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Abstract With increasing digitization a wide variety of

systems from diverse domains such as computer science,

transportation, social science have become available in the

form of networks. It is argued that to understand complex

systems a deep understanding of the networks behind them

is needed. A network theoretic perspective provides valu-

able insights into the structure and trends of systems. Data-

sets belonging to different domains have their own unique

features and behavioural trends and the current inquiry

aims to highlight this. In this inquiry, a comprehensive

analysis of synthetic and real-world published benchmark

data-sets, evaluation methods, and open source projects is

performed. The aim is to provide novice and expert users

with tools for algorithmic designs and methodologies.

Empirical studies are used to compare the performance of

network theoretic tools on common data-sets. Finally,

limitations of the network perspective on systems are listed

and research directions to facilitate future study are

elaborated.

Keywords Statistical analysis � Social networks � Network

structure

1 Introduction

A network in graph theory is a tuple G ¼ ðV ;EÞ where V is

a (finite) set of vertices and E is a (finite) set of edges [1].

Each edge is either a one or two element subset of V. When

a system is represented in the form of a network, the

entities of the system are denoted as the nodes of the net-

work. If a pair of entities have an interaction or a rela-

tionship with each other then this is denoted as an edge

between the entities [2]. For instance, if the transportation

network of country is represented as a network, the vertices

(nodes) of this network would be the different cities of a

country. The edges of the network would denote the

presence of a direct transport link between one or more

cities. Depending on the type of interaction this trans-

portation network aims to capture, the edges could be

directed or un-directed and weighted or un-weighted. Un-

directed edges would represent presence or absence of a

direct route between the cities. Weighted edges would

represent the volume of traffic between cities in the

transportation network. Thus, graph representations offer

the flexibility to capture different aspects of systems [3].

Network representation of a system also allows the

application of Network science for its analysis. Network

science concepts have their roots in graph theory, a fertile

field of mathematics. Graph theory is concerned with

proving theorems and developing algorithms that can be

applied on arbitrary graphs (irrespective of what the graph

models in the real world). What distinguishes network

science from graph theory is its empiric [4]. It is this

empirical aspect that makes Network analysis interesting

[2]. Network science researchers do not study graphs from

an abstract point of view but instead study graph repre-

sentations of real world systems to understand their

properties.
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1.1 Background

Usefulness of network representations in the examination

of complex systems is illustrated in the origin story of

Google [5]. In their seminal paper, L Page et al. [6] argued

that identification of authoritative web-pages on the inter-

net could be done by representing the internet as a network

(Fig. 1). The web-pages (entities) could be the nodes of the

network and web-pages connected by a hyperlink could be

shown in the network as nodes linked by a directed edge. In

the web-graph that is thus formed, authoritative web-pages

would be those with high eigen-vector centrality ranking

[5]. The PageRank ranking technique proposed by the

authors for information retrieval was based on this intuition

[5]. Thus, network science provided a novel approach to

analyze the internet. This proved useful in increasing the

efficacy of information retrieval on the internet. This

analogy shows how a concept of graph theory was used on

a network representation model to develop an efficient

search engine.

In addition to this, there are several other useful statis-

tical concepts in graph theory which can be applied on

network models to draw inferences about the nature of the

systems they represent [3, 7]. Measurements of path length,

diameter, connectivity, transitivity and density allow

inferences on the structural characteristics of systems

[1, 2, 4, 8, 9]. Locations of nodes in a network model can

be used to draw parallels about the importance of those

entities in the overall scheme of the system [2]. For

instance, nodes located at the boundaries in a network are

important for information exchange with nodes outside the

network and nodes located at the center of a network are

hubs which keep the network intact and play a key role in

information interchange within the network.

In the model given in Fig. 2 edges connect scientists that

have coauthored at least one paper. Symbols indicate the

research areas of the scientists. As seen in Fig. 2, density of

edges between researchers in a particular domain are high

compared to density of edges between researchers of dif-

ferent domains. The position of scientists (nodes) in the

Santa Fe Institute network provides insights regarding their

importance to the research community of the institution.

The key takeaway from this example is that graph theory

has several concepts that can be applied to networks to

understand the behavior or trends in the real-world system

they represent [10]. Similarly, data or systems across

diverse domains such as computer science, transportation,

social science, economics and biology too have been

investigated using a network perspective [11].

