ � according to the minimum and maximum values of

each variable. Second, we define Gaussian-type member-

ship functions that constitute the fuzzy partition of the

linguistic variable. It can be seen that this function depends

on the antecedent parameters. For example, for the variable

z tð Þ there are two inputs zrðtÞ; zcðtÞð Þ and five linguistic

inputs that are partitioned on the discourse universe in each

input variable. Where zrðtÞ is the measured trajectory and

zcðtÞ is the reference trajectory. Therefore, a typical rule in

a Sugeno fuzzy model is described as follows:

If x is A1 and y is B1 then f 1 ¼ p1xþ q1yþ r1

If x zr tð Þð Þ ¼ A1 and y zc tð Þð Þ ¼ B1 then

f 1 ¼ p1xþ q1yþ r1. Where x zr tð Þð Þ and y zc tð Þð Þ are lin-

guistic variables, A1 and B1 are the linguistic values, f 1

denotes the first output value, and p1; q1, and r1 are the

consequent parameters.

The ANFIS is optimized by adjusting the antecedent

parameters (membership function parameters) and the

consequent parameters (polynomial coefficients) to mini-

mize a specified objective function. The most common and

the most applicable fuzzy inference systems training

algorithm is the back-propagation learning algorithm that is

used to recursively solve the premise and consequent

parameters optimization. This conventional optimization

algorithm is likely to get stuck at local optima. To over-

come this drawback, the use of evolutionary techniques is

recommended. The evolutionary technique is used to

optimize the antecedent and consequent parameters. In this

work, we suggest to use IPSO technique for training the

parameters of ANFIS.

The Mean Squared Error (MSE) and Root Mean

Squared Error (RMSE) functions are used as a fitness

function in order to calculate the fitness of a solution. In

order to compute the MSE and RMSE errors values, the

output of ANFIS and its real output are used as given in

Eqs. (21) and (22):

MSE ¼ 1

n

Xn
i¼1

yi � ŷið Þ2 ð21Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðyi � ŷiiÞ
s

ð22Þ

Here, yi is the real output, �
y i

is the measured output by

ANFIS and n is the number of samples.

5.2 Proposed ANFIS-IPSO

In this research work, in order to improve the training

process of the ANFIS, meta-heuristic algorithm was used

for optimizing the influential parameters in the ANFIS. For

this reason, one of the most commonly used meta-heuristic

algorithm is used which is IPSO.

In the ANFIS-IPSO approach, IPSO improves the

approximation capability of ANFIS by tuning its parame-

ters. In better words, IPSO minimizes the estimation error

by tuning input and output MFs through the search space

Fig. 8 Measured trajectory with PID controller

Fig. 9 Trajectory Error with PID Controller

Int. j. inf. tecnol. (June 2020) 12(2):383–395 389

123



provided by ANFIS model. IPSO algorithm optimized MFs

of the developed ANFIS models while minimizing both

MSE and RMSE. The block diagram showing this structure

is given in Fig. 4.

Every learning step of the algorithm contains the

learning of antecedent and consequent parameters. The

major steps of the combined algorithm are stated as

follows.

(a) Randomly initialize particle swarm in search space,

including dimension of search space, particle swarm

size, learning factors, maximum number of itera-

tions, and initial speed and position of every particle

(b) In the first iteration, the initial position of every

particle is defined as the initial individual best

position. Then, the value of the best position for the

whole swarm is determined and the position vector

of each particle is used as the antecedent and

Fig. 10 Measured

z(t) trajectory with ANFIS

controller

Fig. 11 Measured yðtÞ
trajectory with ANFIS

controller

Fig. 12 Measured /ðtÞ
trajectory with ANFIS

controller
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consequent parameters of ANFIS in sequence. It is

followed by calculating the value of the output based

on Eqs. (7), (8), (12), (13), (14) and (15). Next, the

MSE and RMSE between the model output byi and

the reference data for the ith particle is calculated,

which is also the fitness value MSEi and RMSEi for

the ith particle. The fitness values of particles are

compared; the particle which has the smallest fitness

is selected as the best particle. Its position vector is

defined as the initial global best position

(c) The iterations were continued. For each iteration; the

velocity vector vij and the position vector xij for each

particle are updated based on Eqs. (16) and (17)

initially

(d) Then, the fitness values particles are calculated.

Compare the current fitness values f xiðtÞð Þ with the

individual best fitness value f PbestiðtÞð Þ for each

particle; if the current fitness value is smaller than

f PbestiðtÞð Þ, the individual best fitness value

PbestiðtÞ is set as f xiðtÞð Þ, and the particle’s histor-

ical optimal position along with its new position

Pbestiðt þ 1Þ ¼ xiðtÞ is updated. Comparing the

particle’s current fitness value f xiðtÞð Þ with the

global best fitness value GbestiðtÞ, if the current

fitness value, f xiðtÞð Þ is smaller than GbestiðtÞ, the

global best fitness value GbestiðtÞ is set as f xiðtÞð Þ,
the global optimal position with its new position

Gbesti t þ 1ð Þ ¼ xiðtÞ is updated, and the number of

the best particle is recorded

(e) Iterations stop when the maximum number of

iterations is met. The values of Gbesti t þ 1ð Þ are

the identified antecedent and consequent parameters.

