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Abstract Networks are interesting representation models

for analysis of systems. The entities of the systems under

review can be denoted as the nodes of the networks and the

relationships between these entities as the edges connecting

them. Such a representation has advantages in analysis as

network theory has a rich collection of well defined con-

cepts and methods. These concepts of can be applied on

such networks to draw inferences about the systems. As

digitization has penetrated almost all aspects of mankind, a

wide variety of systems from diverse domains such as

computer science, transportation, social science have

become available in the form of networks. A network

perspective provides valuable insights into their structure

and behavior. In this inquiry networks representing real

world systems from different domains are analyzed using

concepts of network theory and statistical generative net-

work models—SBM and LSM. This is done to various

application scenarios to express the properties of these

systems. The findings highlight the unique features and

trends seen in each domain.

Keywords Statistical models � Graph representations �
Latent variable models � Stochastic block models

1 Introduction

‘‘We will never understand complex systems unless we

develop a deep understanding of the networks behind

them’’—Albert Laszlo Barabasi [1]. In scientific literature,

different models have been developed to generate efficient

representations and visualizations of data for its analysis

[2]. However, the advantage of networks in representation

of data is that they provide a general language for

describing and modeling complex systems [3]. Hence,

networks have become ubiquitous across various scientific

disciplines and are being used to represent many real or

artificial systems [4], for instance, internet, transportation

systems, social networking websites, biological networks

etc. [5–8].

Usefulness of network representations in the examina-

tion of complex systems is illustrated in the model given in

Fig. 1. In this network, edges connect scientists that have

coauthored at least one paper. Symbols indicate the

research areas of the scientists. As seen in Fig. 1, density of

edges between researchers in a particular domain are high

compared to density of edges between researchers of dif-

ferent domains. The position of scientists (nodes) in the

Santa Fe Institute network provides insights regarding their

importance to the research community of the institution.

In addition to this, there are several other useful statis-

tical concepts in graph theory which can be applied on

network models to understand the structural characteristics

of the systems they represent [10, 11]. Measurements of

path length, diameter, connectivity, transitivity and density

allow inferences on the structural characteristics of sys-

tems. Locations of nodes in a network model can be used to

draw parallels about the importance of those entities in the

overall scheme of the system [9]. For instance, nodes

located at the boundaries in a network are important for
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information exchange with nodes outside the network and

nodes located at the center of a network are hubs which

keep the network intact and play a key role in information

interchange within the network.

Networks also capture the relationships or behaviors of

the entities (nodes/actors) in the underlying systems

[12–15]. Two distinct schools of thought are available for

understanding this behavior: probabilistic models and sta-

tistical models. Probabilistic models assume that a network

is formed as a result of the behavior of the actors (nodes)

involved in them. Actors can have various tendencies to

form relationships with other actors and as a result of these

relationships a network is formed. Each type of proba-

bilistic model assumes a different tendency to form rela-

tionships i.e. random attachment, preferential attachment

etc. A drawback of probabilistic models is that the even

though they are ‘‘generative’’, they do not generate net-

works that share many properties with the specific network

they were fit to. Unlike probabilistic models, statistical

generative models try to represent networks using a larger

number of parameters to capture properties of a specific

network. They provide a better fit to the network data and

are preferred to understand the relationships or behaviors

of entities of systems [16].

The focus of the current inquiry is on analysis of real-

world systems from diverse domains to uncover beha-

vioural and structural characteristics. With the use of sta-

tistical generative models, various domain specific

phenomena that occur in these systems are highlighted.

These phenomena are explained using intuition and

empirical evidence is offered to support the findings. The

key contributions of the inquiry are: providing a taxonomy

of techniques and concepts of network science useful for

network analysis and providing the trends and insights into

the behavior of networks of various domains.

The rest of this inquiry is organized into three main

sections. Section 2 describes statistical models for network

analysis, Section 3 includes network theoretic concepts

popular in network analysis [17, 18]. Section 4 presents the

descriptions of the data-sets and their specifications. Sec-

tion 5 discusses the results of the inquiry and summarizes

the key findings. The concluding remarks of this inquiry

are presented in Sect. 6.

2 Taxonomy of statistical models for network
analysis

2.1 Stochastic blocks models

Stochastic blocks models (SBMs) are the natural enrich-

ment of random networks (nodes form links with other

nodes uniformly at random) [19]. In these models the

probability of a link formation between actors is dependent

on the characteristics of the actors i.e. latent or observed

[20]. These models could be used to capture, the proba-

bility of linking with actors of the same type than with

other types i.e. homophily. However, they fail to capture

probability of link formation that is independent of char-

acteristics of actors, for example, the probability of two

actors linking together if they have a common friend i.e.

Transitivity. Due to this drawback, SBMs are fit to systems

where transitivity is not present. However, to fit systems

where transitivity is likely Exponential Random Graph

Models [p*/ERGM] were proposed.