1.2 Objective

This inquiry provides statistical analysis of large social

network data-sets available on Stanford Network Analysis

Project as well as standard synthetic benchmark data-sets

such as GN-benchmark, LFR benchmark [12], dynamic

LFR benchmark, small world model [13], Erdos Renyi

Random Graph [14], Barabasi Albert Preferential Attach-

ment graph and Forest Fire Graph [11]. The focus is on

detailed analysis of these data-sets to uncover behavioural

and structural characteristics. Domain specific phe-

nomenon that occur in these data-sets are explained using

intuition and empirical evidence is offered to support them.

The rest of the paper is organized into three main sec-

tions. Section 2 presents a review of literature which

includes network theoretic concepts [15, 16]. Section 3

presents the detailed descriptions of the data-sets and their

specifications. In case of synthetic benchmarks the
Fig. 1 Internet network. Reprinted figure with permission from www.

opte.org

Agent-based

Mathematical

Statistical Physics
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Structure of RNA

Fig. 2 A network model representing the collaborations between

scientists working at the Santa Fe Institute (SFI). Reprinted

figure from [2]

1062 Int. j. inf. tecnol. (March 2022) 14(2):1061–1073

123

http://www.opte.org
http://www.opte.org


specifications are used as provided in research papers

where the generative models have been proposed. Sec-

tion 3 also hosts a critical discussion of the results obtained

and an explanation for the same. The concluding remarks

of this inquiry are presented in Sect. 4.

2 Review of literature

2.1 Empirical analysis of social networks

Statistical features of social networks such as number of

nodes n, average degree d, diameter D and average path

length L of graphs can be used to infer the rate of diffusion

processes amongst nodes. Shorter diameters and path

lengths would indicate a faster diffusion of information

Eq. 1. Modularity is a measure of the community structure

in the graph and ranges from [-1, 1] for pure random graphs

to perfect community structure. Reciprocity index of a

graph is the proportion of mutual connections in a graph

and ranges from [0, 1]. Assortativity measures homophily

in a graph. Transitivity is defined as the probability of ej;k

in a graph where for nodes i, j, k the edges ei;j and ei;k exist.

D / lnðnÞ
lnðdÞ ; L / lnðnÞ

lnðdÞ : ð1Þ

Adhesion or edge connectivity E for connected graph G is

the minimum number of edges kðGÞ whose deletion from a

graph G disconnects G.

Diameter is the length maxðu;vÞdðu; vÞ of the ‘‘longest

shortest path’’ (i.e., the longest graph geodesic) between

any two graph vertices (u, v) of a graph, where d(u, v) is a

graph distance.

Average path length L =
PE

1 ðGÞ dðu;vÞ
EðGÞ

Degree distribution of graph PðkÞ ¼ nk

n is fraction of

nodes in the network with degree k i.e. nk where n is the

Graph order.

Modularity Q is a measure of quality of separation of

different vertex types from each other.

Q ¼ 1

2m
�
X

Avw � kv � kw

2m
� dðcv; cwÞ ð2Þ

where, m is the number of edges in Eq. 2; Avw is the ele-

ment of the A adjacency matrix in row v and column w;

kv; kw is the degree of v and w; cv; cw is the type (or

component) of v and w; dðcv; cwÞ is 1 if cv ¼ cw otherwise

0.

Verification of power laws f ðkÞ / k�a in networks

related to eigen-vectors distribution x1; x2; . . .x20, compo-

nent distribution C1;C2; . . .;Ck

Assortativity measures the level of homophily of the

graph.

r ¼
P

jk jkðejk � qjqkÞ
r2

q

ð3Þ

where, qk is the number of edges leaving the node, other

than the one that connects the pair j, k; rq is the standard

deviation of q in Eq. 3; ejk is the refers to the joint prob-

ability distribution of the remaining degrees of the two

vertices.

Graph density (GD) is the number of edges present graph

G amongst all possible edges in G. GD for undirected and

directed graphs is given by below Eqs. 4 and 5

respectively.

2jEj
jV jðjVj � 1Þ ð4Þ

jEj
jV jðjVj � 1Þ : ð5Þ

Reciprocity q as given in Eq. 6 is the measure of the

likelihood of vertices in a directed network to be mutually

linked.

q ¼
P

i6¼jðaij�aÞði 6¼jðaji�aÞ

sumi6¼jðaij�aÞ2

: ð6Þ

The betweenness centrality of a node g(v) is given by the

Eq. 7:

gðvÞ ¼
X

s 6¼v 6¼t

rstv

rst
ð7Þ

where rst is the total number of shortest paths from node s

to node t and rstðvÞ is the number of those paths that pass

through v.

