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Abstract Software defect prediction is the process of

identification of defects early in the life cycle so as to

optimize the testing resources and reduce maintenance

efforts. Defect prediction works well if sufficient amount of

data is available to train the prediction model. However,

not always this is the case. For example, when the software

is the first release or the company has not maintained

significant data. In such cases, cross project defect pre-

diction may identify the defective classes. In this work, we

have studied the feasibility of cross project defect predic-

tion and empirically validated the same. We conducted our

experiments on 12 open source datasets. The prediction

model is built using 12 software metrics. After studying the

various train test combinations, we found that cross project

defect prediction was feasible in 35 out of 132 cases. The

success of prediction is determined via precision, recall and

AUC of the prediction model. We have also analyzed 14

descriptive characteristics to construct the decision tree.

The decision tree learnt from this data has 15 rules which

describe the feasibility of successful cross project defect

prediction.

Keywords Cross project � Defect prediction � Software

characteristics

1 Introduction

Defect prediction in software systems focuses on prediction

of fault prone classes early in the software development life

cycle. This helps in near to optimal allocation of testing

and maintenance resources. Defect prediction works well if

large amount of data is available to train the prediction

model. However, if the data is not preserved or if we are

dealing with the first release of the software system, no

training data is available. Thus defect prediction based on

historical data of same project is not always feasible.

Cross project defect prediction is the process of pre-

dicting defects in software systems using historical data of

other projects [1]. Very few Studies are available in liter-

ature for cross project defect prediction and they show that

this is a serious challenging task. In our work, we have

attempted to study the feasibility of cross project defect

prediction using open source software systems. The pre-

diction model is build using logistic regression. In this

work we have empirically investigated the following sev-

ere research paradigms.

1.1 Defect data of one project is likely to derive

defects of another project

Various studies in the literature show that historical data

from software repositories can be used in prediction of

software defects for upcoming releases, but availability of

this past defect data is not always possible. In this study,

we have empirically validated that defect data from other

projects can be used to identify the defective classes.
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1.2 The potential defect predictors in cross project

defect prediction

Cross project defect prediction is feasible in some cases,

but this is not always possible. The major challenge in this

field is how to identify the scenarios where cross project

defect prediction is applicable. One solution to this prob-

lem given by Zimmerman [1] in his work is to study the

relationship between the characteristics of the training and

test set. In this work, we have studied 14 characteristics of

software projects and illustrated this relationship with the

help of decision tree where the characteristics determine

the potential predictors.

1.3 The criteria for successful cross project defect

prediction?

There are numerous studies in literature in the area of

software defect prediction. The prediction model is build

using statistical or machine learning methods and the

efficiency of the model is evaluated using various measures

as sensitivity, specificity, precision, recall, AUC etc. ana-

lyzing the various studies, we have built the model using

logistic regression and chosen appropriate cut off values of

precision, recall and AUC to accept or reject the model.

Rest of the paper is organized as follows: Sect. 2 is the

related work in the context of cross project defect predic-

tion. Numerous studies are present in literature for defect

prediction model trained from previous release of the same

project, but very few cross project studies have been done

in literature. Section 3 explains the Research Methodology

that is used for our experiment. Following this Sect. 4 is

Result Analysis section that describes the cross project

prediction results. We have shown the acceptance criteria

of each cross project model and also the decision tree,

which is learnt from data. In the last section, we provide the

conclusion and related future work scopes on this project,

which could be taken as a subject to be worked upon. We

have also discussed the threats to validity in this section.

2 Related work

Numerous studies are available in literature in the area of

software defect prediction. The aim of most of them is to

study the feasibility of defect prediction from the historical

data of same project. Prediction models are built using the

statistical and machine learning methods. Radjenovic et al.

have done a systematic literature review for software fault

prediction models in their work [3]. In this work, the

authors have searched seven digital libraries to identify the

most commonly used set of software metrics in software

fault proneness prediction. Gray and MacDonell have also

compared the various techniques for software fault pre-

diction models [4]. The authors have discussed the inherent

limitations of the techniques used in defect prediction

models. Careful attribute selection is very important for the

success of a fault prediction model. The authors have

investigated the impact of attribute selection on naı̈ve

bayes based fault prediction model in their work [5].

Very few studies are available in the area of cross pro-

ject defect prediction. Turhan et al. have investigated the

application of cross company defect data to build predic-

tion model using static code features [9]. They have con-

ducted their experiments on seven NASA and three

SOFTLAB datasets. Zimmermann et al. have studied the

feasibility of cross project defect prediction and validated it

using several versions of open source software. They have

conducted their study on apache tomcat, apache Derby,

Eclipse, Firefox, Direct-X, IIS, Printing, Windows Clus-

tering, Windows File system, SQL Server 2005 and Win-

dows Kernel [1]. The results indicate that the relationship

of characteristics between the projects permits cross project

defect prediction in some cases. This relationship is ana-

lyzed with the help of decision trees.

He et al. have also empirically validated cross project

defect prediction using defect data from PROMISE

repository [7]. They have conducted the experiment on 34

releases of 10 open source projects. Ma et al. have pro-

posed a novel learning algorithm ‘Transfer Naı̈ve Bayes’

for cross company defect prediction [8]. They have

exploited all the cross company data in training the model.

The results are validated on NASA datasets and Turkish

local software datasets. Gerardo et al. proposed the use of

genetic algorithm to build a multi objective cross project

defect prediction model [10]. They used public dataset

from PROMISE repository to validate and produce a

compromise between precision and recall for cross-project

defect prediction.

S. Herbold proposed distance-based strategies for

training data selection based on distributional characteris-

tics [11]. They evaluated their work with 44 data sets

obtained from 14 open source projects. The results indicate

that this training data selection strategy improved the

success rate of cross-project defect prediction. They also

proposed a tool CrossPare to provide standards for cross

project defect prediction [15]. The tool implemented few

techniques proposed for cross-project defect predictions.

CrossPare can be used for improving the assessment of

results in cross project defect prediction studies.

Ryu et al. proposed a transfer learning based model to

deal with the class imbalance problem which may decrease

the prediction accuracy in cross project defect prediction

studies [12]. They computed similarity weights of the

training data based on the test data and applied it to

Boosting algorithm considering the class imbalance. The
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results are validated using NASA and SOFTLAB datasets.

Ryu et al. also propose a multi objective naı̈ve Bayes

algorithm with Harmony search meta-heuristic algorithm

[20]. The results indicate that the proposed approach shows

similar prediction performance but better diversity com-

pared to existing multi objective CPDP algorithms.