2.2 Exponential Random Graph Models [p*/

ERGM]

ERGM is an emerging statistical technique used to identify

how the characteristics of the people or organizations in a

network and larger social forces can explain or predict the

observed patterns or ties in the observed network. They can

also encode complex social theories such as transitivity,

reciprocity etc. ERGM allows network data to be modeled

in a way similar to least squares logistic regression but does

not require observations to be independent [21]. Eqn. 1

provides a mathematical formulation of ERGM’s [22, 23].

PðYÞ ¼ exp
P

bskðYÞ½ �
P

Y 0 exp½bskðY 0Þ�� ð1Þ

Agent-based

Mathematical

Statistical Physics

Ecology

Models

Structure of RNA

Fig. 1 A network model representing the collaborations between

scientists working at the Santa Fe Institute (SFI). Reprinted

figure from [9]
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where,

– sk = graph statistics

– P(Y) = Probability of obtaining a particular graph

– b = Vector of coefficients for graph statistics

– Y 0 = Another realization of a graph such that

YðjV jÞ ¼ Y 0ðjV jÞ
However, there are challenges in estimating ERGMs. The

graph statistics sk may not give a clear picture regarding

their significance in the network. Hence, social theory

regarding the domain is also needed to understand the

results and draw inferences from them. A second challenge

of ERGMs is estimating Y 0 which is a set of all possible

graphs with equal number of nodes as Y. Thus the term in

the denominator
P

Y 0 has to sum over 2

n
2

� �

possibilities.

To avoid this computation, T. Snijders et. al. and M.

Handcock et. al. proposed Markov chain Monte Carlo

techniques for estimation of Y 0 [24, 25]. S. Bhamidi et. al.

argued that for ERGMs, MCMC estimation of g0 shall be

efficient only if links in the graph are assumed to be formed

independently [26]. But as this assumption is not applicable

for ERGMs, MCMC leads to incorrect estimations [27, 28].

They also rely upon expensive and often unstable methods

for probabilistic inference.

2.3 Statistical Exponential Random Graph Models

[SERGMs]

Statistical Exponential Random Graph Models [SERGMs]

were proposed to resolve the estimation issues of ERGMs.

SERGMs assume that all network having same graph statistics

sk are equally likely. This reduces the exponential search

space of Y 0 and the ERGM equation is modified to Eqn. 2.

PðYÞ ¼ exp½bsðYÞ�
P

sk
NðskÞexp½bsk�

� ð2Þ

where,

– N(s’) = Number of networks that have a particular

graph statistics

– sk = graph statistics

– P(Y) = Probability of obtaining a particular graph

2.4 Latent variable models

Latent variable models represent data as an n � n socioma-

trix Y, with yi;j denoting an edge (relation) from node i to

node j, and covariate information X. A conditional inde-

pendence approach to modeling is given by Eq. 3. It

assumes that the presence or absence of a edge between two

nodes is independent of other edges in the system.

Probability of an edge Pðyi;j depends on the latent positions

of the two nodes in social space zi; zj. These positions

depend on xi;j and h the vector of parameters to be estimated

[2, 29]

PðY jZ;X; hÞ ¼
Y

i6¼j

Pðyi;jjzi; zj; xi;j; hÞ ð3Þ

The Distance model, a variation of the latent variable

model, is a logistic regression model in which the proba-

bility of a tie Pðyi;jjzi; zj; xi;j; hÞ depends on the Euclidean

distance between zi and zj (wi;j ¼ jjzi � zjjj2). The proba-

bility of a tie PðY jZ;X; hÞ in this model is given by Eq. 4:

Pðyi;j ¼ 1jwi;jÞ ¼ rðwi;jÞ ð4Þ

The above model is symmetric, Pði ! jÞ ¼ Pðj ! iÞ.
However, in many networks such symmetry is not

achieved. The shortcomings in the above model can be

removed by supposing that a node i has an associated unit-

length k-dimensional vector of characteristics vi. These

characteristics can be thought of as points on a k-dimen-

sional sphere of unit radius. The angles between vector of

characteristics of two actors can be: v0ivj [ 0 (tie is likely),

v0ivj ¼ 0 (neutral), and v0ivj\0 (unlikely). To this a

parameter is added for each node to allow for different

levels of activity viz. ai[0 be the activity level of actor i.

Then model the probability of a tie from i to j as depending

on the magnitude of aiv
0
ivj or, equivalently, z0izj ¼ jzjj,

where zi ¼ aivi. This is the signed magnitude of the pro-

jection of zi in the direction of zj and can be thought of the

extent to which i and j share characteristics, multiplied by

the activity level of i. The probability of a tie from i to j

using the logistic regression model is by Eq. 5:

logoddsðyi;j ¼ 1jzi; zj; xi;j; a; bÞ ¼ aþ b0xi;j �
z0izj
jzjj

ð5Þ

Latent variable models provide a visual and inter-

pretable spatial representation of the network. They are

also suitable to model transitivity in networks. Hence, they

are preferably fit to systems where transitivity exists. Based

on the review of statistical models, SBM and LSM were

found to be more suitable for understanding the behavior of

the entities in the network.