McGlohon et al. [7] observed that In and Out degree

distributions of social networks to follow a power law, the

weights of edges wi;j between two nodes with weights wi,

wj follow a relation given by Eqn 8, the distribution of

component sizes of the social networks follow a power law,

number of edges E(t) and total weight of a graph W(t), at

time t follow a power law and the first twenty eigenvalues

of a social network follow a power law. In this inquiry the

validity of the phenomena is tested on diverse datasets both

synthetic and real.

wi;j / ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwi � wi;jÞ � ðwj � wi;jÞ

q
Þc: ð8Þ

Tan et al. [17] observed that indegrees of nodes matched

their outdegrees and presence of densely connected hubs of

high degree nodes in social networks. The authors pro-

posed other measures for social network analytics such as

change in group clustering coefficient with group size,

relation of out degree of a node with the number of groups

to which it belongs, relation of clustering coefficient with

degree of a node and degree of assortativity and reciprocity
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in social networks. Freidman et al. [18] observed higher

graph density in online social networks such as Facebook,

Twitter etc compared to social networks of other domains.

Gewerc et al. [19] observed that node centrality and graph

density, provide insight into how friendship would be

formed in an online social network, how peers interact and

how all this affects the network evolution over time. Hoff

et al. [8] have argued that probability of relation between

actors depends on the position of actors in an unobserved

social space. Dwyer et al. [20] have applied measures of

concern for privacy and trust to members of different sites,

and looked for variances in behaviour. Gomez et al. [3]

have observed that social networks of various domains

present common features of traditional social networks

such as a presence of a large connected component, small

average path length and high clustering, but differs from

them in showing moderate reciprocity and neutral assor-

tativity by degree. Using K–S Goodness of fit test, the

authors show that the degree distributions are better

explained by log-normal instead of power-law distribu-

tions. Another interesting observation is a high reciprocity

in links in the online social network Slashdot.

The literature review highlights works that have

uncovered new trends or phenomena in social networks.

The focus of the current inquiry is to further this line of

research i.e. use of network science to uncover patterns or

trends seen in systems belonging to various domains. A

second aim is to provide data driven analysis of various

interesting data-sets obtained from Stanford Network

Analysis Project. This shall provide novice and expert

users with tools for algorithmic designs and methodologies.

However, there are certain issues of the network repre-

sentation models. These issues are elaborated along with

possible solutions to them.

2.2 Synthetic data-sets

2.2.1 Barabasi Albert (BA): preferential attachment

Intuition behind this model is that when new nodes enter a

network they prefer to attach to popular nodes (high in-

degree) over others. The generative process of the network

initializes with a single node. Then at each time step a node

is created that initiates outgoing edges to nodes existing in

the system. The probability that an existing node i is

chosen by an outgoing edge is given by Eq. 9:

P½i� / k½i�a ð9Þ

a is the exponent of preferential attachment; k[i] is the in-

degree of vertex i in the current time step.

Thus the probability P(k) that a newly created nodes

links with k existing nodes decays as a power law. The

graph generated using this model has power law

distribution of degrees. However, this stochastic process

assumes only linear relation for preferential attachment [9].

2.2.2 Erd}os–Rényi random graph: random attachment

These graphs are of two types G(n, p) and G(n, m).

G(n, p) has n vertices and probability of an edge between

them is constant p. G(n, m) has n vertices and m edges such

that m edges are chosen uniformly at random from a set of

all possible edges [9]. In both G(n, p) and G(n, m) ER

generative models, it is assumed that the nodes decide to

form edges with other nodes based on a constant proba-

bility (G(n, p)) or uniformly at random G(n, m). Hence, no

preferential attachment pattern is observed.

2.2.3 Preferential attachment and aging

This is a discrete time step model of a growing random

graph. At each time step a single node is added and it

initiates links to node already existing in the network. The

probability of a node k getting an initiated edge is given by

P[k] in Eq. 10 [9]. This model thus enriches the Barabasi

Albert model.

P½k� ¼ ðc � k½i�a þ aÞ � ðd � l½i�b þ bÞ ð10Þ

c, d is the coefficient of degree and age; k[i], l[i] is the in-

degree and age of node i at current time step; a, b is the

attractiveness of node with no adjacent edge and zero age;

a, b is the preferential attachment exponent, aging

exponent.