Panichella et al. conducted an empirical study on 10

open source software systems to analyze the similarity of

different defect prediction models [13]. They proposed a

combined approach that used the classification provided by

different machine learning methods to improve the defect

prediction results. They found that better prediction accu-

racy was achieved using the combined approach. Amasaki

et al. conducted a study to identify the effects of the data

simplification for CPDP methods [14]. They compared the

predictive performance with and without applying data

simplification on CPDP methods. They found that applying

data simplification achieved improved results for cross-

project selection. Satin et al. studied the combination of

different classification algorithms for feature selection and

data clustering [16]. They applied it to 1270 projects and

built different cross-project prediction models. The authors

reported that Naive Bayes algorithm obtained the best

performance, with 31.58% of adequate predictions in 19

models. Zhang et al. investigated 7 algorithms integrating

multiple machine learning classifiers to improve prediction

results in cross project studies [17]. They performed

experiments using 10 open source software systems from

the PROMISE repository. They compared their results with

CODEP [13] and found better results in terms of F-mea-

sure. Zhang et al. also compared the performance of

unsupervised and supervised classifiers for cross project

defect prediction using AEEEM, NASA and PROMISE

datasets [21]. They propose connectivity-based classifiers

as the potential solution for cross project defect prediction

studies. The authors also investigated the effect of Log,

Box-Cox and rank transformations in cross project defect

prediction [23]. They found that all of these are comparable

in terms of performance measures however these models

do not exhibit same behavior on single entities. Peters et al.

proposed a private multi-party sharing method for cross-

project defect prediction [18]. Xia et al. propose a two-

phase technique for cross defect prediction i.e. genetic

algorithm phase and ensemble learning phase [19]. They

performed experiments with 29 datasets from PROMISE

repository and reported improved results when compared to

literature. Hosseini et al. proposed Genetic Instance

Selection (GIS) that optimizes combined measure of

F-Measure and G-Mean [22]. They used 13 datasets from

PROMISE repository for their experiments and concluded

that search based instance selection is a promising solution

for cross project defect prediction. Wu et al. proposed a

semi-supervised dictionary learning technique for software

defect prediction [24]. They used the labeled defect data

and unlabeled data and performed their experiments using

two public datasets. They found that the proposed tech-

nique was useful in identification of software defects. Poon

et al. proposed a credibility theory based naı̈ve bayes

classifier based on reweighing mechanism [25]. Thus the

source data adapts to the target distribution of data and

preserves its patter as well. The results are promising and

show significant improvement in prediction rate. Huang

et al. proposed a three-stage algorithm for cross project

defect prediction. They used the nearest neighbor algorithm

for similarity identification and then applied the Bayes

classifier [26]. Jing et al. proposed combination of

improved Subclass discriminant analysis (ISDA) and semi

supervised transfer component analysis as a solution for

cross project defect prediction [27]. Goel et al. have con-

ducted a systematic literature review on cross project

defect prediction [28]. They found that the best practices

for cross project defect prediction could not be established

and more research needs to be carried out in heterogeneous

CPDP to improve the prediction results.

From this study we observed that cross project defect

prediction is feasible with careful selection of code quality

features. The relationship among the various characteristics

of the datasets should be carefully analyzed to choose the

potential defect predictors. We have attempted to extend

this study by empirical validation of cross project defect

data using defect data of twelve open source software and

twelve OO metrics [6]. The prediction model is build using

logistic regression.

3 Research methodology

3.1 Data collection

We have analyzed the logs of latest version for software to

identify the faulty classes. We have developed a tool,

configuration management system (CMS) in java language

to fetch these logs [2]. CMS offers features to analyze the

changes amongst two versions of software as well as fetch

logs from software project repositories and process them to

obtain bug count. In this study we have used CMS to obtain

faulty classes only. Figure 1 explains the data collection

method of CMS.

3.1.1 Source code checkout

The first step in data collection process is to obtain the

source code from the remote repository. For this, we create

a local copy of the software. We connect to the CVS

repository of the software by logging in into the system and
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then download the source code on our local machine. This

is done with the help of CVS ‘‘checkout’’ command.

3.1.2 Extraction of bugs

After we make a local repository for the code, we can

request the logs using ‘‘log’’ command. The server replies

with the software logs in response to this command, which

is a huge file. We apply text mining on this file and search

for text pattern ‘‘bug’’ and ‘‘fix’’ in the logs. If any of the

two keywords is found, the class is assumed to be faulty.

We repeat the process for each file in the source code to

identify all the faulty classes in the software.

3.1.3 Metrics calculation

We obtain the metrics for software with the help of ‘‘Un-

derstand’’ tool. This tool calculates the object oriented

metrics for each class. We have calculated seven object

oriented metrics for software.

3.1.4 Preparation of dataset

We integrate the metric and bug report to obtain the

dataset. Preprocessing is done to remove the unnecessary

data points. Now we apply logistic regression on the col-

lected data to build the prediction model.

We have used 12 software systems for our study

obtained from sourceforge.net. These datasets vary in

domain of application, size and percentage of faulty clas-

ses, while the programming language of all datasets is Java.

Table 1 lists the programming language, version used for

our experiments, and the count and percentage of faulty

classes for all software under study.

Amakihi: Amakihi supports the software testing activity

of SDLC by helping the software developers in automation

of test scripts. It consists of 98 classes where 44 are faulty

[29].

Amber archer: Amber archer is a java class library to

support corporate software development process. It con-

sists of 693 java files with 9.7% of faulty classes [30].

Abbot: ABBOT is a java framework that is used to test

UI for java applications. It consists of 330 java classes out

of which 46.1% classes are faulty [31].

Apollo: It provides an editor and a compiler for data

migration purpose for software systems. It consists of 292

java classes out of which 58 are faulty [32].

Avisync: Avisync is a utility developed in java language

which is used to fix synchronization problems in audio/

video while playing AVI files. It is also small software with

67 classes with 37.3% of faulty classes having one or more

faults [33].

Jfreechart: Jfreechart is a chart library that can be used

with java programs. It is developed in Java and we have

used the version 1.0.0. It consists of 689 classes out of

which 59.2% classes contain one or more faults [34].

Jgap: Jgap is a genetic programming component avail-

able as a Java framework. It is developed in java language.

It consists of 173 classes out of which 35.3% (61) classes

are having one or more than one faults [35].

Jtreeview: Jtreeview is a cross platform visualization

tool which is used for visualization of gene expression data.

It is developed in java language. We have studied version

1.0.0 of this software for our study and 184 out of 405

classes (45.4%) are found faulty [36].

Barcode4j: Barcode4j is available under the Apache

license v2.0. It is a flexible generator of barcodes. We have

used version 1.0 of this software for our experiments which

consists of 170 classes out of which 31 classes had one or

more than one faults [37].

Jtopen: It is a set of lightweight classes appropriate to be

used on mobile devices. We have used v1.0 of this software

for our study, which consists of 1527 classes out of which

27.9% classes are faulty [38].

