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Abstract In this paper, a stochastic gradient method based

adaptive version of the radial basis function neural network

has proposed to map the pattern features of the control

chart patterns in different categories to recognize their

belonging class. Adaptiveness has given over the spread-

ness and centers of Gaussian basis function appeared in the

hidden nodes of the radial basis function neural network.

Along with normal abnormalities in patterns, the mixture of

different abnormal patterns has also considered capturing

the worst possible conditions of abnormalities in real time.

The advantages of the proposed method have appeared as

very high recognition accuracy, minimum error in learning

and generalize performance with small training dataset in

control chart pattern recognition. Achieved performance

has compared with the state of art results available in the

literature which has applied feature based recognition using

Support vector machine and Genetic algorithm. The pro-

posed method has enhanced the recognition generalization

of control chart patterns with simplicity in design and high

level of decision confidence. The performances have

achieved through the simulation-based experiments over a

huge number of patterns containing ten different types of

pattern and on average, 99.99% accuracy has achieved.

Keywords Control chart pattern � Pattern recognition �
Artificial neural network � Radial basis function network �
Support vector machine � Genetic algorithm

1 Introduction

Control chart pattern (CCP) provides the condition of the

process of consideration hence it has been used as a

diagnostic tool in maintaining the quality of the process.

Generally, a process is considered as out-of-control under

two different appearances either sampled data of interest

appears beyond the defined control limit or there is

unnatural behavior appear in the pattern. It’s easy to detect

the defect in the former case while it’s difficult to recog-

nize the latter case condition because of inherent random

noise. There are different possibilities of control chart pat-

terns exist, among them there are six basics patterns exist

[1] e.g. normal (NOR), cyclic (CYC), increasing trend

(UT), decreasing trend (DT), upward shift (US) and

downward shift (DS), as shown in Fig. 1 while other pos-

sibilities are derived from these six patterns as shown in

Fig. 2. Except for the normal pattern, all other patterns are

the indication of some kind of problem in the process,

hence, it is very necessary to recognize the pattern pre-

cisely and efficiently to maintain the desired level of

quality as well as reduce the cost. There are some methods

like zone test or run rules available to recognize the CCPs

but they carry high false alarms. Right detection of patterns

not only provides the in-control/out-of-control but also

knowledge of abnormality in patterns can help to under-

stand the possible reason of cause. This makes trou-

bleshooting process more efficient. Recently, the focus of

research has shifted towards automated recognition of

CCPs through the intelligent algorithmic approach.

& Manoj Kumar Singh

mksingh@manuroresearch.com

1 Jain University, Bangalore, India

2 Kalasalingam Academy of Research and Education,

Srivilliputhur, Tamil Nadu, India

3 Manuro Tech Research Pvt. Ltd, #20, 2nd Cross Jyothi

Nagar, Near Sambhram Engineering College,

Vidyaranyapura, Bangalore 560097, India

123

Int. j. inf. tecnol. (December 2020) 12(4):1271–1280

https://doi.org/10.1007/s41870-019-00381-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-019-00381-z&amp;domain=pdf
https://doi.org/10.1007/s41870-019-00381-z


Different possibilities of the solution have been explored in

the past like rule-based solution which mainly derived from

the statistical characteristics of different patterns or com-

putational intelligent based solution which mainly extract

the features from patterns to classify the different types of

pattern class. It was observed that statistical overlapping of

pattern features may cause poor efficiency in the rule-based

solution while computational intelligence-based solution

like artificial neural network (ANN), extract and learn the

features from the pattern directly. In the past, most of the

research has considered the single abnormality in the

control chart patterns [1–3]. But there may be a number of

reasons that appeared abnormalities are the mixture of

these single abnormalities [4, 16]. It is obvious that

recognition of mix patterns is more challenging.

In this paper, an adaptive form of radial basis function

network has applied for directly driven recognition of ten

different possibilities of the control chart pattern. Six

fundamental categories of patterns as shown in Fig. 1 and

four mix categories of patterns as shown in Fig. 2 have

considered in the training and test data set. Stochastic

gradient descent based adaptiveness of Gaussian kernel

function parameters (center position and function spread-

ness) have applied in each iteration of learning so that

available features in input data could extract more easily

and appropriate manner. It was observed that with the very

small size of the training data set, robust recognition per-

formance has been achieved over a very large test dataset.

Obtained performance from the proposed method has

shown superior outcome in compared to feature based

recognition solution and other results available in the

recent literature.