2.2.4 Watts–Strogatz model

A generative model which creates a lattice structured

graph. Each node is connected to all nodes within its

neighbourhood. The lattice structure that is formed is

rewired i.e. edges are selected at random with a probability

p and connected to nodes outside their immediate neigh-

bourhood. This is done without altering the number of

nodes or edges. The rewiring procedure, creates a ‘‘Small

World’’ Effect i.e. reduction in the average path length of

the graph [9].

2.2.5 J–R model

Jackson et al. proposed a network generative model where

nodes of the social network are allowed to form links to

other nodes using a hybrid strategy that encapsulates ele-

ments of preferential attachment model and the Erd}os-

Rényi model. Thus if there are pre-existing m nodes in a

network then a newborn node links to a � m of them chosen

uniformly at random and ð1 � aÞ � m using a neighborhood
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search strategy (choice based links) and attaches to them.

The hyper-parameter a is ratio of chance based interactions

to choice based interactions.

2.2.6 Girvan Newman benchmark, LFR benchmark

GN benchmarks are developed using the stochastic block

models. These graphs have 4 communities with 32 nodes

each. There are a total of 128 nodes with each having a

degree of 16. The mixing parameter l as given in Eq. 11

decides each community association and each node has

disjoint membership to one community.

l ¼ ko

ki
þ ko ð11Þ

ko is the number of edges connecting vertices in different

communities; ki is the number of edges connected to a

vertex.

Girvan Newman benchmarks [2] produce networks with

poisson distribution. This is a drawback as real world

graphs have power law distributed network sizes. To

overcome this drawback, LFR benchmarks [2, 21] were

proposed that had vertex degrees and community sizes

power law distributed. LFR benchmark graphs are basi-

cally configuration models with built in communities

which may be overlapping or disjoint. Another benchmark

designed to model dynamic communities was proposed by

Granell et al. [12] based on the planted l-partition model.

Communities are allowed to grow, shrink, merge and split.

However, at each time step the sub-graphs are proper

communities in the probabilistic sense [2].

2.2.7 Forest fire network model

The Forest Fire network is a generative model where one

vertex is added at a time. This vertex a connects to ambs

vertices already present in the network, chosen uniformly

at random. For each chosen vertex v the following proce-

dure is performed:

– Generate two random numbers that are geometrically

distributed with means p
1�p and rp

1�rp such that p is

forward probability, r is backward probability.

Based on these probabilities outgoing and incoming

neighbours of v are connected to a. If v has neighbours

below a threshold value then all of them are connected to a.

2.3 Real networks

Tables 1 and 2 are a collection of network data-sets pub-

licly available on platforms such as SNAP [22] and

UCIML [23]. The description of these data-sets are given

in Tables 3, 4 and 5.

Table 1 Description of the Social Relationship in networks (Part- I)

Sr No Dataset Description Social relationship ei;j

1 Amazon-Net Items frequently purchased with one another on Amazon.com item i frequently purchased with j

2 Arxiv-Net [11] Citation graph of papers from Arxiv High Energy physics category Paper i cites paper j

3 CondMat-Net Collaboration network of scientist working on condensed matter research Scientists i and j have collaborated

4 Epi-Net Trust network between users on Epinion.com User i trusts j

5 Fb-Net Friendship network from Facebook User i and j are friends

6 Gnut-Net Peer2Peer file sharing network of users from Gnutella.com User i shared file with j

7 Gow-Net [12] Friendship network of users from Gowalla.com User i and j are friends

Table 2 Description of the social relationship (part-II)

S. no. Dataset Description Social relationship ei;j

8 Slash-Net [19] Friendship network from users of Slashdot.com User i and j are friends

9 Twt-Net Followers network from Twitter.com User i follows j

10 Wiki-Net Voters network from Wikipedia User i has voted for user j

11 Bitcoin-OTC [24] Bitcoin transaction between users Edge ei;j means user i trusts user j

12 EU-Net [11] Email communication network Edge ei;j means i sent at least one message to j

12 Google-Net [25] Web-graph Edge ei;j denoted hyperlink from website i to j

13 CAIDA-Net [11] Internet Topology graph Edge ei;j denoted router i connected to j

14 Road-PA [25] Road network of Pennsylvania, USA Edge ei;j denoted intersection i connected to j
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3 Experimental study

Measures based on literature review in Sect. 2.1 are high-

lighted in Table 6 and are used to evaluate synthetic and

real data-sets enlisted in Sect. 2.1, 2.3. The aim is to

understand and explain underlying social phenomena and

derive interesting insights about the behavior of these

networks.