3 Definitions and data

3.1 Definitions :

3.1.1 Average clustering coefficient

The Average clustering coefficient or transitivity of a net-

work is the probability that two incident edges are com-

pleted by a third edge to form a triangle
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c ¼ jfu; v;w 2 V j u� v�w� ugj
jfu; v;w 2 V j u� v 6¼ w� ugj ð6Þ

3.1.2 Diameter

Diameter of a graph G is defined as

diamðGÞ ¼ max min dGðx; yÞ, where d is the distance

function in G and the max min is taken over all vertices

x; y 2 G.

3.1.3 Assortativity coefficient

It is positive if vertices with high in-degrees tend to con-

nect to each, and negative otherwise. Assortativity coeffi-

cient r for with edges i ¼ 1; 2; :::;M with j, k are degrees of

the vertices at the ends of the ith edge.

r ¼
M�1

P
i jiki � M�1

P
i

1
2
ðji þ kiÞ

� �2

M�1
P

i
1
2
ðji2 þ ki

2Þ � M�1
P

i
1
2
ðji þ kiÞ

� �2
ð7Þ

3.1.4 Edge density

For directed graphs G(V, E) is D ¼ 2jEj
jV jðjV j�1Þ and for un-

directed graphs is D ¼ jEj
jV jðjV j�1Þ.

3.1.5 Gini index

It takes values between zero and one, with zero denoting

total equality between degrees, and one denoting the

dominance of a single node. Let d1 � d2 � :::� dn be the

sorted list of degrees in the network. The Gini index G is

twice the area between the Lorenz curve and its main

diagonal. G is defined as:

G ¼ 2
Pn

i¼1 idi
n
Pn

i�1 di
� nþ 1

n
ð8Þ

3.1.6 Average degree d of G(V, E)

d ¼ 1

jVj
X

u2V
dðuÞ ð9Þ

3.1.7 Variables in Network data:

Network data includes :

– a set of nodes (objects, actors, egos, individuals) and

edges (links, ties, dyads)

– variables measured on nodes or pairs of nodes (edges)

– dyadic variables: measured on pairs of nodes (edges)

– nodal variables: measured on nodes

3.1.8 Types of node attributes or side information:

A binary (or dichotomous) relation takes only two values.

A valued relation takes more than two values. A valued

relation whose possible values have an order is called

ordinal. A valued relation whose possible values lack an

order is called categorical.

4 Network data:

4.1 Data-sets with no side information:

These are networks G ¼ ðV ;EÞ with vertex set V and edge

set E and the vertex attribute set Va and the edge attribute

set Ea are null. Table 1 gives the description of data-set

taken from online social networking websites Twitter.com

(Twt-Net), Google? (Gplus-Net) and a citation indexing

website CiteSeer.com (Cite-Net). All data-sets are publicly

available at Stanford Network Analysis Platform (SNAP) -

a network data repository [30]. In Twt-Net and Gplus-Net

the system that is modeled as a network is the online social

networking website. The entities of the system are the users

of these platforms, they are denoted as nodes of the net-

work. The edges of the network are ‘‘follower’’ relation-

ships between the users. If a user i follows user j, then this

is denoted in the network by a directed edge from node i to

node j. Similarly, in Cite-Net the nodes are the academic

papers indexed in CiteSeer and if paper i cites paper j, then

this is denoted in the network by a directed edge from node

i to node j.

Table 1 Description of Network Data-sets with no side information

Description Twt-Net Gplus-Net Cite-Net

Nodes 185 923 3327

Edges 5156 39400 4732

Avg Clustering Coeff 0.44 0.3 0.13

Diameter 8 7 8

Assortativity -0.19 -0.23 0.12

Avg. path length 2.18 2.58 1.81

Edge density 0.15 0.05 0.0004

Gini index 0.41 0.52 0.43

Avg degree 55 (r ¼ 41) 85 (r ¼ 106) 2.8 (r ¼ 3:41)
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4.1.1 Data-sets with binary attributes:

These are networks G ¼ ðV;EÞ with vertex set n ¼ jV j and

edge set E and the vertex attribute set Va ¼ Rn�f and the

edge attribute set Ea ¼ /, f is number of features for each

vertex. The feature matrix of G is denoted by F. If Fij ¼ 1

node i has feature j; otherwise we have Fij ¼ 0 (binary

attributes). Table 2 gives the description of data-set taken

from websites Flickr.com (Flickr-Net), Blog.com (Blog-

Net), Wikipedia.com (Wiki-Net) and a protein-protein

interaction network (Protein-Net). All data-sets are pub-

licly available at Stanford Network Analysis Platform

(SNAP) - a network data repository [30].

4.1.2 Data-sets with mixed attributes:

These are networks G ¼ ðV;EÞ with vertex set n ¼ jV j and

edge set E and the vertex attribute set Va ¼ Rn�f and the

edge attribute set Ea ¼ RjEj�k where f and k are the number

of features for the nodes and edges in the network

respectively. Table 3 gives the description of data-sets such

as High-Net—a Network of the highways in the state of

Southern California as observed in 2016. It shows the cities

connected by highways. Bill-Net is a bill co-sponsorship

network in parliament of Slovakia in 2014. It shows

information of legislators co-sponsoring bills together.