Jung: JUNG provides a common and extendible lan-

guage for the modeling, analysis, and visualization of data

Fig. 1 Data collection

methodology
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that can be represented as a graph or network. We have

performed our experiments on JUNGv1.3, which consists

of 51 faulty classes out of 149 [39].

Geotag: It is a portable; GUI based intelligent matching

software system. We have used v 0.07 of this software for

our study, which consists of 628 classes, 89 of which are

faulty [40].

3.2 Prediction model

The prediction model is build using the logistic regression

technique. Logistic regression is a type of probabilistic

statistical classification model, which is used to predict a

binary response from a binary predictor based on one or

more predictor variables. It measures the relationship

between the independent variable and the categorical

independent variable. We have studied various object ori-

ented software metrics and selected 12 of them to build our

prediction model. Table 2 lists these software metrics.

These metrics are the independent variables to construct

the prediction variable and the binary dependent variable is

fault proneness.

3.3 Descriptive statistics

We have calculated 14 indicators to describe the distribu-

tion of each metric in a training/test set. These indicators

and their description are listed in Table 3. We combine

these indicators with the metrics to make a set of (14

indicators 9 12 metrics) 168 metric indicators. These 168

indicators describe the distributional characteristics of the

training and test sets under study. We have listed these

characteristics in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15 for all the datasets.

3.4 Performance evaluation measures

3.4.1 Precision

Precision is the ratio of number of classes that are correctly

classified as faulty and the no. of classes that are classified

as faulty.

3.4.2 Recall

Recall is defined as the ratio of the number of classes that

are correctly classified to the total no. of faulty classes.

3.4.3 Area under receiver operating characteristics (ROC)

curve

ROC curve is a plot in between the true positives out of the

total actual positives vs. the false positives out of the total

actual negatives. Hence, ROC curve is a graphical plot

between sensitivity and 1: specificity at varied discrimi-

nating thresholds. We define sensitivity and specificity as.

Sensitivity: Sensitivity or true positive rate is the frac-

tion of true positives and total actual positives.

Specificity: It is the false positive rate or the fraction of

false positives and total actual negatives subtracted from 1.

3.5 Construction of decision tree

Although cross project defect prediction works in several

cases, but successful defect prediction is not feasible in all

Table 1 Software systems used for experiment

Dataset Programming

language

Version No. of faulty

classes

No. of non-faulty

classes

Total no of

classes

Percentage of faulty

classes

Amakihi Java 1.0alpha1 44 54 98 44.9

Amber

archer

Java 1.1 67 626 693 9.7

Abbot Java 1.0.0rc1 152 178 330 46.1

Apollo Java 0.1 58 234 292 19.9

Avisync Java 1.0 25 42 67 37.3

Jfreechart Java 1.0.0 408 281 689 59.2

Jgap Java 3.4.4 61 112 173 35.3

Jtreeview Java 1.0.0 184 221 405 45.4

Barcode4j Java 1.0 31 139 170 18.2

Jtopen Java 1.0 426 1101 1527 27.9

Jung Java 1.3 51 98 149 34.2

Geotag Java 0.07 89 539 628 14.2
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cases. After studying the various combinations of training

and testing datasets, we have constructed a decision tree to

validate the relationship between feasibility of cross project

defect prediction and distributional characteristics of

training and testing datasets.

We have conducted our experiments on all possible

permutations of the datasets. One set is chosen as training

set, which is used to build the prediction model, and the

remaining 11 sets are test sets. They are chosen one by one

to evaluate the model. This process is repeated y choosing

all the datasets as training sets one at a time. Thus we get

Table 2 Metrics description

Metrics

studied

Description

AVG_CC There are a large number of functions or program modules in a project. The average of all such cyclomatic complexities is

known as average cyclomatic complexity

CBO CBO is measured only for object oriented systems and it is defined as the number of other classes that a class is coupled to

NOC It is the count of number of immediate subclasses that inherit the class. This gives an idea about the influence of the class on

software design

NIM This is the count of total number of methods defined in a class that are only accessible through an object of that class

NIV This is the count of total number of variables defined in a class that are only accessible through an object of that class

RFC The response set (RS) of a class is a set of methods that can potentially be executed in response to a message received by an

object of that class

NPM It is the count of total public methods in a class

LOC The total number of executable lines of code excluding blank lines and comments

MAX_CC It is the maximum cyclomatic complexity possessed by any function or program in the entire software. This gives the

information about most complex part of the project

DIT DIT is the path length from root node to the farthest leaf node of the inheritance tree. The higher value of DIT denotes a greater

number of classes that it inherits, making it complex to predict the class behavior

LCOM It is the difference between method not having common attribute usage and methods having common attribute usage

WMC WMC is defined as the weighted sum of the complexities of all the methods defined in a class

Table 3 Indicators of software attributes

Indicator Description

Mean The average value of the data points. It is given as l ¼
Pn

i¼1
xi
n

Median (Med) The middle value in the sorted dataset

Mode (Mod) The value with maximum occurrence in the dataset

Std. deviation (SD)
It measures the distance of data points from the mean. It is given as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðx�lÞ2

n

q

Variance (V) It is a measure of variability and computed by squaring the std. deviation

Skewness (S) It is the measure of asymmetry in the dataset

Kurtosis (K) It is the measure of peakedness in the dataset

Minimum (min) The minimum value among all the data points

Maximum (max) The maximum value among all the data points

Range (R) The numeric difference between the minimum and maximum

First quartile (1Q) The first quartile is obtained by computing the median of the dataset and then re-computing the median of the lower

half

Third quartile (3Q) The third quartile is obtained by computing the median of the dataset and then re-computing the median of the upper

half

Interquartile range

(IQR)

The difference between the third quartile and the first quartile

Coff. Of variation

(CoV)

It is given as the ratio of std. deviation to the arithmetic mean
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Table 4 Descriptive statistics of Amakihi dataset