The parameter w will be changed after each

iteration.

6 Simulation results

To validate the approach used, we carried out simulations

for the adaptive control of a 3-DOF UAV robot moving

along a specified trajectory, whose model parameters are

estimated by three ANFIS networks. The adjustment of the

network parameters is performed by an IPSO algorithm to

obtain the optimal objective value. The UAV is com-

manded to track a preprogrammed trajectory through a

function of time defined by the coordinates y tð Þ and z tð Þ.
The control performance obtained by the proposed

control system is compared with PID and ANFIS con-

trollers to validate the superior performance of the studied

controller.

The simulation results are obtained with a vertical tra-

jectory in 2D space. The desired trajectory input is defined

as:

yd tð Þ ¼ 2sin tð Þ
zd tð Þ ¼ 5sin tð Þ

The parameters of the quadrotor used in the following

simulations are shown in Table 1.

The PID-based control was used to control the UAV

robot for a control purpose. The simulation results are

illustrated in Figs. 5, 6, 7 and 8. The reference trajectory

Fig. 13 Measured trajectory with ANFIS controller

Fig. 14 Trajectory error with ANFIS controller
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(blue line) is compared with the measured one (red line) as

shown in Fig. 8.

The difference between the calculated trajectory and the

desired one can be measured by the mean square error

showed in Fig. 9.

As we can see in Fig. 9, the PID controller can repro-

duce the tracking trajectory with error of MSE ¼
4:6478�10�2 and RMSE ¼ 0:21559:

The control by ANFIS has proved its worth. The results

obtained clearly justify the use of artificial intelligence

techniques, of which ANFIS is a part.

Based on the simulation results obtained in Figs. 10, 11,

and 12, results showed indicate that respectively the mea-

sured zðtÞ (magenta dotted line), yðtÞ (green dotted line)

and / tð Þ (cyan dotted line) trajectories of the quadrotor

track exactly the desired zðtÞ (red line), yðtÞ (cyan line) and

/ tð Þ (brown line) trajectories.

Fig. 15 Measured zðtÞ
trajectory with ANFIS-IPSO

controller

Fig. 16 Measured yðtÞ
trajectory with ANFIS-IPSO

controller

Fig. 17 Measured

/(t) trajectory with ANFIS-

IPSO controller
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The ANFIS measured zðtÞ; yðtÞð Þ trajectory, in Fig. 13

(dotted red line) deviate slightly from the desired (solid

blue line) trajectory. The error between the two trajectories

showed in Fig. 14, indicates that the calculated mean

square error with the ANFIS controller is evaluated at

MSE ¼ 1:7169�10�9 and RMSE ¼ 4:1435�10�5, which is

too small than the MSE with PID controller which approve

the effectiveness of the ANFIS controller over PID

controller.

Figures 15, 16 and 17 show the ANFIS-IPSO simulation

results of the parameters yðtÞ; zðtÞ and /ðtÞ. From the fig-

ures, it is very clear that the measured quadrotor trajecto-

ries follow accurately the desired trajectories. The tracking

Fig. 18 Measured trajectory with ANFIS-ACO controller

Fig. 19 Error test data (z parameter)

Fig. 20 Error train data (z parameter)

Fig. 21 Error test data (y parameter)

Fig. 22 Error train data (y parameter)

Fig. 23 Error train data (/ parameter)

Fig. 24 Error test data (/ parameter)
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performance is illustrated in Fig. 18, where the measured

trajectory (red dotted line) of the quadrotor and the refer-

ence trajectory (solid blue line) are shown together. The

results obtained show that the performances of the ANFIS-

IPSO hybrid approach are superior to those of the other

models. It can be seen that the ANFIS-IPSO makes a very

good approximation of the system with a mean error of

2:25183�10�16. The Tracking errors of different trajecto-

ries (z tð Þ; yðtÞ, and /ðt)) of the quadrotor are illustrated in

Figs. 19, 20, 21, 22, 23, and 24. It can be clearly seen that

the trajectory tracking errors converge to zero.

7 Conclusion

This research was dedicated to solving the limitations of

classical control laws in the absence of model parameters.

The use of control methods based on artificial intelligence

techniques has become a necessity. These techniques

include neural networks, fuzzy logic and evolutionary

algorithms among many others.

The paper presents an Improved Particle Swarm Opti-

mization algorithm (IPSO) applied to fitting Adaptive

Neuro-Fuzzy Inference System (ANFIS) membership

functions. The case study was implemented using simula-

tions, whose main purpose is to control a quadrotor UAV

trajectory tracking task.

To validate this intelligent approach, an objective

function was used to optimize the ANFIS parameters via

the IPSO algorithm. The results obtained were compared

with a PID and ANFIS to prove the high performance of

ANFIS-IPSO.
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