3.1 Results

3.1.1 Barabasi Albert: preferential attachment [BA-game]

A connected, directed graph is generated by through this

model with parameters N ¼ 10000; a ¼ 1; a ¼ 1. Adhesion

and edge connectivity is 0 and hence the graph is discon-

nected. A small diameter of 14 (given in Table 7) indicates

diffusion of information can take place fast. However,

0.1% nodes have most of the incoming edges. Thuss ‘‘Rich

Table 3 Description of

networks—part 1
Description Fb-Net Twt-Net Epi-Net Slash-Net Gow-Net Bitcoin-OTC

Nodes 4039 81306 75879 77360 196591 5881

Edges 88234 1768149 508873 905468 950327 35592

Ratio of nodes in largest WCC 1 1 1 1 1 –

Ratio of edges in largest WCC 1 1 1 1 1 –

Ratio of nodes in largest SCC 1 0.84 0.42 0.91 1 –

Ratio of edges in largest SCC 1 0.95 0.87 0.98 1 –

Avg. clustering coeff. 0.61 0.57 0.14 0.06 0.24 –

Fraction of closed triangles 0.26 0.06 0.02 0.01 0.007 –

Diameter 8 7 14 10 14 –

90-percentile effective diameter 4.7 4.5 5 4.7 5.7 –

Table 4 Description of

networks—part 2
Description EU-Net ArXiv-Net Google-Net Amazon-Net CondMat-Net

Nodes 265214 34546 875713 262111 23133

Edges 420045 421578 5105039 1234877 93497

Ratio of nodes in largest WCC 0.85 0.97 0.98 1 0.92

Ratio of edges in largest WCC 0.94 1 0.99 1 0.98

Ratio of nodes in largest SCC 0.13 0.37 0.5 0.92 0.92

Ratio of edges in largest SCC 0.36 0.33 0.67 0.92 0.97

Avg. clustering coeff. 0.07 0.28 0.51 0.42 0.63

Fraction of closed triangles 0.001 0.05 0.02 0.09 0.107

Diameter 14 12 21 32 14

90-percentile effective diameter 4.5 5 8 11 6.5

Table 5 Description of

networks—part 3
Description Wiki-Net CAIDA-Net Gnut-Net Road-PA

Nodes 7115 1696415 62586 1088092

Edges 103689 11095298 147892 1541898

Ratio of nodes in largest WCC 0.99 0.99 1 1

Ratio of edges in largest WCC 1 1 1 1

Ratio of nodes in largest SCC 0.18 0.99 0.22 1

Ratio of edges in largest SCC 0.38 1 0.34 1

Avg. clustering coeff. 0.14 0.25 0.01 0.05

Fraction of closed triangles 0.05 0.001 0.001 0.02

Diameter 7 25 11 786

90-percentile effective diameter 3.8 6 7 530
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getting richer’’ phenomenon is observed in this model.

Modularity value indicates no inherent community struc-

ture. Preferential attachment model creates hubs which

capture most of the incoming edges.

3.1.2 Erdos Renyi random graph [ER-game]

An undirected graph is generated through this model with

parameters N ¼ 10000;E ¼ 10000. Adhesion is 0 and

hence the graph is disconnected. A diameter of 29 indicates

slower diffusion rate compared to Preferential attachment

model. A longer diameter is due to lower average degree.

The generated graph is not connected. Modularity value

indicates no community structure. Thus, it would be ideal

as a null benchmark for testing community detection

algorithms. The strongly connected components distribu-

tion follows a power law with c ¼ 3:09 and intercept of 1.

The first 20 eigenvalues of this graph also followed a

power law distribution with c ¼ 32 and intercept of 3.32.

Both the previous results were verified on K–S test.

3.1.3 Evolving random graph with preferential attachment

and ageing [BA-aging]

An directed graph is generated through this model with

parameters set at N ¼ 10000; c ¼ 1; d ¼ 1; a ¼ 1;

b ¼ 0; a ¼ 1; b ¼ 1. Adhesion is 0 and hence the graph is

easily disconnected. A diameter of 11 indicates the fast

rates for diffusion of information. The generated graph is

connected. Modularity value indicates no community

structure. Thus, it would be ideal as a null benchmark for

testing community detection algorithms. The co-efficients

of power law fi to the degree distribution is given in Fig. 3.