Trade-Net is a Trade network of electrical automotive

goods between Asia and European countries in the year

2016. It shows countries that have trade ties with each

other. Grey-Net is a sexual contact network between

characters of the television show Grey’s Anatomy. It gives

information of actors in relationships with other actors in

the series. All data-sets are publicly available at Stanford

Network Analysis Platform (SNAP)—a network data

repository [30].

5 Expressing the structural and behavioral
characteristics of networks

Algorithms and used in the analysis are based on fre-

quentist inference. Parameters of stochastic block model

(class memberships Z and block-dependent edge proba-

bilities W and Latent space model parameters (latent node

positions Z and scalar global bias h) treated as having fixed

but unknown values. These parameters are estimated by

maximizing likelihood ĥMLE ¼ argmaxhPðXjhÞ

Algorithm 1: Fit Stochastic blocks models to data

1. Load adjacency matrix Y;

2. Plot singular values of Y;

3. Choose number of latent classes (blocks) by use of Eigengap

heuristic;

4. Fit selected model;

5. Analyze model fit: class memberships and block dependent edge

probabilities;

6. Simulate new networks from model fit;

7. Check how well simulated networks preserve actual network

properties (posterior predictive check);

Table 2 Description of Network Data-sets with binary attributes

Description Blog-Net Flickr-Net Protein-Net Wiki-net

Entities users users proteins articles

Relationships users commenting on blogs by other

users

users following other

users

proteins interacting with other

proteins

articles citing other

articles

Type of

relationship

directed directed un-directed directed

Nodes 5196 7575 3890 4777

Node attributes 8189 12047 50 40

Edges 171743 239738 37845 54810

Edge attributes – – – –

Avg Clustering

Coeff

0.08 0.1 0.09 0.43

Diameter � 2:03 � 2:15 8 4

Assortativity -0.02 -0.23 -0.09 -0.27

Avg. path length � 2:03 � 2:15 3.09 2.15

Edge density 0.012 0.008 0.005 0.004

Gini index 0.39 0.67 0.63 0.62

Avg degree 66.30 (r ¼ 54:8) 63.3 (r ¼ 131:52) 19.45 (r ¼ 34:29) 22.95 (r ¼ 105:92)
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Algorithm 2: Fit latent space model to data

1. Load adjacency matrix Y

2. Model selection: choose dimension of latent space

3. Fit selected model

4. Analyze model fit: examine estimated positions of nodes in latent

space and estimated bias

5. Simulate new networks from model fit

6. Check how well simulated networks preserve actual network

properties (posterior predictive check)

5.1 Twitter

Twt-Net is a data-set of 185 twitter users of a community

and the ‘‘followers-following’’ relationships between them.

The average clustering co-efficient i.e. transitivity between

the members is 0.44. High transitivity indicates that twitter

users prefer to link with ‘‘friends of friends’’. The high

transitivity coupled with low average path length of 2.18

suggests that information diffusion between members

could be rapid. As users prefer following popular users,

social networks have negative assortativity and high

inequality of degree (gini index = 0.41). Other character-

istics commonly observed in social networks are large

number of social contacts (average degree = 55). This leads

to average path length and diameter being lower and edge

density being higher.

For generating LSR of this network, LSM is a better

choice than SBMs as the latter do not explicity model

transitivity. Figure 3 shows the results of fitting SBM to

Twt-Net using the procedure outlined in Algorithm 1.

Figure 2a shows a dense adjacent matrix A but no presence

of communities (latent classes) can be detected in the plot.

Hence, to choose the latent classes the plot of the singular

values of A needs to be obtained.

Using eigen-gap heuristic (gaps in the singular values

correspond to latent classes in the network) four latent

classes are observed in Fig. 2b. The nodes in these latent

classes are assigned class-memberships and then the adja-

cency matrix is re-ordered. Figure 2c shows the re-ordered

adjacency matrix with four latent classes. Once the class-

memberships are assigned, the edge probabilities at the

block level are calculated. Finally, new networks are simu-

lated from edge probabilities to check model goodness of fit.

Figure 3a shows that SBM has generated LSRs that do

not re-generate the original network (Twt-Net) effectively.

The LSRs are not effectively capturing the transitivity of

the original networks. LSMs were able to generate LSRs

that could replicate the transitivity (as shown in Fig. 3b)

and density (as shown in Fig. 3c) of the original network.

Conclusions from posterior predictive check of SBM and

LSM models is that LSRs generated using LSM are more

effective than SBM in Twt-Net.

5.2 Google1

Gplus-Net is a data-set of 923 Google? users of a commu-

nity and the ‘‘followers-following’’ relationships between

them. The average clustering co-efficient i.e. transitivity

between the members is 0.3. As transitivity is lower as

compared to Twitter, the users of Google? have lower

preference to ‘‘friends of friends’’. The high transitivity

coupled with low average path length of 2.58 suggests

possibility of rapid information diffusion between members.

