
ORIGINAL RESEARCH

Defect prediction model of static code features for cross-company
and cross-project software

Satwinder Singh1 • Rozy Singla2

Received: 17 July 2017 / Accepted: 26 November 2018 / Published online: 6 December 2018

� Bharati Vidyapeeth’s Institute of Computer Applications and Management 2018

Abstract Software project metrics are seen needless in

software industries but they are useful when some unac-

ceptable situations come in the project (Satapathy et al.,

Proceedings of the 48th annual convention of CSI, vol 2,

2013). Mainly the focus of various defect prediction studies

is to build prediction models using the regional data

available within the company. So companies maintain a

data repository where data of their past projects can be

stored which can be used for defect prediction in the future.

However, many companies do not follow this practice. In

software engineering, the crucial task is Defect prediction.

In this paper, a binary defect prediction model was built

and examined if there is any conclusion or not. This paper

presents the assets of cross-company and within-company

data against software defect prediction. Neural network

approach has been used to prepare the model for defect

prediction. Further, this paper compares the results of with-

in and cross-company defect prediction models. To analyse

the results for with-in company two versions of Firefox

(i.e. 2.0 and 3.0) were considered; for cross project one

version of Mozila Sea Monkey (1.0.1); for cross-company

validation one version of LICQ were considered. Main

focus of the study is to analyse the behavior or role of

software metrics for acceptable level of defect prediction.

Keywords Defect prediction � Object-oriented metrics �
Artificial neural network (ANN) � Cross company defect

prediction (CCDP)

1 Introduction

Mostly the testing is done during the development phase.

There is no post maintenance. It can help to detect future

defects in the system as well as it can help to build a model

for defect prediction [1].

Most of the today’s organizations still searching for a

defect prediction model which can be used for any type of

software but still it is under the development. Generally the

prediction models focus on following aspects:

1. Finding the bugs in software system;

2. Checking the reliability of the software against the

time frame;

3. To grasp the effect of designing process over defects

and failures.

The most famous and widely used technique for defect

prediction is testing. Testing efforts depend on the size of

the project. Testing maybe simple or complicated depen-

ded on the project size. Defects can be easily predicted in

other projects or other parts of project if any relation can be

established between software metrics and defects [2].

Object-oriented patterns are widely used in software

development. Software metrics are used as quality pre-

dictor for OO software. Various researchers and practi-

tioners suggested various metrics to calculate the quality of

the software [3].

Software metrics are collected with the help of auto-

mated tools which are used by defect prediction models to

predict the defects in the system. There is generally a

& Satwinder Singh

satwinder.singh@cup.edu.in

Rozy Singla

rozysingla92@gmail.com

1 Department of Computer Science and Technology, Central

University of Punjab, Bathinda 151001, India

2 MOM Department, GWPC, Sanganer, Jaipur 302033, India

123

Int. j. inf. tecnol. (April 2021) 13:667–675

https://doi.org/10.1007/s41870-018-0262-5

http://orcid.org/0000-0001-8689-9878
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-018-0262-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-018-0262-5&domain=pdf
https://doi.org/10.1007/s41870-018-0262-5

dependent variable and various independent variables are

present in any fault prediction model. Dependent variable

defines that the software modules are faulty or not. Various

metrics such as process metrics, product metrics etc. can be

used as independent variables. For example cyclomatic

complexity and lines of code which are method-level

product metrics [4].

Cross company defect prediction (CCDP) is a mecha-

nism that builds defect predictors by using data from var-

ious other softwares and companies and the data may be

heterogeneous in nature. Cross project defect prediction

use data from with-in company projects or cross-company

projects. Cross-company (CC) data involves facts from

many different projects and are diversified as compared to

with-in company (WC) data [5]. To solve this hetero-

geneity number of analysis is required and it is been done

by various research community members. Having a gen-

eralized prediction model for defect prediction will help the

maintenance and testing team to analyse the software at the

best. This study focus on to use the software metrics to

develop the prediction model for defects prediction. Pre-

diction models proposed in this study include prediction

models for within-company defect prediction, cross-project

defect prediction and cross-company defect prediction.