3.1.4 Watts–Strogatz model [WS-model]

The Small World network generated by this model with

parameters N ¼ 100; L ¼ 1 has strong adhesion due to high

clustering between nodes. The graph shows a small diam-

eter D ¼ 10. Small diameter indicates possibility of fast

diffusion of information through nodes. As the entire net-

work is connected, the component distribution is not

available. Also as most of the nodes have same degree, the

degree distribution is also not available. However, it was

found that first 20 eigenvalues followed power law distri-

bution with c ¼ 3:34; intercept ¼ 5:313 and a good fit as

per the K–S test. This graph captures the ‘‘Small World

phenomenon’’ observed in real networks but fails to cap-

ture other effects such as a power law distributed degree

distribution and component size distribution.

Table 6 Measures of network analysis

S.

no.

Description

1 Adhesion (edge connectivity)

2 Diameter

3 Average path length

4 Mathematical model for degree distribution

5 Modularity

6 First 20 eigenvalues follow power law or not

7 Component distribution follows power law or not

8 Does the total weights and total edges of the graph are power

law distributed

9 Does the weights and degree of the graph follow a power law

10 Weights of an edge has a relation with the weights of the

nodes it connects

11 Assortativity

12 Graph density

13 Reciprocity

14 Vertex betweenness

15 Local tansitivity

– –

Table 7 Summary of results
S. no. Description BA-game ER-game BA-aging WS-model GN-model

1 Adhesion 0 0 0 10 32

2 Modularity 0 0 0 0 0

3 Diameter 14 29 11 10 4

4 Is connected True False True True True

5 Components 1 1616 1 1 1

Fig. 3 Power-law co-efficient for BA-game, ER-game and BA-aging.

All results indicate a good fit on K–S test
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3.1.5 GN benchmark graph [GN-model]

The GN Benchmark model with parameters set at N ¼
128;DegAvg ¼ 16 has strong adhesion due to high cluster-

ing between nodes. The graph shows a low degree of

separation with diameter D ¼ 4. The graph also has inbuilt

communities but community sizes don’t follow a power

law distribution. As the entire network is connected, the

component distribution is not available. As all the nodes

have same degree and hence a degree distribution is not

available. It was found that first 20 eigenvalues followed

power law distribution with c ¼ 3:15; intercept ¼ 7 and a

good fit as per the K–S test. This model fails to have a

power law distributed degree distribution and component

size distribution.

3.1.6 LFR benchmark graph

LFR benchmark models given in Table 8 provide a graph

with power law distributed community sizes and degree

distributions. At low values of l community structure is

absent and hence the poor score for modularity. The

benchmark is a good substitute for real data as it follows

properties seen in real networks such as having a large

connected component, a small diameter and power law

distributed first 20 eigenvalues. The power law fit was

verified using p-value of K–S Test as given in Fig. 4.

Static LFR Weighted benchmarks are used to verify

additional properties as listed in Table 9.

3.1.7 Dynamic benchmark graph

The dynamic benchmarks given in Table 10 do not show

the effect seen in real graphs such as ‘‘Gelling Point’’ [7].

The evolution of the edges with time do not show a power

law relation with the nodes unlike that seen in real graphs

[7].

3.1.8 Forest fire network model

The graph generated by this model has no adhesion or

edge connectivity as given in Table 11. The diameter and

average path length are small which may promote fast

diffusion of data. The graph has poor assortativity by

degree and reciprocity. A giant connected component

exists in the graph consisting of all nodes. No central

hubs are present. Modularity is poor indicating no

inherent communities. The clustering coefficient has

negative correlation with out degree, suggesting that there

is significant clustering among low-degree nodes. Major-

ity nodes have incoming edges equal to their outgoing

edges. The in-degree and out-degree distributions of

nodes fit the power law well as indicated by R2 values.

Phenomena seen in real networks such as homophily,

reciprocity are absent.