Users of Google? prefer following popular users therefore

the network has negative assortativity and high inequality of

degree (gini index = 0.52). Other characteristics observed in

Gplus-Net are large number of social contacts (average

degree = 85). This leads to average path length and diameter

Table 3 Description of network

data-sets with mixed attributes
Description High-Net Grey-Net Trade-Net Bill-net

Entities cities actors countries legislators

Type of relationship un-directed un-directed directed un-directed

Nodes 205 44 99 139

Node attributes 9 17 12 4

Edges 203 46 725 471

Edge attributes 3 2 1 –

Avg Clustering Coeff 0.28 0 0.44 0.32

Diameter 16 8 0.17

Assortativity 0.12 -0.22 -0.32 0.014

Avg. path length 6.8 3.49 2.31 3.71

Edge density 0.009 0.04 0.07 0.024

Gini index 0.54 0.37 0.61 0.46

Avg degree 1.97 (r ¼ 2:12) 2.09 (r ¼ 1:72) 14.64 (r ¼ 18:74) 6.77 (r ¼ 6:23)
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being lower and edge density being higher. Edge density is

lower compared to Twt-Net which could imply that users are

less active on Google? than Twitter.

Applying LSM to obtain the LSR of Gplus-Net is

infeasible due to the scale of the network. Therefore, only

SBM was fit to the data following the procedure outlined in

Algorithm 1.

Figure 5 shows that SBM has generated LSRs that do

not re-generate the original network (Gplus-Net) effec-

tively. The posterior predictive check reveals that LSRs are

not effectively capturing the transitivity of the original

network.

5.3 CiteSeer

Cite-Net is a data-set of 3327 academic papers and the

citations between them. The average clustering co-efficient

i.e. transitivity of the network is 0.13. Transitivity is lower

for citation networks as i citing j and j citing k might not

lead to k citing i. Unlike social networking websites, a

(a) Adjacency matrix of
Twt-Net

(b) Plot of singular values
of Twt-Net

(c) Re-order nodes in ad-
jacency matrix by class
memberships

Fig. 2 Analysis of Twt-Net

data-set using SBM

(a) Simulate new net-
works from SBM fit to
check model goodness of
fit on parameter transi-
tivity. Number of simula-
tions = 20.

(b) Simulate new net-
works from LSM fit to
check model goodness of
fit on parameter transi-
tivity. Number of simula-
tions = 20. Dimensions of
latent space = 2.

(c) Simulate new net-
works from LSM fit to
check model goodness of
fit on parameter density.
Number of simulations =
20. Dimensions of latent
space = 2.

Fig. 3 Fitting SBM and LSM to

Twt-Net data-set

(a) Adjacency matrix of
Gplus-Net

(b) Plot of singular values
of Gplus-Net

(c) Re-order nodes in ad-
jacency matrix by class
memberships

Fig. 4 Analysis of Gplus-Net

data-set using SBM
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citation network would have a positive assortativity due to

the tendency of highly cited papers to cite each other. Edge

density would be low as research papers are less inclined to

form connections to each other. Gini index would be pos-

itive in citation networks as a few highly cited research

papers would have majority of the incoming connections

and large number of research papers would have very few

connections. All these intuitions are consistent with the

results obtained from the network analysis.

SBM are preferred for models with low transitivity.

LSM will not be able to scale to Cite-Net as the nodes are

in the order of � 103. The network is sparse i.e. jV j � jEj
and the adjacency matrix as shown in Fig. 6a does not

reveal obvious possibilities of communities in the network.

Using eigen-gap heuristic five latent classes are

observed in Fig. 6b. Figure 6c shows the re-ordered adja-

cency matrix with five latent classes. Using the edge

probabilities at the block level, new networks are simulated

to check model goodness of fit.

Figure 7 shows that SBM has generated LSRs that do

not re-generate the original network (Cite-Net) effectively.

The posterior predictive check reveals that LSRs are not

effectively capturing the transitivity of the original

network.

5.4 BlogCatalog

Blog-Net is a data-set of 5196 users and the relationships

captured in the networks are of users commenting on blogs

by other users. The average clustering co-efficient i.e.

transitivity of the network is 0.08. As users will have low

tendency to comment of blogs of each other, the network

would have low tranitivity. The diameter and average path

length are low even though the edge density of the network

is less. This would be due to presence of popular blogs that

see high user traffic. Such a network would also have high

inequality i.e. gini-index would be high.

SBM are preferred for models with low transitivity.

LSM will not be able to scale to Blog-Net as the nodes are

in the order of � 103. The network has node attributes but

SBM does not model attributes. The adjacency matrix as

shown in Fig. 8a does not reveal obvious possibilities of

communities in the network.

Using eigen-gap heuristic five latent classes are

observed in Fig. 8b. Figure 8c shows the re-ordered adja-

cency matrix with five latent classes. Using the edge

probabilities at the block level, new networks are simulated

to check model goodness of fit.

Figure 9 shows that SBM has generated LSRs that do

not re-generate the original network (Blog-Net) effectively.