In Sect. 2, related work in the area of CCP recognition

has discussed. The modeling of patterns has given in

Sect. 3. The proposed work in details has presented in

Sect. 4. The detail experimental results and analyses have

discussed in Sect. 5 and the conclusion has given at the

end.
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Fig. 1 Six basic patterns in the control chart pattern
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2 Related work

Researchers have shown increasing interest in the past for

solving the problem of automated recognition of control

chart patterns. The number of researchers has given the

attention to perform the recognition in the two-stage

model, first, there were exclusive features extraction from

the patterns and later some kind of classification strategy

has applied. There are varieties of statistical and shape

based features, which have been considered useful for

control chart pattern recognition [2]. A comparison

between feature based recognition with raw data based

recognition through LVQ network has been explored [3].

Wang et al. [4] has applied the numerical fitting method

along with the neural network to improve the performance.

Based on the hybrid approach of independent component

analysis (ICA) and decision tree (DT), Gauri et al. [5] has

proposed the concurrent control chart recognition in which

two unnatural variations appeared together. For vertical

drilling process application, an expert system for control

chart pattern based on shape features has been proposed in

Ref. [6]. The shape and statistical features based recogni-

tion through multilayer perceptron neural network have

proposed in Ref. [7]. Sequential forward selection and

extreme learning machine have applied in [8] to improve

the recognition performance of the control chart. Weighted

support vector machine (WSVM) has applied in Ref. [9]

for process monitoring and fault diagnosis. Consensus

clustering framework has applied in Ref. [10] as an unsu-

pervised method for control chart pattern recognition. A

combination of SVM and ICA have applied in Ref. [11] to

monitor and recognition of CCP. It is difficult to find the

huge dataset from real-time to train the classifier for

recognition purpose. De la Torre [12] has proposed the

method to generate the patterns synthetically for CCP.

Integration of statistical process control (SPC) and engi-

neering process control (EPC) have been proposed in Ref.

[13] in which Extreme learning machine (ELM) and ran-

dom forest (RF) have applied to recognize the disturbance

available in CCP. Application of SVM in the area of sta-

tistical process control has been explored in detail [14].

Possibilities to improve the mixed control chart pattern

recognition performance of SVM by parametrizing through

Genetic algorithm have discussed in Refs. [15, 16]. Based

on neural architecture the recognition of control chart pat-

terns (CCPs) has proposed in Refs. [17, 18]. Fitted line and

fitted cosine curve of samples to recognize and analyze the

unnatural patterns have been discussed in Ref. [19]. Fea-

ture-based recognition using an adaptive neuro-fuzzy

inference system (ANFIS) along with fuzzy c-mean (FCM)

has proposed in Ref. [20]. To overcome the degrading

performance with large sample size in the conventional

control chart, Shi et al. [21] has presented a chart which is

based on the continuous ranked probability score. The

shape and statistical feature based solution using RBFNN

0 20 40 60
70

80

90

100

110

120
[7]Cyclic+Increasing Trend

0 20 40 60
40

50

60

70

80

90

100
[8]Cyclic+Downward Shift

0 20 40 60
60

70

80

90

100
[9]Incr. Trend + Downward Shift

Sample no.

Am
pli

tu
de

0 20 40 60
50

60

70

80

90

100

110
[10]Cyclic + Incr.Trend + Down.Shift

Sample no.

Am
pli

tu
de

Fig. 2 Mix abnormal patterns

in the control chart pattern
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have applied in Ref. [22] and associated rules have applied

to select the best set of shape and statistical features.

3 Modeling of data generation in CCP

In order to analyze the CCPs recognition, the Monte Carlo

method is used to get the sample data. All patterns except

for normal patterns illustrate that the process being moni-

tored is not functioning correctly and requires adjustment.

For this study, the patterns of all six basics patterns were

generated using equations as shown in Table 1 and four

mixture patterns have modeled using equations shown in

Table 2. Each pattern was taken as a time series of 60 data

points. The modeling equations were used to create the

data points for the various patterns carrying g as the

nominal mean value of the process variable under obser-

vation, r as the standard deviation of the process variable,

a as the amplitude of cyclic variations in a cyclic pattern

(set to \ 15), g as the gradient of an increasing trend

pattern or a decreasing trend pattern (set in the range

0.2–0.5), b indicates the shift position in an upward shift

pattern and a downward shift pattern (b = 0 before the shift

and b = 1 at the shift and thereafter), s is the magnitude of

the shift (set between 7.5 and 20), r(:) is a function that

generates random numbers normally distributed between

- 3 and 3, t is the discrete time at which the monitored

process variable is sampled (set within the range 1–60), T is

the period of a cycle in a cyclic pattern (set between 4 and

12 sampling intervals) and p(t) is the value of the sampled

data point at time t.