Amakihi Mean Med Mod SD V S K R Min Max 1Q 3Q IQR CoV

AVG_CC 1.7 1.0 1.0 1.7 2.9 3.5 15.7 11.0 1.0 12.0 1.0 2.0 1.0 0.96

CBO 2.0 1.0 0.0 2.9 8.8 3.4 15.6 18.0 0.0 18.0 0.0 3.0 3.0 1.45

NOC 0.3 0.0 0.0 0.8 0.7 3.2 11.5 5.0 0.0 5.0 0.0 0.0 0.0 2.88

NIM 6.1 4.0 1.0 7.3 53.7 3.8 23.3 57.0 0.0 57.0 1.0 9.0 8.0 1.20

NIV 1.4 1.0 0.0 2.3 5.3 2.3 5.3 11.0 0.0 11.0 0.0 2.0 2.0 1.58

RFC 9.2 8.0 4.0 7.9 62.7 2.9 16.3 59.0 1.0 60.0 4.0 13.0 9.0 0.86

NPM 0.2 0.0 0.0 0.5 0.3 2.8 8.5 3.0 0.0 3.0 0.0 0.0 0.0 2.62

LOC 82.2 44.5 5.0 147.1 21,638.0 5.8 44.0 1263.0 5.0 1268.0 17.0 83.0 66.0 1.79

MAX_CC 3.8 2.0 1.0 4.2 18.1 2.4 7.7 24.0 1.0 25.0 1.0 5.0 4.0 1.12

DIT 1.7 2.0 2.0 0.6 0.4 0.8 1.0 3.0 1.0 4.0 1.0 2.0 1.0 0.40

LCOM 51.0 64.0 0.0 35.5 1262.1 - 0.5 - 1.3 100.0 0.0 100.0 0.0 80.0 80.0 0.70

WMC 13.8 9.0 4.0 15.2 233.4 2.1 5.1 73.0 1.0 74.0 4.0 18.0 14.0 1.11

Table 5 Descriptive statistics of Amberarcher dataset

Amberarcher Mean Med Mod SD V S K R Min Max 1Q 3Q IQR CoV

AVG_CC 1.2 1.0 1.0 0.8 0.6 3.0 13.8 7.0 0.0 7.0 1.0 1.0 0.0 0.6

CBO 2.6 2.0 0.0 3.2 10.2 2.1 5.4 20.0 0.0 20.0 0.0 4.0 4.0 1.2

NOC 0.5 0.0 0.0 2.0 4.1 9.3 109.9 30.0 0.0 30.0 0.0 0.0 0.0 4.5

NIM 0.3 0.0 0.0 1.3 1.6 14.4 288.9 27.0 0.0 27.0 0.0 0.0 0.0 4.1

NIV 0.4 0.0 0.0 1.4 1.9 5.9 41.6 14.0 0.0 14.0 0.0 0.0 0.0 3.5

RFC 10.3 8.0 2.0 10.9 118.4 2.8 10.5 76.0 0.0 76.0 3.0 13.0 10.0 1.1

NPM 0.6 0.0 0.0 1.5 2.4 5.0 34.7 16.0 0.0 16.0 0.0 0.0 0.0 2.7

LOC 42.3 23.0 11.0 50.8 2584.2 2.8 11.0 401.0 1.0 402.0 11.0 53.0 42.0 1.2

MAX_CC 2.4 1.0 1.0 2.4 5.9 2.9 11.4 20.0 0.0 20.0 1.0 3.0 2.0 1.0

DIT 1.9 2.0 1.0 1.0 0.9 0.7 - 0.5 4.0 1.0 5.0 1.0 3.0 2.0 0.5

LCOM 30.8 16.0 0.0 33.8 1140.4 0.4 - 1.4 100.0 0.0 100.0 0.0 64.0 64.0 1.1

WMC 8.4 5.0 2.0 9.9 98.7 2.8 10.9 83.0 0.0 83.0 2.0 10.0 8.0 1.2

Table 6 Descriptive statistics of Abbot dataset

Abbot Mean Med Mod SD V S K R Min Max 1Q 3Q IQR CoV

AVG_CC 1.8 1.0 1.0 1.4 2.0 2.8 11.0 10.0 0.0 10.0 1.0 2.0 1.0 0.8

CBO 3.2 1.0 1.0 7.2 51.2 11.4 169.2 113.0 0.0 113.0 1.0 4.0 3.0 2.2

NOC 0.6 0.0 0.0 2.8 7.7 12.5 185.1 44.0 0.0 44.0 0.0 0.0 0.0 5.0

NIM 6.3 2.0 2.0 11.1 123.8 5.4 38.4 112.0 0.0 112.0 2.0 7.0 5.0 1.8

NIV 1.8 0.0 0.0 4.3 18.8 6.9 64.4 52.0 0.0 52.0 0.0 2.0 2.0 2.5

RFC 34.7 6.0 5.0 59.5 3544.1 2.2 3.5 221.0 0.0 221.0 3.0 35.3 32.3 1.7

NPM 1.1 0.0 0.0 5.2 27.3 13.2 204.6 85.0 0.0 85.0 0.0 1.0 1.0 5.0

LOC 82.5 25.5 5.0 203.8 41,543.9 7.9 85.0 2655.0 1.0 2656.0 9.0 83.0 74.0 2.5

MAX_CC 4.0 2.0 1.0 4.6 21.2 3.3 15.6 37.0 0.0 37.0 1.0 5.0 4.0 1.2

DIT 2.5 2.0 2.0 1.3 1.7 0.8 0.0 5.0 1.0 6.0 1.0 3.0 2.0 0.5

LCOM 30.4 0.0 0.0 36.1 1305.9 0.6 - 1.4 98.0 0.0 98.0 0.0 66.0 66.0 1.2

WMC 16.6 6.0 2.0 38.1 1453.5 6.3 47.9 369.0 0.0 369.0 2.0 15.3 13.3 2.3
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Table 7 Descriptive statistics of Apollo dataset