Further, efforts has been made to check and compare the

accuracy of each with various mathematical parameters.

2 Literature survey

Zimmermann et al. [6] calculated the performance of

defect prediction for cross projects by using data from 12

projects (622 combinations). Among of these combina-

tions, only 21 pairs resulted in efficient prediction perfor-

mance. Data distributions of the initial and final projects

are different which results in low prediction performance.

It is expected that training and test data have the same

distribution of data. This assumption is good for within-

project prediction and may be not suited for cross-project

prediction. Cross-project prediction can be indicted in two

dimensions: the domain and the company. Zimmermann

et al. noticed that in many software companies may or may

not provide local data for defect prediction as they are

small or they do not have any past data. Zimmermann et al.

observed the data sets from F. and IE. They experimented

on these web browsers and found that F. data could predict

the defects in IE very well, but vice versa was not true.

They come up with the result that ‘‘building a model from a

small population to predict a larger one is likely more

difficult than the reverse direction’’.

Zhang et al. [7] proposed a universal model for defect

prediction that can be used in with-in company and cross

company projects. One issue in building a cross company

defect prediction is the variations in data distribution. To

overcome this, the authors first suggested collecting data,

and then transforming the training and testing data to make

more similar in their data distribution. They proposed a rank

transformation which is context-free to limit the changes in

the distribution of data before applying them to the universal

defect prediction model. The six context factors is used by

authors for prediction. They used 21 code metrics and 5

process metrics in their research. Their experiment results

shows higher AUC values and higher recall than with-in

project models and has better AUC for cross-projects.

Ma et al. [8] proposed a Transfer Naive Bayes (TNB)

algorithm for defect prediction in cross-company projects,

which is a novel transfer learning algorithm. The advantage

of transfer learning is that it allows that training and testing

data to be heterogeneous. They have used instance-transfer

approach in their research which assigns weights to source

instances according to their contribution in the prediction

model. They use four performance metrics, probability of

detection (PD), F-measure, probability of false alarms (PF),

and AUC to measure the performance of defect predictor.

They show that the TNB gives good performance.

Mahaweerawat et al. [9] introduced a new approach in

object-oriented software systems for predicting faults. In

this neural network is used with supervised learning. They

used multi-layer perceptron (MLP) neural network with

back-propagation to identify fault-prone classes and radial

basis function (RBF) neural network is used to cluster the

faults of same types. Their experiment results show 90%

accuracy for predicting faultiness of a module/class.

Aggarwal et al. [10] proposed a model to discover the

dependency of faults on object-oriented design metrics of a

software product. They used data from Java applications

which contains 136 classes. They used Principal compo-

nent method for preprocessing of data. Univariate Logistic

Regression is used to check the effect of software metrics

on fault proneness. Prediction model is developed using

Multivariate Logistic Regression. The model gives sensi-

tivity 86.5% and specificity above 90%.

Various Software metrics are used by Singh and Salaria

[11] to find the Software defects. They used various

machine leaning methods for defect prediction. They dis-

cussed about the uses of neural network in various fields

such as data mining, image processing, etc. Experiment

Data is collected from PROMISE repository. The data is

divided in the ratio of 17:3 for training and testing.

Levenberg–Marquardt (LM) algorithm is used for training

which results in 88% accuracy.

Canfora et al. [12] proposed a multi-objective approach

for cross-company defect prediction, which uses logistic

regression model, developed using a genetic algorithm.

Multivariate logistic regression is used in this experiment.

It deals with the defect prediction, and the cost-

668 Int. j. inf. tecnol. (April 2021) 13(2):667–675

123

effectiveness. They used a multi-objective Genetic Algo-

rithm (GA) is used for training, in which metrics are used

as independent variables. They used ten datasets from the

Promise repository. They perform a data standardization to

reduce the effect of heterogeneity. The model gets a better

cost-effectiveness than within-project predictors, and gives

better results than single-objective predictors.