4 Proposed work: RBF adaptiveness and its
application in CCP

The supervised learning of the neural network is often

thought-about because of the curve fitting method. The net-

work is given with training pairs, every consisting of a vector

from the associated input data set in conjunction with the

desired network response. Through an outlined learning for-

mula, the network performs the changes of its weights so

error between the particular and desired response is reduced

relative to some optimization criteria. Once trained, the net-

work performs the interpolation within the output vector

house. A nonlinear Mapping between the input and also the

output vector areas are often achieved with radial basis

function. The design of the RBF NN consists of three layers:

an input layer, one layer of nonlinear process neurons referred

to as hidden layer and also the output layer. The output of

RBFNN is calculated consistent with Eq. (1).

yi ¼ fiðxÞ ¼
XN

k¼1

Wik/kðx; ckÞ ¼
XN

k¼1

Wik/k x� ckk k2

� �
;

8 i ¼ 1; 2; . . .m;

ð1Þ

where, x 2 <n�1 is an input vector,/kð:Þ is a function from

<þ to <, :k k2 denotes the Euclidean norm, Wik are the

weights in the output layer. N is the number of neurons in

the hidden layer, and ck 2 <n�1 is the RBF centers in the

output space. For each neuron in the hidden layer, the

Euclidean distance between its associated centers and the

input to the network is computed. The output of the hidden

Table 1 Modeling of CCP and

associated parameters values
Control chart pattern Pattern modeling equation Parameters values

Normal pðtÞ ¼ gþ rðtÞr g ¼ 10; r ¼ 5

Cyclic pðtÞ ¼ gþ rðtÞrþ a Sinð2pt=TÞ a ¼ 10; T ¼ 10

Decreasing/increasing trend pðtÞ ¼ gþ rðtÞr� gt g ¼ 0:35

Downward/upward shift pðtÞ ¼ gþ rðtÞr� bs

Where b ¼ 0 If t\L
1 If t� L

�

L ¼ U 01½ �d ek2 þ k1

s ¼ 12

k1 ¼ 12

k2 ¼ 30

Table 2 Modeling of Mix CCP
Control chart pattern Pattern modeling equation

Cyclic ? increasing trend pðtÞ ¼ gþ rðtÞrþ a Sinð2pt=TÞ þ gt

Cyclic ? decreasing shift pðtÞ ¼ gþ rðtÞrþ a Sinð2pt=TÞ � bs

Increasing trend ? decreasing shift pðtÞ ¼ gþ rðtÞrþ gt � bs

Cyclic?increasing trend ? decreasing shift pðtÞ ¼ gþ rðtÞrþ a Sinð2pt=TÞ � bs
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layer is a nonlinear function of the distance. Finally, the

output of the network is computed as a weighted sum of the

hidden layer outputs. The functional form of /kð:Þ is

assumed to be given and is mostly Gaussian function as

given by Eq. (2)

/ðxÞ ¼ expð�x2=r2Þ; ð2Þ

where, r parameter controls the ‘‘width’’ of RBF and is

commonly referred as spread parameter. The centers are

defined points that are assumed to perform an adequate

sampling of the input vector space. They are usually cho-

sen as a subset of the input data. In the case of the Gaussian

RBF, the spread parameter r is commonly set according to

the following heuristic relationship

r ¼ dmaxffiffiffi
k

p ; ð3Þ

where dmax is the maximum Euclidean distance between

the selected centers and K is the number of centers. Using

Eq. 3 the RBF of a neuron in the hidden layer of the net-

work is given by

/ x; ckð Þ ¼ exp � k

d2
max

x� ckk k2

� �
: ð4Þ

4.1 Adaptive RBF NN

In the fixed center based mostly RBF NN, there is just one

adjustable parameter of network obtainable and it’s

weights of the output layer. This approach is easy, but to

perform adequate sampling of the input, an oversized

variety of centers should be designated from the input data

set. This produces a comparatively terribly massive net-

work. In the planned methodology their square measure

potentialities to regulate all the three sets of network

parameters that weight, the position of the RBF centers and

therefore the dimension of the RBF. Therefore, alongside

the weights within the output layer, each the position of the

centers moreover because the unfold parameter for each

process unit within the hidden layer undergoes the method

of supervised learning. The primary step in the develop-

ment is to outline fast error value operate as

JðnÞ ¼ 1

2
eðnÞj j2¼ 1

2
ydðnÞ �

XN

k¼1

wkðnÞ/ xðnÞ; ckðnÞf g
" #2

:

ð5Þ

When the chosen RBF is Gaussian, Eq. (5) becomes

JðnÞ ¼ 1

2
ydðnÞ �

XN

k¼1

wkðnÞ exp � xðnÞ � ckðnÞk k2
2

r2
kðnÞ

 !" #2

:

ð6Þ

The equations for updating the network parameters are

given by Eqs. (7)–(9)

wðnþ 1Þ ¼ wðnÞ � lw
o

ow
JðnÞ iw¼wðnÞ

� 	

¼ wðnÞ þ lweðnÞwðnÞ½ �
ð7Þ

ckðnþ 1Þ ¼ ckðnÞ � lc
o

ock
JðnÞ ick¼ckðnÞ

� 	

¼ ckðnÞ þ lc
eðnÞwkðnÞ
r2
kðnÞ

/ xðnÞ; ckðnÞ; rkf g xðnÞ � ckðnÞf g
� 	

ð8Þ

rkðnþ 1Þ ¼ rkðnÞ � lk
o

ock
JðnÞ irk¼rkðnÞ

� 	

¼ rkðnÞ þ lr
eðnÞwkðnÞ
r3
kðnÞ

/ xðnÞ; ckðnÞ; rkf g xðnÞ � ckðnÞf gk k2

� 	
;

ð9Þ

where eðnÞ ¼ dyðnÞ � ydðnÞ; ydðnÞ,yd nð Þ is the desired

network output, and lw; lc; lr are appropriate learning

parameters.

The working flow of the proposed adaptive RBF has

shown in Fig. 3. Initially, with the predefined parameters’
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RBF Architecture

W C σ
Error func�onB1

B2

Bn

Pa�erns
Parameters 
alloca�on

Targets

Fig. 3 Proposed adaptive RBF

working flow
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values, several sets of different types of patterns have

generated through the modeling equations. Pre-processing

has applied in terms of scaling down the value of patterns

in the range of [0 1]. The different number of the pattern set

formed, where each set carries a different variety of pat-

terns. A suitable architecture has applied to learn the pat-

tern classification knowledge by assuming the target as the

maximum value (equal to 1) for corresponding pattern

class and minimum (equal to 0) for other pattern classes.

The mean square error has considered for the error function

to decide the quality of learning. Gradient method has

applied to change the values of weights, centers, and

spreadness. Under an iteration, each set of patterns (B1,

B2,….Bn) as shown in Fig. 3 has appeared in the sequential

fashion to increase the generalize quality of learning.

5 Experimental result and analysis

In this paper, there are three parts of the experimental

module. In the first stage, the advantage of proposed

adaptiveness in RBF network has shown in comparison to

the static RBF over six basic patterns of CCP. In the second

module, ARBF has applied for all 10 patterns (ba-

sics ? mixture). In the third module, comparative perfor-

mances have presented between the proposed solution and

SVM-GA based approach [16]. Simulation experiments

have been done in MATLAB environment.

5.1 Optimal pattern length

The pattern length is very crucial in pattern learning as well

as their recognition. The small size of pattern length will

not provide enough distinguish features from one pattern

category to others while a very long length of the pattern

will have more computational cost along with response

delay. To get the effect of pattern length over learning and

recognition performance, different sizes of pattern length

have tested. Six basic forms of CCP have considered for

experiment with the pattern length of 20,30,40,50,60 and

70 samples in time and adaptive RBF has applied for

learning as well as for performance evolution under 5

independent trial over 600 training and 5400 test patterns

and obtained mean performances have shown in Table 3. It

was observed that with the pattern length of 20, 30 and 40

there was a large value of mean square error (MSE) in

compare to pattern length of 50, 60 and 70. Learning with

large pattern length was a comfort because of the avail-

ability of more features of the corresponding category. It is

observed that as the pattern length is closer to the 60

samples, the MSE is small as well as the performance has

achieved the maximum correct recognition and no signifi-

cant benefit observed further even after increasing the

length as shown in Table 3. Hence in this paper, all

experiments have conducted with pattern length equal to 60

samples.