Apollo Mean Med Mod SD V S K R Min Max 1Q 3Q IQR CoV

AVG_CC 1.7 1.0 1.0 1.7 2.7 3.9 18.8 13.0 0.0 13.0 1.0 2.0 1.0 1.0

CBO 4.9 4.0 0.0 5.0 25.2 2.1 7.1 35.0 0.0 35.0 1.0 8.0 7.0 1.0

NOC 0.6 0.0 0.0 3.4 11.4 9.6 107.8 44.0 0.0 44.0 0.0 0.0 0.0 5.6

NIM 6.4 5.0 5.0 7.4 55.3 5.0 40.2 82.0 0.0 82.0 3.0 8.0 5.0 1.2

NIV 2.8 2.0 0.0 3.5 12.1 2.8 13.6 30.0 0.0 30.0 0.0 4.0 4.0 1.3

RFC 13.2 9.0 1a 11.9 141.0 1.6 4.1 83.0 0.0 83.0 4.0 20.5 16.5 0.9

NPM 0.2 0.0 0.0 0.8 0.6 5.1 30.3 7.0 0.0 7.0 0.0 0.0 0.0 3.8

LOC 69.5 39.5 17.0 97.1 9421.1 4.8 36.3 1022.0 2.0 1024.0 17.3 82.8 65.5 1.4

MAX_CC 4.3 3.0 1.0 5.4 28.6 4.0 22.1 48.0 0.0 48.0 1.0 5.0 4.0 1.2

DIT 1.9 2.0 2.0 0.8 0.7 0.8 1.0 4.0 1.0 5.0 1.0 2.0 1.0 0.4

LCOM 39.7 44.0 0.0 32.2 1036.7 0.0 - 1.4 100.0 0.0 100.0 0.0 68.0 68.0 0.8

WMC 13.8 9.0 5.0 19.5 379.1 5.9 53.5 229.0 0.0 229.0 5.0 16.0 11.0 1.4

Table 8 Descriptive statistics of Avisync dataset

Avisync Mean Med Mod SD V S K R Min Max 1Q 3Q IQR CoV

AVG_CC 1.1 1.0 1.0 0.4 0.2 2.1 6.4 3.0 0.0 3.0 1.0 1.0 0.0 0.4

CBO 3.1 1.0 0.0 4.8 22.5 2.0 4.0 21.0 0.0 21.0 0.0 4.0 4.0 1.5

NOC 0.6 0.0 0.0 1.5 2.3 3.4 14.0 9.0 0.0 9.0 0.0 0.0 0.0 2.5

NIM 7.7 6.0 1.0 7.7 59.9 1.3 1.2 32.0 0.0 32.0 1.0 11.0 10.0 1.0

NIV 2.1 1.0 0.0 2.8 7.9 2.2 5.6 14.0 0.0 14.0 0.0 3.0 3.0 1.4

RFC 14.9 8.0 5.0 12.8 162.9 0.9 - 0.6 44.0 0.0 44.0 5.0 24.0 19.0 0.9

NPM 1.6 0.0 0.0 4.1 17.0 3.8 15.2 23.0 0.0 23.0 0.0 2.0 2.0 2.6

LOC 46.2 32.0 5.0 55.9 3124.0 2.2 4.8 247.0 4.0 251.0 5.0 61.0 56.0 1.2

MAX_CC 2.3 1.0 1.0 2.5 6.3 3.5 17.0 17.0 0.0 17.0 1.0 3.0 2.0 1.1

DIT 2.4 2.0 1.0 1.4 1.8 0.5 - 1.0 4.0 1.0 5.0 1.0 4.0 3.0 0.6

LCOM 68.0 81.0 100.0 35.0 1222.7 - 1.0 - 0.2 100.0 0.0 100.0 57.0 100.0 43.0 0.5

WMC 11.1 7.0 1.0 12.4 153.3 1.8 3.3 58.0 0.0 58.0 1.0 15.0 14.0 1.1

Table 9 Descriptive statistics of Jfreechart dataset

Jfreechart Mean Med Mod SD V S K R Min Max 1Q 3Q IQR CoV

AVG_CC 1.5 1.0 1.0 0.9 0.9 3.2 14.3 8.0 0.0 8.0 1.0 2.0 1.0 0.6

CBO 4.5 2.0 1.0 6.4 40.5 3.9 31.9 81.0 0.0 81.0 1.0 6.0 5.0 1.4

NOC 0.3 0.0 0.0 1.3 1.8 6.3 45.8 14.0 0.0 14.0 0.0 0.0 0.0 4.3

NIM 9.9 5.0 4.0 15.2 230.1 5.5 43.6 172.0 0.0 172.0 4.0 11.0 7.0 1.5

NIV 2.2 1.0 0.0 4.9 23.7 5.1 35.1 46.0 0.0 46.0 0.0 2.5 2.5 2.2

RFC 33.8 7.0 5.0 62.3 3876.5 2.5 5.1 264.0 1.0 265.0 5.0 27.0 22.0 1.8

NPM 0.5 0.0 0.0 1.0 1.1 2.6 7.5 7.0 0.0 7.0 0.0 0.0 0.0 2.1

LOC 126.5 74.0 5.0 186.0 34,600.4 4.8 33.5 2148.0 4.0 2152.0 42.0 133.0 91.0 1.5

MAX_CC 5.3 2.0 2.0 6.5 42.8 3.0 11.6 51.0 0.0 51.0 2.0 6.0 4.0 1.2

DIT 2.0 2.0 2.0 0.9 0.8 1.4 2.6 5.0 1.0 6.0 2.0 2.0 0.0 0.4

LCOM 38.9 41.0 0.0 37.9 1433.3 0.1 - 1.7 100.0 0.0 100.0 0.0 75.0 75.0 1.0

WMC 21.9 9.0 8.0 38.1 1449.4 6.0 53.5 489.0 0.0 489.0 6.0 22.0 16.0 1.7

594 Int. j. inf. tecnol. (February 2022) 14(1):587–601

123



Table 10 Descriptive statistics of Jgap dataset