Table 8 LFR benchmark graph

Description LFR-1 LFR-2 LFR-3 LFR-4

Nodes 1000 1000 1000 1000

Avg. degree 15 15 15 15

Edge type Undirected Undirected Directed Directed

Weighted Unweighted Weighted Unweighted Weighted

l 0.1 0.1 0.1 0.1

Edges 7767 7692 15,381 15,381

Adhesion 14 14 0 0

Modularity 0 0 0 0

Diameter 6 6 8 5

Is connected True True True True

Fig. 4 Power law co-efficient of LFR benchmark graphs
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3.1.9 Online social networks

The commonality identified during the analysis of the

social networks of these websites was the power law dis-

tribution of their in-degree with in-weights and out-degree

with out-weights as given in Fig. 5. The degree distribu-

tions were also power law distributed with 1:18� c� 1:74.

Adhesion for Facebook, Gowalla were 1 which indicated

that users of these websites were reachable through atleast

1 route. Reciprocity of directed networks such as Epinions

and Slashdot indicated higher level of mutual agreements

between members. Vertex betweenness for the social net-

works did not indicate presence of central hubs. For social

networks of such large scale lack of a central hub is quite

intuitive. Poor score for modularity and graph density is

Table 9 LFR benchmark graph

Description LFR-weighted benchmark graph

Does the total weights and total edges of the graph follow a power law c ¼ �1

Does the out weights and out degree of the graph follow a power law c ¼ �1:335

Does the in weights and in degree of the graph follow a power law c ¼ �1:459

Weights of an edge has a relation with the weights of the nodes it connects c ¼ �0:408

Table 10 Dynamic benchmark

graph
Description Std-grow Std-merge Std-mixed

Nodes 128 128 128

Communities 4 4 4

Nodes per vommunity 32 32 32

Probability that a vertex can link to nodes in its community 0.5 0.5 0.5

Probability that a vertex can link to nodes of other community 0.01 0.05 0.05

Time period (iterations) 100 100 100

Table 11 Forest fire network

model
S. no. Description Value

1 Nodes 10,000

2 Ambassador nodes 1

3 fw.prob, bw.factor 0.38, 0.35

4 Edges 20,638

5 Adhesion 0

6 Diameter 13

7 Avg Path length 3.4

8 Assortativity 0.2

9 Reciprocity 0

10 Is connected True

11 Vertex betweenness 0

12 Modularity �0.004

13 Triangles 969

14 In-degree power law distributed c ¼ 1:7, Int=1.7, R2 ¼ 0:86

15 Out-degree power law distributed c ¼ 2:97, Int=-0.7, R2 ¼ 0:94

Fig. 5 Characteristics of online social network data-sets
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seen in all these social networks, this is also common for

such large scale graphs. Epinions and Slashdot see high

reciprocity for links as the social relationship is that of

trust.

3.1.10 Communication networks

Average number of frequent contacts a person has is three

in the Organization under review. However an email

account exists that has 7636 outgoing links. This might

indicate the presence of a facility for Employee-Manage-

ment communication. Assortativity by degree has a nega-

tive value which means highly active emailers send most of

their emails to less active emailers. Inherent community

structure is present in the graph which means that the

organization could possibly have departments which

communicate more internally than with other departments.

3.1.11 Citation networks

Nodes with zero citations exist which is common for

citation networks. Also nodes with zero outdegree also

exist (possibly because the graph is incomplete). Average

number of citations a paper has is twelve. Max number of

citations a paper receives is 846, max number of citations a

paper makes is 411. Adhesion is zero, as many papers exist

with few citations or nill citations. Assortativity in citation

graphs is low as most of the links are from papers with no

citations to papers with large number of citations.

Reciprocity doesn’t exist in citation graphs as the social

relationship is ‘‘Academic status’’ and is not reciprocated

frequently unlike friendships.

3.1.12 Web graphs

Google Web graph has adhesion and edge connectivity 0 as

the graph is not connected. It is also characterised by lack

of a central hub and lack of inherent community structure.

The high reciprocity value for hyperlinks between web-

pages is peculiar and might not be held true for a larger

sample size of the internet graph. Figure 6a shows analysis

of local transitivity indicated a higher level of clustering

between neighbours of nodes of low degree than that of

nodes of high degree. Figure 6b shows that indegree of

nodes matches their outdegree except for popular

webpages.

3.1.13 Product co-purchasing networks

Analysis of the product co-purchasing network of Amazon

reveals that Incoming edges for products are higher than

outgoing edges. A Hub is present in the graph which has

420 co-purchased products. Analysis of the modularity

value indicates that there exist communities of products

that are co-purchased together. � 40% links are reciprocal

indicating consumers opt for Customers Who Bought This

Item Also Bought feature of the Amazon.