Lessmann et al. [13] use metric-based classification for

defect prediction. They designed a defect prediction model

which uses data from 10 public-domain data sets collected

from the NASA Metrics Data (MDP) repository and the

PROMISE repository and 22 classification methods are

tested against defect prediction. They used area under the

receiver operating characteristics curve (AUC) for measur-

ing the performance of the model. They used various clas-

sifiers which are divided into several categories such as

neural networks, statistical approaches, support vector

machines, ensembles, nearest-neighbor methods and tree-

based methods. They divide the data randomly as 2/3 for

training and 1/3 for performance evaluation. Results show

more than 0.7 AUC for most of the classifiers. They observed

that RndFor, LS-SVMs, MLPs, and Bayesian networks

which are sophisticated classifiers produce the better results.

Simple classifiers are good enough to analyze the correlation

between static code attributes and software defects.

Kumar et al. [14] compare fuzzy logic and artificial

neural network methods for predicting the defect density

(DD) of software. They used mean absolute error (MAE),

root mean square error (RMSE) and graphical analysis for

performance measurement. Defect density (DD) is an

attribute used to the reliability of the software product.

They used data from two projects of different domains.

Fuzzy inference system (FIS) gives maximum 77% and

minimum 73% accuracy. ANN gives up to 85% accuracy

and 0.3872 as RMSE.

Kaur et al. [15] presented a survey on various object-

oriented metrics as quality factors for software. They used

22 software metrics for their research. They used data from

3 projects. They identified the metrics which can be used to

check the quality level of the software.

Kaur et al. [16] designed a framework to identify software

code smells to analyze the quality of the software. They used

feed forward neural network (FFNN) and used eight object-

oriented metrics for their research. Their framework pro-

vides a better result and they also show a relationship

between object-oriented metrics and bad smells.

3 Collection of data

Data is collected from the Bugzilla database for two ver-

sions of Mozilla Firefox 2.0 and 3.0 and for one version of

Mozilla Seamonkey. The Bugzilla database consists of all

errors (bugs) that have been found in projects with detailed

information. Another system chosen for cross company and

cross domain analysis is Licq (UNIX based). The database

for bugs is obtained from social community known as

GitHub1 community. Licq has 280 classes only and is

smallest among all dataset (Table 1).

4 Multi layer preceptron model (MLP) based
on neural network

Various techniques are adopted for defect prediction such

as Naı̈ve Byes, Random Forest, SVM, Machine Learning

etc. In this paper FFNN is proposed.

FFNN uses a back-propagation learning algorithm. It is

used to solve a vast variety of problems. In this various

neurons are organized into various different layers such as

Table 1 Dataset details
Name Number of classes Number of defect classes Defects (%)

Firefox Version 2.0 4524 81 1.79

Firefox Version 3.0 4971 59 1.186

SM 1.0.1 4103 47 1.145

Licq 280 126 45

Fig. 1 Feed forward neural network

1 http://www.github.com.

Int. j. inf. tecnol. (April 2021) 13(2):667–675 669

123

http://www.github.com

input layer, output layer, and hidden layers. Figure 1 show

the model used in this paper. Different layer are connected

to each other.

Weights are assigned against each connection between

two neurons (i,j) the weight coefficient wij. It has an impact

on the importance of the connection in the FFNN. Fol-

lowing equation can be used to determine the output of a

layer

a ¼ x1w1 þ x2w2 þ x3w3 � � � þ xnwn: ð1Þ

In this paper input layer consists of seven neurons and

hidden layer contains three neurons. The inputs neurons

used are object-oriented metrics which includes:-NOC [3],

RFC [3], DIT [3], WMC [3], CBO [3], LCOM [3], LCOM5

[17, 18].

Various artificial neural network (ANN) experiments

use multi-layer perceptron (MLP) method. MLP is a FFNN

that uses back propagation algorithm as its training algo-

rithm. A general framework is provided by FFNN for

indicating mappings between input variables and output

variables. For this various activation functions are used

which represents the nonlinear function of various vari-

ables in terms of formations of nonlinear functions of a

single variable.