Jgap Mean Med Mod SD V S K R Min Max 1Q 3Q IQR CoV

AVG_CC 1.3 1.0 1.0 0.7 0.5 2.0 7.1 5.0 0.0 5.0 1.0 2.0 1.0 0.6

CBO 4.2 4.0 5.0 4.4 19.0 3.2 16.0 34.0 0.0 34.0 1.0 5.0 4.0 1.0

NOC 0.6 0.0 0.0 3.7 13.7 8.8 82.3 39.0 0.0 39.0 0.0 0.0 0.0 6.0

NIM 8.8 7.0 7.0 9.4 88.5 3.1 13.5 65.0 0.0 65.0 3.0 10.0 7.0 1.1

NIV 2.3 1.0 0.0 3.6 13.0 3.1 12.7 25.0 0.0 25.0 0.0 3.0 3.0 1.6

RFC 31.9 12.0 2a 31.9 1015.7 0.4 - 1.7 83.0 0.0 83.0 4.0 71.0 67.0 1.0

NPM 0.2 0.0 0.0 0.8 0.6 7.3 65.9 8.0 0.0 8.0 0.0 0.0 0.0 4.6

LOC 74.3 46.0 36.0 109.8 12,059.7 5.3 36.8 1011.0 3.0 1014.0 25.0 77.0 52.0 1.5

MAX_CC 3.4 2.0 2.0 3.6 12.7 3.0 12.2 26.0 0.0 26.0 1.0 4.0 3.0 1.1

DIT 1.7 1.0 1.0 0.8 0.6 0.6 - 1.2 2.0 1.0 3.0 1.0 2.0 1.0 0.5

LCOM 76.6 84.0 100.0 27.0 730.1 - 1.4 1.7 100.0 0.0 100.0 64.0 100.0 36.0 0.4

WMC 15.4 10.0 8.0 21.4 455.8 4.5 26.1 179.0 0.0 179.0 5.0 17.0 12.0 1.4

Table 11 Descriptive statistics of Jtreeview dataset

Jtreeview Mean Med Mod SD V S K R Min Max 1Q 3Q IQR CoV

AVG_CC 1.6 1.0 1.0 1.2 1.4 3.1 12.5 10.0 0.0 10.0 1.0 2.0 1.0 0.8

CBO 3.5 2.0 0.0 4.8 22.8 3.8 24.0 48.0 0.0 48.0 1.0 4.0 3.0 1.4

NOC 0.2 0.0 0.0 1.0 0.9 6.2 51.2 11.0 0.0 11.0 0.0 0.0 0.0 3.9

NIM 8.1 5.0 1.0 10.0 99.8 3.3 17.2 92.0 0.0 92.0 2.0 10.0 8.0 1.2

NIV 3.2 2.0 0.0 4.6 20.8 2.7 10.0 33.0 0.0 33.0 0.0 4.0 4.0 1.4

RFC 13.8 8.0 1.0 18.3 333.4 2.7 8.4 104.0 0.0 104.0 3.0 17.0 14.0 1.3

NPM 0.9 0.0 0.0 1.7 3.0 2.9 9.5 12.0 0.0 12.0 0.0 1.0 1.0 2.0

LOC 99.5 54.0 10a 131.5 17,297.0 3.7 19.7 1153.0 3.0 1156.0 27.0 124.5 97.5 1.3

MAX_CC 4.0 3.0 1.0 3.6 13.3 1.8 3.1 20.0 0.0 20.0 1.0 5.0 4.0 0.9

DIT 1.9 2.0 2.0 0.7 0.5 0.7 1.2 4.0 1.0 5.0 1.0 2.0 1.0 0.4

LCOM 41.4 50.0 0.0 35.0 1225.4 0.0 - 1.6 100.0 0.0 100.0 0.0 75.0 75.0 0.9

WMC 16.0 8.0 1.0 21.1 443.5 3.1 12.9 153.0 0.0 153.0 4.0 20.0 16.0 1.3

Table 12 Descriptive statistics of barcode4j dataset

barcode4j Mean Med Mod SD V S K R Min Max 1Q 3Q IQR CoV

AVG_CC 1.8 1.0 1.0 1.3 1.6 2.0 4.5 7.0 1.0 8.0 1.0 2.0 1.0 0.7

CBO 3.1 3.0 0.0 2.7 7.4 0.8 0.0 11.0 0.0 11.0 1.0 5.0 4.0 0.9

NOC 0.3 0.0 0.0 1.2 1.4 5.0 28.5 9.0 0.0 9.0 0.0 0.0 0.0 3.5

NIM 4.8 3.0 1.0 4.6 20.8 1.7 3.4 24.0 0.0 24.0 2.0 6.0 4.0 1.0

NIV 1.1 0.0 0.0 2.2 4.7 2.7 8.0 12.0 0.0 12.0 0.0 1.0 1.0 2.0

RFC 9.8 7.0 3.0 9.8 95.8 1.6 1.9 41.0 1.0 42.0 3.0 12.0 9.0 1.0

NPM 0.8 0.0 0.0 2.1 4.2 3.8 17.7 15.0 0.0 15.0 0.0 1.0 1.0 2.5

LOC 65.7 43.0 4.0 83.0 6886.0 4.7 34.9 788.0 3.0 791.0 18.0 87.3 69.3 1.3

MAX_CC 4.4 3.0 1.0 4.6 21.6 2.6 10.1 32.0 1.0 33.0 1.0 6.0 5.0 1.1

DIT 1.8 2.0 2.0 0.7 0.5 0.6 - 0.1 3.0 1.0 4.0 1.0 2.0 1.0 0.4

LCOM 31.6 0.0 0.0 37.1 1379.0 0.5 - 1.6 96.0 0.0 96.0 0.0 75.0 75.0 1.2

WMC 12.2 7.0 1.0 13.6 184.1 2.4 7.0 77.0 1.0 78.0 3.0 17.0 14.0 1.1
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Table 13 Descriptive statistics of Jtopen dataset