3.1.14 Collaboration networks

The analysis of the degree of the nodes in ArXiv Collab-

oration networks reveals that an average scientist has col-

laborated with 16 others and in rare cases upto 550 others

for his research. The scientists that collaborate with few

people for research show a higher degree of transitivity

between their collaborators. Average path length of this

Fig. 6 a Local transitivity, b outdegree–indegree relation
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network is � 5 indicating fast diffusion of information in

the network as given in Fig. 7.

3.1.15 Other datasets

The analysis of the social networks from Voting trends

(Wiki-Vote), Internet Topology (CAIDA-Net), P2P

networks (GnutellaP2P) and Road networks (Road-PA)

reveal a adhesion and edge connectivity of 0. Assortativity

by degree on Road networks show that busy (high degree)

intersections are connected to other busy intersection as

given in Fig. 8. Such a design requirement is very intuitive

and could be common to other road networks too. All the

social networks exhibit poor community structure and also

do not contain central hubs. Figure 9a shows that users that

have voted for many participants have low transitivity.

Transitivity patterns of all the networks under analysis

reveal the same trend. Figure 9b indicates users that have

supported large number of other users do not necessarily

receive support from others. Component and degree dis-

tributions are analysed in Figs. 10 and 11 respectively.

4 Conclusion

The analysis of social networks belonging to domains such

as online social networks to citation graphs was performed

in this inquiry. Network theoretic concepts were used for

the analysis. Observations made in the previous inquiries

were validated on social network data-sets of different

domains. It was observed that degree distributions on real

and synthetic data-sets were power law distributed. How-

ever, component size distribution has a poor fit for the

power law except in GnutellaP2P file sharing websites. In

the case of the road networks of Pennsylvania state of

USA, it was found that busy intersections would be con-

nected to other busy intersection. Probably the roads were

designed in this way to ensure smooth vehicle movement.

Commonality between data-sets of all domains was the

absence of central hubs, presence of community structure

and low graph density.

Social networks are a particular class of networks that

represent the sum of all personal or professional ties

between the members of the system. A network perspective

revealed that social networks shared properties such as

negative assortativity, domination of a few members, high

edge density, power law distributed degree and component

sizes, high transitivity, high reciprocity and small average

path length and diameter.

Representing the systems in the form of a social network

facilitated easier but conceptually sound analysis. How-

ever, there are also several limitations of network repre-

sentation models. The calculation of certain characteristics

such as diameter and average path length require n � n

computations for a graph of n nodes. This made the cal-

culation expensive for large graphs. Machine learning

applications on graphs such as node classification, link

prediction, expert recognition etc. require hand-engineer-

ing features to be calculated initially. This makes the

results of the exercise dependent on the ability of the

Fig. 7 Analysis of network data-sets
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researcher. Machine learning cannot be directly applied on

the network as the data-points on the network are not

i.i.d. The data-points are connected to each other by links

or edges and thus the i.i.d assumption for machine learning

is not satisfied.

A solution for these drawbacks is network representa-

tion learning (NRL). The adjacency matrix of network

G(V, E) is denoted by A 2 RjV j�jV j and Va 2 RjV j�p is used

to denote the vertex attribute matrix if present otherwise,

Va ¼ /. The problem is defined as follows: given a net-

work G ¼ ðV ;EÞ and associated attributes, the aim is to

represent each node u in a low-dimensional vector space yu

by learning a mapping f : V;Va ! Rd; namely

yv ¼ f ðv;VaÞ8v 2 V . It is required that d � jV j and the

function f preserve a proximity measure defined on the

Fig. 8 Degree of assortativity, reciprocity and adhesion in the

networks

Fig. 9 a Local transitivity, b outdegree–indegree relation

Fig. 10 Component distributions of network data-sets

1072 Int. j. inf. tecnol. (March 2022) 14(2):1061–1073

123



graph G. Intuitively, if two nodes u and v are ‘‘similar’’ in

graph G, their embedding yu and yv should be close to each

other in the embedding space i.e. yu
T yv 	 1. The notation

f ðGÞ 2 RjV j�d is used for the embedding matrix of all nodes

in the graph G. As the nodes are converted to vector

embeddings, the drawbacks of network representation

models are overcome. Designing efficient NRL techniques

is a promising research direction if machine learning

applications have to be developed for graphs.
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