Table 3 Average performances against pattern length (no. of sam-

ples) over five trials

Pattern length MSE Tr. perf (%). Test perf (%)

20 0.1478 86.16 84.51

30 0.1291 97.20 97.22

40 0.0753 99.80 99.77

50 0.0600 99.86 99.95

60 0.0468 99.93 99.97

70 0.0440 100.00 99.98

Table 4 SRBF learning mean error with different hidden number of

nodes under ten trials

Hidden nodes no. 8 10* 15 20

Mean 0.1417 0.1278 0.1509 0.1622

Std. dev 0.0181 0.0126 0.0057 0.0014

Table 5 ARBF learning mean error with different hidden number of

nodes under ten trials

Hidden nodes no. 15 20 25* 30 40

Mean 0.0535 0.0490 0.0474 0.0454 0.0455

Std. dev 0.0019 0.0024 0.0021 0.0021 0.0017
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Fig. 4 Learning convergence characteristics of SRBF and ARBF
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5.2 Performance analysis between static vs adaptive

RBF

An optimal number of required hidden nodes in the RBF

network is a key factor in deciding the quality of final per-

formance. In most of the cases, pre-knowledge of required

nodes number does not exist. Hence, the required number of

optimal hidden nodes for static and adaptive RBF has been

estimated by varying the number of nodes in ten different

experimental trials and obtained final mean error obtained to

understand the effects as shown in Table 4 and in Table 5.

There was total of 6000 (1000 9 6) patterns have been

generated by equations as shown in Table 1. Training has

applied up to 100 iterations over 600 (100 9 6) patterns and

remaining 5400 patterns have considered for test purpose. For

SRBF, trials have given with 8, 10, 15 and 20 hidden nodes

and observed that mean error has achieved minimum with 10

hidden nodes. For ARBF there were five different values of

hidden nodes number, 15,20,25,30 and 40 have applied. All

three learning parameters lw; lc; lr have selected as 0.1. It

can observe from Table 4 that error was closer for 25, 30 and

40 nodes. To maintain better generalization, 25 hidden nodes

have selected as the final value for further experimental work.

The learning convergence for SRBF and ARBF with 10 and

25 hidden nodes have shown in Fig. 4. It can observe that

there was better convergence in all trials for ARBF. The

comparative mean CCP recognition performance over 10

independent trials for SRBF with 10 hidden nodes and ARBF

with 25 nodes have shown in Table 6. It can observe that

ADRBF true recognition performance has come around

99.9% while SRBF has given the recognition accuracy

around 92.25% which is significantly very low in comparison.

Decision confidence, which is a quality parameter of decision

quality, defined as category values of a test pattern outcome

over the different class. ARBF mean decision confidence

overall patterns have shown in Fig. 5 and it is observed that

with a very large margin, patterns have placed in their

belonging classes. This quality is very useful against, some

kind of temporary noise.

Table 6 ARBF and [SRBF] confusion matrix over ten independent trials for six basic patterns of CCP

True pattern NOR CYC IT DT US DS

NOR 99.8889 [92.9333] 0 0 [0.8889] 0 0.1111 [6.1778] 0

CYC 0 100 [100] 0 0 0 0

IT 0 [0.0222] 0 100 [99.9111] 0 0 [0.0667] 0

DT 0 0 0 100 [74.7556] 0 0 [25.2444]

US 0.5556 [3.6667] 0 0 [0.3556] 0 99.4444 [95.9778] 0

DS 0 0 0 0 [10.0667] 0 100 [89.9333]

Average correct

recognition (%)

99.8889 [92.2519]
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5.3 Performance analysis of ARBF over Mix CCP

As it was clear earlier that ARBF has shown the superior

performance over six basic patterns recognition, hence

ABRF has applied to recognize the mixture patterns. First a

data set of 1000 group, where each group has 10 different

types of patterns (total 10,000 patterns) have developed

using the equations available in Tables 1 and 2. A part of

total data set, 100 groups (total 1000 patterns) have con-

sidered for training purpose and up to 100 iterations,

training has applied, while the remaining 900 groups

(contains total 9000 patterns) have applied as test patterns.

To find the optimal hidden nodes number, different possi-

bilities of nodes number 20, 25, 30, 35, 40 have explored

under 10 independent trials. Network with 35 hidden nodes

have shown the better convergence hence has been selected

for the further purpose and corresponding mean CCP

recognition performances over test patterns for 10 inde-

pendent trials have presented in Table 7. For the training

data set, the obtained mean performance was 99.56% while

for the test data set it has shown 99.9911%. Mean decision

confidence for all the patterns have shown in Fig. 6 and

observe that there is absolute accuracy in the decision for

all 10 different pattern categories.