The posterior predictive check reveals that LSRs are not

effectively capturing the transitivity of the original net-

work. A second disadvantage of SBM is that node attri-

butes in the original network were not considered by the

model. Thus, SBM are not suitable for modeling networks

with attribute information.

5.5 Flickr

Flickr-Net is a data-set of 7575 users and the relationships

captured in the networks are of users ‘‘following’’ the

profiles of other users. The average clustering co-efficient

i.e. transitivity of the network is 0.1. Similar to online

social networking websites like Twitter and Google?,

Fig. 5 Simulate new networks

from SBM fit to check model

goodness of fit on Gplus-Net for

parameter transitivity. Number

of simulations = 20.

(a) Adjacency matrix of
Flickr-Net

(b) Plot of singular values
of Flickr-Net

(c) Re-order nodes in ad-
jacency matrix by class
memberships

Fig. 6 Analysis of Cite-Net

data-set using SBM

Fig. 7 Simulate new networks

from SBM fit to check model

goodness of fit on Cite-Net for

parameter transitivity. Number

of simulations = 20
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Flickr-Net also has high gini-index, negative assortativity,

high average degree, low diameter and low average path

length.

LSM is not feasible for Flickr-Net due to the large

number of nodes, so only SBM was fit to the data for

analysis. The adjacency matrix as shown in Fig. 10a

reveals several dense regions in the network.

Using eigen-gap heuristic five latent classes are

observed in Fig. 10b. Figure 10c shows the re-ordered

adjacency matrix with five latent classes. Using the edge

probabilities at the block level, new networks are simulated

to check model goodness of fit.

Figure 11 shows that SBM has generated LSRs that do

not re-generate the original network (Flickr-Net) effec-

tively. The posterior predictive check reveals that LSRs are

not effectively capturing the transitivity of the original

network.

5.6 Protein protein interaction

Protein-Net is a data-set of 3890 proteins and their inter-

actions with each other. The average clustering co-efficient

i.e. transitivity of the network is 0.09. On an average, a

protein interacts with upto 20 other proteins. But high gini-

index indicates that majority of the interactions are con-

centrated amongst a section of proteins (� 63%). Fitting

LSM is not feasible for Protein-Net due to the large number

of nodes and hence only SBM was fit to the data for

analysis. The adjacency matrix as shown in Fig. 12a

reveals a dense cluster of nodes in the network.

Using eigen-gap heuristic two latent classes are

observed in Fig. 12b. Figure 12c shows the re-ordered

adjacency matrix with two latent classes. Using the edge

probabilities at the block level, new networks are simulated

to check model goodness of fit.

Figure 13 shows that SBM has generated LSRs that do

not re-generate the original network (Protein-Net)

(a) Adjacency matrix of
Blog-Net

(b) Plot of singular values
of Blog-Net

(c) Re-order nodes in ad-
jacency matrix by class
memberships

Fig. 8 Analysis of Blog-Net

data-set using SBM

Fig. 9 Simulate new networks

from SBM fit to check model

goodness of fit on Blog-Net for

parameter transitivity. Number

of simulations = 20

(a) Adjacency matrix of
Flickr-Net

(b) Plot of singular values
of Flickr-Net

(c) Re-order nodes in ad-
jacency matrix by class
memberships

Fig. 10 Analysis of Flickr-Net

data-set using SBM

Fig. 11 Simulate new networks

from SBM fit to check model

goodness of fit on Flickr-Net for

parameter transitivity. Number

of simulations = 20.
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effectively. The posterior predictive check reveals that

LSRs are not effectively capturing the transitivity of the

original network.

5.7 Wikipedia

Wiki-Net is a data-set of 4777 and their hyperlinks to other

web-pages in the network. The average clustering co-effi-

cient i.e. transitivity of the network is 0.43. The adjacency

matrix as shown in Fig. 14a reveals a a dense cluster of

nodes in the network.

Using eigen-gap heuristic three latent classes are

observed in Fig. 14b. Figure 14c shows the re-ordered

adjacency matrix with three latent classes. Using the edge

probabilities at the block level, new networks are simulated

to check model goodness of fit.

Figure 15 shows that SBM has generated LSRs that do

not re-generate the original network (Wiki-Net) effectively.

The posterior predictive check reveals that LSRs are not

effectively capturing the transitivity of the original

network.

5.8 Highway

High-Net is a data-set of 205 cities and the highways that

connect them to other cities in the network. The average

clustering co-efficient i.e. transitivity between the members

is 0.28. Figure 17 shows the results of fitting SBM to High-

Net using the procedure outlined in Algorithm 1. Fig-

ure 16a shows presence of multiple dense regions (latent

classes) in the plot of adjacency matrix A. Hence, to choose

the latent classes we examine the singular values of A.

Using eigen-gap heuristic five latent classes are

observed in Fig. 16b. The nodes in these latent classes are

assigned class-memberships and then the adjacency matrix

is re-ordered. Figure 16c shows the re-ordered adjacency

matrix with five latent classes. Once the class-memberships

are assigned, the edge probabilities at the block level are

(a) Adjacency matrix of
High-Net

(b) Plot of singular values
of High-Net

(c) Re-order nodes in ad-
jacency matrix by class
memberships

Fig. 12 Analysis of Protein-Net

data-set using SBM

Fig. 13 Simulate new networks

from SBM fit to check model

goodness of fit on Protein-Net

for parameter transitivity.