Jtopen Mean Med Mod SD V S K R Min Max 1Q 3Q IQR CoV

AVG_CC 1.8 1.0 1.0 2.0 3.8 6.7 75.6 34.0 0.0 34.0 1.0 2.0 1.0 1.1

CBO 5.1 3.0 0.0 6.2 38.3 2.5 12.0 72.0 0.0 72.0 1.0 7.0 6.0 1.2

NOC 0.4 0.0 0.0 2.4 5.5 10.7 144.0 39.0 0.0 39.0 0.0 0.0 0.0 5.5

NIM 10.1 5.0 1.0 16.0 256.7 5.4 46.6 217.0 0.0 217.0 2.0 11.0 9.0 1.6

NIV 3.6 1.0 0.0 5.6 31.0 3.2 15.5 53.0 0.0 53.0 0.0 5.0 5.0 1.6

RFC 20.8 15.0 7.0 22.4 502.8 2.9 13.4 217.0 0.0 217.0 6.0 27.0 21.0 1.1

NPM 0.9 0.0 0.0 1.7 3.0 4.2 26.2 20.0 0.0 20.0 0.0 1.0 1.0 2.0

LOC 151.4 74. 35. 248.1 61,559.4 5.2 40.2 3135 1.0 3136 35.0 163 128 1.6

MAX_CC 6.1 4.0 1.0 9.7 94.8 6.0 52.1 135.0 0.0 135.0 1.0 7.0 6.0 1.6

DIT 2.0 2.0 2.0 1.0 0.9 0.8 0.1 4.0 1.0 5.0 1.0 3.0 2.0 0.5

LCOM 73.6 84.0 100.0 28.8 829.3 - 1.3 0.8 100.0 0.0 100.0 62.0 95.0 33.0 0.4

WMC 23.7 11.0 1.0 38.9 1513.1 4.5 29.7 443.0 0.0 443.0 4.0 28.0 24.0 1.6

Table 14 Descriptive statistics of Jung dataset

Jung Mean Med Mod SD V S K R Min Max 1Q 3Q IQR CoV

AVG_CC 1.6 1.0 1.0 1.1 1.2 2.0 4.3 6.0 0.0 6.0 1.0 2.0 1.0 0.7

CBO 5.1 4.0 0.0 4.6 21.4 0.9 0.6 23.0 0.0 23.0 1.0 8.0 7.0 0.9

NOC 0.4 0.0 0.0 1.0 1.0 3.2 11.4 6.0 0.0 6.0 0.0 0.0 0.0 2.6

NIM 7.2 4.0 1.0 7.6 57.2 1.7 3.0 40.0 0.0 40.0 2.0 10.0 8.0 1.1

NIV 2.2 1.0 0.0 2.9 8.2 2.4 7.0 16.0 0.0 16.0 0.0 3.0 3.0 1.3

RFC 17.6 9.0 4.0 18.4 339.3 1.2 0.1 66.0 0.0 66.0 4.0 30.5 26.5 1.1

NPM 0.5 0.0 0.0 1.1 1.2 3.1 11.0 7.0 0.0 7.0 0.0 0.0 0.0 2.4

LOC 68.2 40.0 4.0 67.1 4506.3 1.3 0.9 276.0 2.0 278.0 16.5 105.5 89.0 1.0

MAX_CC 3.9 3.0 1.0 3.4 11.6 1.9 5.5 22.0 0.0 22.0 1.0 5.0 4.0 0.9

DIT 1.8 1.0 1.0 1.0 1.1 1.3 1.1 4.0 1.0 5.0 1.0 2.0 1.0 0.6

LCOM 35.6 35.0 0.0 34.0 1158.5 0.2 - 1.5 100.0 0.0 100.0 0.0 68.0 68.0 1.0

WMC 14.7 9.0 1.0 14.6 213.6 1.7 4.0 87.0 0.0 87.0 4.0 21.5 17.5 1.0

Table 15 Descriptive statistics of Geotag dataset

Geotag Mean Med Mod SD V S K R Min Max 1Q 3Q IQR CoV

AVG_CC 1.8 1.0 1.0 1.7 3.0 2.9 11.9 15.0 0.0 15.0 1.0 2.0 1.0 0.9

CBO 2.7 1.0 1.0 4.2 17.7 4.8 38.2 52.0 0.0 52.0 1.0 3.0 2.0 1.5

NOC 0.3 0.0 0.0 1.6 2.7 8.7 87.3 19.0 0.0 19.0 0.0 0.0 0.0 4.8

NIM 5.4 3.0 1.0 7.7 58.6 4.9 35.8 88.0 0.0 88.0 1.0 6.0 5.0 1.4

NIV 1.7 0.0 0.0 3.3 10.6 4.1 22.5 29.0 0.0 29.0 0.0 2.0 2.0 2.0

RFC 11.5 5.0 2.0 14.4 207.1 2.0 4.1 88.0 0.0 88.0 2.0 14.0 12.0 1.3

NPM 0.7 0.0 0.0 1.9 3.6 5.6 44.1 22.0 0.0 22.0 0.0 1.0 1.0 2.8

LOC 72.1 35.0 10.0 127.3 16,200.4 7.8 98.5 2039.0 2.0 2041.0 15.0 79.5 64.5 1.8

MAX_CC 4.3 2.0 1.0 6.9 47.6 8.2 109.9 113.0 0.0 113.0 1.0 5.0 4.0 1.6

DIT 1.9 2.0 2.0 1.1 1.1 1.6 3.0 5.0 1.0 6.0 1.0 2.0 1.0 0.5

LCOM 37.4 44.0 0.0 36.2 1312.3 0.2 - 1.5 100.0 0.0 100.0 0.0 70.0 70.0 1.0

WMC 12.9 6.0 2.0 22.3 498.2 7.8 103.0 365.0 0.0 365.0 3.0 14.0 11.0 1.7
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132 (12 9 11) combinations from 12 datasets. Precision,

recall and AUC are analyzed to predict whether prediction

is possible or not. If precision[ 0.6 and recall[ 0.7 and

AUC[ 0.6, then we assume that prediction is possible,

otherwise not. Analyzing the acceptance criterion of vari-

ous prediction models that are available in literature

chooses these cut off values. Choosing these cut off values

of precision, recall and AUC, prediction was found possi-

ble in 35 out of 132 permutations. Then we used the dis-

tributive characteristics of these datasets to build the

decision node of the decision tree and the leaf node tells

whether prediction is possible or not.

To construct the decision tree, we have used weka

3.6.10. Random tree algorithm is used to construct the

decision tree with 10 fold cross validation on the dataset.

The dataset is constructed in the following manner: first we

List all the distributive characteristics for all the metrics for

the training data set followed by the distributive charac-

teristics of test dataset. The last column is a binary vari-

able, which tells prediction is possible for this permutation,

or not. Assuming we have m distribution characteristics for

n metrics, the total number of columns in the dataset will

be 2(m 9 n) ?1. In our case, m = 14 and n = 12, hence the

total number of columns in the dataset = 337. The number

of rows is equal to the number of permutations of the

training and test sets.

The procedure for construction of dataset for decision

tree is shown in Fig. 2. The prediction model is built by

training from a software system and tested on all remaining

datasets. The result is marked ‘‘yes’’ if the criterion for

successful prediction is satisfied else ‘‘no’’. Now we cal-

culate distributive characteristics for all metrics of both

train and test sets and combine them with the prediction

result as shown in Fig. 2. This gives one row of the com-

bined dataset. Now we repeat the process for all combi-

nations to complete the dataset for learning of the decision

tree.

4 Results and findings

4.1 Experimental results

We generated 132 train-test instances from the various

combinations of the datasets. Out of these 132 instances, 35

were successful with the values of precision, recall and

AUC greater than the cut off values. Thus we get only

26.5% successful cross project defect prediction scenarios.

The best prediction results are observed with Amberarcher

as test set and various training sets. The highest values of

precision recall and AUC are obtained with barcode4j and

Geotag as training sets and Amberarcher as test set. Pre-

cision and recall for both these models is greater than 80%

and AUC is greater than 70%. Table 16 lists the successful

train-test combinations and corresponding values of pre-

cision, recall and AUC.

The size of the decision tree learnt from these train test

instances is 75. It consists of 38 leaf nodes out of which 15

Fig. 2 Generation of training-test instance from the dataset combination
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are labeled ‘‘yes’’ and 23 are labeled ‘‘no’’. We performed

10-fold cross validation and observed precision 74.7%,

recall 74.2% and AUC 67.9%. The decision tree is built

using random tree algorithm. Table 17 lists the top 3 rules

derived from the decision tree for successful cross project

defect prediction. The support indicates the no. of instances

which satisfy the rule. Only 37 out of 336 project charac-

teristics are found significant in the construction of deci-

sion tree. 24 of these 37 deciding characteristics are of

training set and the rest 13 of test set. These characteristics

are compared with a cut off value at each deciding node

and the value decides the class whether ‘‘yes’’ or ‘‘no’’.

4.2 Discussion of results

From the results obtained from our experiments, some of

the common observations we concluded are:

• Software with lower percentage of defective classes has

a very large set of potential defect predictors.

• Defects for large software systems cannot be predicted

by relatively smaller software systems.

• Datasets with huge difference in the number of classes

cannot be used in cross project defect prediction.

Table 18 lists the datasets which can be used for iden-

tification of defective classes for each of the training

dataset. Here we can see that Jtopen is not useful in defect

proneness prediction of any of the software under study.

Amber archer, Barcode4j and Jung are potential predictors

for 5 and 4 datasets respectively. Abbot and Avisync are

predictors for only 1 dataset while jtopen for none.

Figure 3 shows the diagrammatic representation of the

potential predictors for software. The X-axis shows the test

dataset and Y-axis shows the count of the potential pre-

dictors. This helps in the relative study of the potential

predictors. Amber archer has the highest number of pre-

dictors while jfreechart, jtopen and jung can’t be predicted

by any of the training sets. However, if we relax some of

the acceptance criterion, we obtain better results with these

software systems. Apollo, avisync, barcode4j and geotag

also have ample training sets. Thus we can see that 9 out of

12 software systems under study can be successfully pre-

dicted by one or more training sets.