5.4 Comparative performance analysis of ARBF

against SVM-GA [16] over Mixed CCP

Support vector machine has shown numerous applicability

successfully in various applications. Selection of kernel

and associated parameters values decide the outcome

quality heavily. In [16], a combination of SVM with the

Table 7 ARBF performance confusion matrix over 10 independent trials over mix patterns of CCP

NOR CYC IT DT US DS CYC ? IT CYC ? DS IT ? DS CYC ? IT ? DT

NOR 99.9778 0 0 0 0.0222 0 0 0 0 0

CYC 0 100 0 0 0 0 0 0 0 0

IT 0 0 100 0 0 0 0 0 0 0

DT 0 0 0 100 0 0 0 0 0 0

US 0 0 0.0222 0 99.9778 0 0 0 0 0

DS 0 0 0 0 0 100 0 0 0 0

CYC ? IT 0 0 0 0 0 0 100 0 0 0

CYC ? DS 0 0 0 0 0 0 0 100 0 0

IT ? DS 0 0 0.0222 0 0 0 0 0 99.9778 0

CYC ? IT ? DT 0 0 0 0 0 0 0 0.0222 0 99.9778

Average correct

recognition (%)

99.9911
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genetic algorithm (GA) has applied to recognize the mixed

CCP. A series of eight statistical features (mean, standard

deviation, mean-square value, autocorrelation, positive

cusum, negative cusum, skewness, kurtosis) and five shape

features (slope, the number of mean crossing, the number

of least-square line crossing, the area between the pattern

and its mean line, the area between the pattern and its least-

square line) have applied as features set which have been

extracted from patterns. These features have been applied

to MSVM and parameters optimization has done through

GA. Total 100 groups of the pattern have been generated,

in which 50 groups have been considered for training.

To make the comparison performance more meaningful,

the same set of data modeling has been done as given in

Ref. [16]. Learning has given over training data of 50

groups (each group carried 10 patterns) up to 100 itera-

tions. But instead of taking only 50 new groups (total 500

patterns) of data set for test purpose, 450 new groups (4500

patterns) of patterns have been applied to get the perfor-

mance of purposed method closer in the long run of a

practical situation. The number of hidden nodes have

considered as 35. The obtained mean performance by

proposed method over test patterns of all five trials has

compared with performance obtained in Ref. [16] as shown

in Table 8. On average (estimated as the ratio of the sum of

accurate % recognition under all different pattern cate-

gories to the number of different pattern categories), there

was 97.6% accurate recognition reported in [16] while the

proposed method has delivered the 99.9937% recognition

accuracy over the vast number of test patterns.

6 Conclusion

Automated control chart pattern recognition has shown a

remarkable improvement in the quality control for the

manufacturing industrial process. In this paper, an adaptive

radial basis function has applied to recognize the wide form

of patterns variations with very accuracy and precision.

The proposed method has freedom from any kind of feature

extraction requirement, which cause to improve the speed

of recognition. A huge number of test patterns have applied

to ensure the generalization characteristics of outcomes.

Performance evaluation has been done over fundamental

six patterns of CCP as well as the mixture of them. The

proposed method has shown much better recognition

accuracy over feature based recognition process available

in the literature, using Support vector machine and Genetic

algorithm. It has also observed that there was a very crisp

Table 8 ARBF and [MSVM-GA] [16] confusion matrix over ten independent trials for mix patterns of CCP

Applied test pattern % Recognized pattern

NOR CYC IT DT US DS CYC ? IT CYC ? DS IT ? DS CYC ? IT ? DT

NOR 100

[100]

0 0 0 0 0 0 0 0 0

CYC 0 99.9789

[98]

0 0 0 0 0 0 0 0.0211

2

IT 0 0 100

[98]

0 0 0 0

2

0 0 0

DT 0 0 0 100

[100]

0 0 0 0 0 0

US 0 0.0211

0

0 0 99.9789

[100]

0 0 0 0 0

DS 0 0 0 0 0 100

[98]

0 0

2

0 0

CYC ? IT 0 0 0

2

0 0 0 100

[98]

0 0 0

CYC ? DS 0 0 0 0 0 0 0 100

[100]

0 0

IT ? DS 0

2

0 0 0 0 0 0 0 100

[96]

0

2

CYC ? IT ? DT 0 0.0211

10

0 0 0 0 0 0 0

2

99.9789

[88]

Average correct

recognition (%)

ARBF

[99.9937]

[MSVM-GA,

16] [97.6]
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level of decision strength available in outcomes which

make the solution more robust in the presence of noise.
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