Number of simulations = 20

(a) Adjacency matrix of
Wiki-Net

(b) Plot of singular values
of Wiki-Net

(c) Re-order nodes in ad-
jacency matrix by class
memberships

Fig. 14 Analysis of Wiki-Net

data-set using SBM

Fig. 15 Simulate new networks

from SBM fit to check model

goodness of fit on Wiki-Net for

parameter transitivity. Number

of simulations = 20
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calculated. Finally new networks are simulated from edge

probabilities to check model goodness of fit.

Figure 17a shows that SBM has generated LSRs that do

not re-generate the original network (High-Net) effectively.

The LSRs are not effectively capturing the transitivity of

the original networks. LSMs were able to generate LSRs

that could replicate the transitivity (as shown in Fig. 17b)

and density (as shown in Fig. 17c) of the original network

better than SBMs. Conclusions from posterior predictive

check of SBM and LSM models is that LSRs generated

using LSM are more effective than SBM in High-Net.

5.9 Grey’s anatomy

Grey-Net is a data-set of 44 actors in the popular series

Grey’s Anatomy and the ‘‘sexual’’ relationships between

them. Figure 19 shows the results of fitting SBM to Grey-

Net using the procedure outlined in Algorithm 1. Fig-

ure 18a shows a dense adjacent matrix A but no presence of

communities (latent classes) can detected in the plot.

Hence, to choose the latent classes we examine the singular

values of A.

(a) Adjacency matrix of
High-Net

(b) Plot of singular values
of High-Net

(c) Re-order nodes in ad-
jacency matrix by class
memberships

Fig. 16 Analysis of High-Net

data-set using SBM

(a) Simulate new net-
works from SBM fit to
check model goodness of
fit on parameter transi-
tivity. Number of simula-
tions = 20.

(b) Simulate new net-
works from LSM fit to
check model goodness of
fit on parameter transi-
tivity. Number of simula-
tions = 20. Dimensions of
latent space = 2.

(c) Simulate new net-
works from LSM fit to
check model goodness of
fit on parameter density.
Number of simulations =
20. Dimensions of latent
space = 2.

Fig. 17 Fitting SBM and LSM

to High-Net data-set

(a) Adjacency matrix of
Grey-Net

(b) Plot of singular values
of Grey-Net

(c) Re-order nodes in ad-
jacency matrix by class
memberships

Fig. 18 Analysis of Grey-Net

data-set using SBM
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Using eigen-gap heuristic seven latent classes are

observed in Fig. 18b. The nodes in these latent classes are

assigned class-memberships and then the adjacency matrix

is re-ordered. Figure 18c shows the re-ordered adjacency

matrix with seven latent classes. Once the class-member-

ships are assigned, the edge probabilities at the block level

are calculated. Finally new networks are simulated from

edge probabilities to check model goodness of fit.

Figure 19a shows that SBM has generated LSRs that re-

generate the original network (Grey-Net) effectively. The

LSRs are able to effectively capture the transitivity of the

original network. LSMs were not able to generate LSRs

that could replicate the transitivity (as shown in Fig. 19b)

even though the fit to the density (as shown in Fig. 19c) of

the original network was correct. Conclusions from pos-

terior predictive check of SBM and LSM models is that

LSRs generated using SBM are more effective than LSM

in Grey-Net.

5.10 Trade

Trade-Net is a data-set of 99 countries and their trading

ties. The average clustering co-efficient i.e. transitivity

between the members is 0.44. Figure 21 shows the results

of fitting SBM to Trade-Net using the procedure outlined in

Algorithm 1. Figure 20a shows a dense adjacent matrix

A. Hence, to choose the latent classes a plot of the singular

values of A is created.

Using eigen-gap heuristic three latent classes are

observed in Fig. 20b. The nodes in these latent classes are

assigned class-memberships and then the adjacency matrix

is re-ordered. Figure 20c shows the re-ordered adjacency

matrix with three latent classes. Once the class-member-

ships are assigned, the edge probabilities at the block level

are calculated. Finally new networks are simulated from

edge probabilities to check model goodness of fit.

Figure 21a shows that SBM has generated LSRs that do

not re-generate the original network (Trade-Net) effec-

tively. The LSRs are not effectively capturing the transi-

tivity of the original networks. LSMs were able to generate

LSRs that could replicate the transitivity (as shown in

Fig. 21b) and density (as shown in Figure 21c) of the

original network better than SBM. Conclusions from pos-

terior predictive check of SBM and LSM models is that

LSRs generated using LSM are more effective than SBM

in Trade-Net.

(a) Simulate new net-
works from SBM fit to
check model goodness of
fit on parameter transi-
tivity. Number of simula-
tions = 20.