4.3 Threats to validity

One of the major threats to validity of our work is the

acceptance criteria of the successful model. We have

selected three parameters for successful model i.e. preci-

sion, recall and AUC. The selection of these parameters is

based on previous studies in literature about defect pre-

diction and our own analysis. However, the acceptance

criteria may vary depending on various factors. In such a

case, some of our observations and conclusions may

change.

Another threat is the selection of static code metrics to

build the defect prediction model. Studies in literature

show that these metrics can be used for defect prediction

models, but it is not always the case. The appropriate

selection of these metrics may vary depending on the

dataset. A subset of these metrics is found significant in a

large number of studies. Thus we can conclude that our

Table 16 Successful prediction results

Training Testing Precision Recall AUC

Amakihi Amberarcher 0.848 0.791 0.63

Amakihi Barcode4j 0.74 0.706 0.721

Amberarcher Abbot 0.763 0.7 0.793

Amberarcher Apollo 0.743 0.733 0.648

Amberarcher Avisync 0.697 0.701 0.763

Amberarcher barcode4j 0.769 0.782 0.775

Abbot Jtreeview 0.738 0.738 0.797

Apollo Amberarcher 0.842 0.886 0.754

Apollo Abbot 0.763 0.7 0.895

Apollo Jgap 0.717 0.705 0.78

Apollo Barcode4j 0.769 0.818 0.809

Avisync Amakihi 0.724 0.724 0.754

Jfreechart Amberarcher 0.857 0.848 0.656

Jfreechart Abbot 0.777 0.776 0.87

Jfreechart Jtreeview 0.72 0.721 0.786

Jgap Amberarcher 0.832 0.89 0.335

Jgap Abbot 0.792 0.721 0.713

Jgap Apollo 0.764 0.781 0.713

Jtreeview Abbot 0.811 0.809 0.901

Jtreeview Barcode4j 0.797 0.724 0.788

Barcode4j Amberarcher 0.86 0.84 0.711

Barcode4j Abbot 0.739 0.7 0.826

Barcode4j Apollo 0.707 0.709 0.678

Barcode4j Avisync 0.708 0.701 0.729

Jung Amberarcher 0.854 0.851 0.62

Jung Apollo 0.755 0.767 0.604

Jung barcode4j 0.82 0.841 0.67

Jung Geotag 0.802 0.841 0.504

Geotag Amberarcher 0.859 0.887 0.709

Geotag Apollo 0.761 0.801 0.673

Geotag Barcode4j 0.788 0.824 0.812

Amberarcher Geotag 0.781 0.788 0.596

Apollo Geotag 0.797 0.83 0.687

Jgap Geotag 0.776 0.728 0.535

Barcode4j Geotag 0.787 0.815 0.708
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experiments and observations may vary depending on the

selection of these static code metrics.

5 Conclusions and future work

5.1 Conclusions

Cross project defect prediction is the process of learning

from one project to improve another project. It is

applicable to the Software Development Life Cycle to

improve the software quality and make the software system

more reliable and gain more confidence and customer’s

satisfaction. Also choosing more than one prediction model

trained by different sets will increase the confidence of the

prediction results. This is not possible in the traditional

defect prediction method because model is trained from the

previous release of same system. Training the model with

different data will increase the reliance on prediction

results. This will increase the reliability, traceability,

usability and maintainability of the software systems and

will help in mitigating software crisis.

In this work, the prediction model is built with this using

logistic regression. We conducted our experiments on 12

open source projects. 132 combinations of train-test

instances are generated from these 12 projects and the

feasibility of cross project defect prediction is analyzed.

The results show that cross project defect prediction is not

always feasible. Only 35 out of 132 instances exhibit

successful cross project prediction behavior in our experi-

ments. Thus careful selection of training set needs to be

done in order to identify defective classes correctly. The

decision tree, constructed in our experiment learns from the

distributive characteristics of software projects to generate

rules for successful defect prediction. This may help in

selection of appropriate training sets.

Chances of successful cross project defect prediction are

more likely for comparable number of classes in the

training and test sets. It is observed that jtopen; with very

high number of classes and high LOC than other software

systems is neither a good training nor a test set. Cross

project defect prediction may provide acceptable results, if

careful selection of training set is done.

5.2 Future work

Previous studies show that application of some machine

learning algorithms builds better prediction models than

statistical method. We may apply machine learning meth-

ods as bagging, naı̈ve bayes etc. to build the prediction

model instead of logistic regression in future. This may

Table 17 Top 3 rules for successful prediction learnt from DT

Rule Support

Kurtosis_DIT_test[= 0.04 AND Third Quartile_DIT_test\ 2.5 AND Interquartile range_WMC_test\ 12.5 AND

Median_LCOM_train\ 57 AND Range_CBO_train\ 66.5 AND Variance_LOC_train\ 16,748.7

8

Kurtosis_DIT_test\ 0.04 AND Range_avg_cc_test[ = 6 AND Third Quartile_NIV_train\ 4.5 AND Variance_NIM_train\ 56.22

AND Skewness_WMC_train[ = 2.28

7

Kurtosis_DIT_test\ 0.04 AND Range_avg_cc_test[= 6 AND Third Quartile_NIV_train\ 4.5 AND

Variance_NIM_train[= 56.22 AND Range_avg_cc_train[= 4 AND Maximum_CBO_train\ 97 AND Interquartile

range_NPM_test\ 0.5 AND Mode_CBO_train[= 0.5

3

Table 18 Performance of training sets

Training dataset Prediction possible for

Amakihi Amber archer, Barcode4j

Amber archer Abbot, Apollo, Avisync, Barcode4j, Geotag

Abbot Jtreeview

Apollo Amber archer, Abbot, Jgap, Barcode4j, Geotag

Avisync Amakihi

Jfreechart Amber archer, Abbot, Jtreeview

Jgap Abbot, Apollo, Geotag

Jtreeview Abbot, Barcode4j

Barcode4j Amber archer, Abbot, Apollo, Avisync, Geotag

Jung Amber archer, Apollo, Barcode4j, Geotag

Geotag Amber archer, Apollo, Barcode4j

0

1

2

3

4

5

6

7

Fig. 3 potential defect predictors for dataset under study
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improve the performance of the model as well as decision

tree.

Our experiments for cross project do not take into

account the programming language of the software under

study. All the projects under study are developed using

same programming language i.e. java. We may extend our

work where combinations of different programming lan-

guages are taken and verify if the prediction works as well

in such scenarios or not. We may also extend the work on

real life corporate software. The process followed and the

complexity of industrial software is different from that of

open source software and hence we may take these features

also into account. This will make the application of cross

project defect prediction more realistic and applicable to

software industry.
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