(b) Simulate new net-
works from LSM fit to
check model goodness of
fit on parameter transi-
tivity. Number of simula-
tions = 20. Dimensions of
latent space = 2.

(c) Simulate new net-
works from LSM fit to
check model goodness of
fit on parameter density.
Number of simulations =
20. Dimensions of latent
space = 2.

Fig. 19 Fitting SBM and LSM

to Grey-Net data-set

(a) Adjacency matrix of
Trade-Net

(b) Plot of singular values
of Trade-Net

(c) Re-order nodes in ad-
jacency matrix by class
memberships

Fig. 20 Analysis of Trade-Net

data-set using SBM
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5.11 Bill co-sponsorship

Bill-Net is a data-set of 139 legislators that have co-

sponsored legislations with each other. The average clus-

tering co-efficient i.e. transitivity between the members is

0.32. High transitivity indicates that legislators sponsor

bills of ‘‘friend of friends’’. Network is not connected and

hence diameter is not calculated. Presence of isolates

indicates inactive members in the assembly. Assortativity

is neutral indicating a tendency of popular members col-

luding with each other and less popular figures with each

other. A high gini-index indicates presence of a few active

legislators that are key to several legislation’s in the

assembly. Activity of a legislative assembly is low com-

pared to social networking sites and hence the edge density

is low. Figure 3 shows the results of fitting SBM to Bill-

Net using the procedure outlined in Algorithm 1.

(a) Simulate new net-
works from SBM fit to
check model goodness of
fit on parameter transi-
tivity. Number of simula-
tions = 20.

(b) Simulate new net-
works from LSM fit to
check model goodness of
fit on parameter transi-
tivity. Number of simula-
tions = 20. Dimensions of
latent space = 2.

(c) Simulate new net-
works from LSM fit to
check model goodness of
fit on parameter density.
Number of simulations =
20. Dimensions of latent
space = 2.

Fig. 21 Fitting SBM and LSM

to Trade-Net data-set

(a) Adjacency matrix of
Bill-Net

(b) Plot of singular values
of Bill-Net

(c) Re-order nodes in ad-
jacency matrix by class
memberships

Fig. 22 Analysis of Bill-Net

data-set using SBM

(a) Simulate new net-
works from SBM fit to
check model goodness of
fit on parameter transi-
tivity. Number of simula-
tions = 20.

(b) Simulate new net-
works from LSM fit to
check model goodness of
fit on parameter transi-
tivity. Number of simula-
tions = 20. Dimensions of
latent space = 2.

(c) Simulate new net-
works from LSM fit to
check model goodness of
fit on parameter density.
Number of simulations =
20. Dimensions of latent
space = 2.

Fig. 23 Fitting SBM and LSM

to Bill-Net data-set
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Figure 22a shows a dense adjacent matrix A but to choose

the latent classes the plot of singular values of A is needed.

Using eigen-gap heuristic four latent classes are

observed in Fig. 22b. The nodes in these latent classes are

assigned class-memberships and then the adjacency matrix

is re-ordered. Figure 22c shows the re-ordered adjacency

matrix with four latent classes. Once the class-member-

ships are assigned, the edge probabilities at the block level

are calculated. Finally new networks are simulated from

edge probabilities to check model goodness of fit.

Figure 23a shows that SBM has generated LSRs that do

not re-generate the original network (Bill-Net) effectively.

The LSRs are not effectively capturing the transitivity of

the original networks. LSMs were able to generate LSRs

that could replicate the transitivity (as shown in Fig. 23b)

and density (as shown in Fig. 23c) of the original network

better than SBM. Conclusions from posterior predictive

check of SBM and LSM models is that LSRs generated

using LSM are more effective than SBM in Bill-Net.

6 Conclusion

Network analysis is a crucial aspect of computation social

science. The omnipresent nature of graphs (networks) in

the world has further enhanced the importance of this field.

Although networks are present in every domain, their

analysis revealed that the structural characteristics shared

by them are similar i.e. low average path, low diameter etc.

It is further revealed that networks also capture the

behavior of the entities present in them. Using concepts of

graph theory it is possible to make statistically valid

analysis of these systems and provide insights into their

growth.

Networks across different domains saw low edge density

and presence of inequality. Networks such as Twt-Net,

Gplus-Net, Flickr-Net, Wiki-Net, Blog-Net, Grey-Net and

Bill-Net are a particular type of networks called ‘‘social

networks’’. Social networks represent the sum of all pro-

fessional, friendship or family ties of the actors involved in

them. Social networks were observed to have higher edge

density and average degree compared to other networks.

They also had high transitivity, low diameter and negative

assortativity.

Statistical models such as Stochastic Block Models

(SBM) and Latent Space Model (LSM) were fit to various

application scenarios. These are regarded as the ‘‘The most

promising class of statistical models for expressing struc-

tural properties of networks observed at one moment in

time’’. However, these models ignore the attributes asso-

ciated with the networks. SBM are applicable for networks

with nodes in range of 103 whereas LSM are feasible for

networks with a few hundred nodes. Hence, it is necessary

to investigate models that can scale to large networks

(103 � 107).
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