In this paper, Hyperbolic Tangent Sigmoid Function

(tansig) and Linear Transfer Function (purelin) are used as

activation functions for the layers.

5 Performance evaluation parameters

Performance evaluation parameters are needed to validate

the performance of the proposed model. In this paper

parameters required to validate the performance were cal-

culated using the confusion matrix. If these parameters are

not considered then the performance of the proposed model

can’t be evaluated. In this section, various parameters are

defined which were used to calculate the performance of

the proposed model.

Table 2 shows the confusion matrix for fault prediction.

There are four categories of confusion matrixes which are

as following:

1. True positives (TP): number of classes which are

classified as faulty classes correctly.

2. False positives (FP): number of not-faulty classes

predicted as faulty classes.

3. True negatives (TN): number of non-faulty modules

correctly predicted as non-faulty.

4. Finally, false negatives (FN): number of faulty classes

incorrectly predicted as not-faulty classes [19].

Performance parameter used to measures the proposed

model’s performance:

Table 2 Confusion matrix for defect prediction

Non-faulty Faulty

Non-faulty True negative (TN) False positive (FP)

Faulty False negative (FN) True positive (TP)

Table 3 Results for 500 epochs

Training on Testing on %Accuracy MSE AUC Precision

Ver. 2.0 Ver. 2.0 98.19 0.0181 0.707 0.4286

Ver. 3.0 98.77 0.0123 0.293 0.375

SM 1.0.1 98.73 0.0219 0.303 0.2727

Licq 55.36 0.0446 0.590 1.000

Ver. 3.0 Ver. 2.0 98.19 0.0181 0.439 0.4286

Ver. 3.0 98.77 0.0123 0.752 0.375

SM 1.0.1 98.76 0.0217 0.364 0.300

Licq 55.36 0.04464 0.349 1.000

SM 1.0.1 Ver. 2.0 97.90 0.0245 0.346 0.150

Ver. 3.0 98.47 0.0243 0.268 0.160

SM 1.0.1 98.32 0.0329 0.817 0.1333

Licq 56.07 0.04536 0.503 1.000

Licq Ver. 2.0 19.39 0.3763 0.685 0.0207

Ver. 3.0 20.18 0.3753 0.699 0.0139

SM 1.0.1 21.79 0.3738 0.734 0.0141

Licq 57.14 0.2434 0.600 0.5517

Fig. 2 a Training performance of Ver. 2.0, ROC curve for b Ver. 2.0 using Ver. 2.0, c Ver. 3.0 using Ver. 2.0, d SM 1.0.1 using Ver. 2.0, e Licq

using Ver. 2.0

670 Int. j. inf. tecnol. (April 2021) 13(2):667–675

123

Precision

It shows that how many measurements produce same

results when conditions are unchanged. Precision refers to

the closeness of two or more measurements to each other.

Precision ¼ TP

FPþ TP
: ð2Þ

Accuracy

It is ratio of correctly classified modules and all modules. It

is defined as:

Accuracy ¼ TN þ TP

TPþ TN þ FPþ FN
: ð3Þ

Mean square error (MSE)

The MSE measures the squares of the ‘‘errors’’ and uses

average value, i.e. the difference between the actual and

predicted values.

MSE ¼ 1

n

Xn

i¼1

y
0

i � yi

� �2

; ð4Þ

where n = total number of samples, y is the output gen-

erated by the model and y0 is the expected output.

Receiver operating characteristics (ROC)

The performance of a binary classifier is shown by ROC

curve. It is in a graphical form. The true positive rate

(TPR) and the false positive rate (FPR) are used to plot the

curve. The Area Under ROC Curve (AUC) is used to

analyze different ROC curves. Higher AUC values indicate

the classifier is good [20].

Fig. 3 a Training performance of Ver. 3.0, ROC curve for b Ver. 2.0 using Ver. 3.0, c Ver. 3.0 using Ver. 3.0, d SM 1.0.1 using Ver. 3.0, e Licq

using Ver. 3.0

Fig. 4 a Training performance of SM 1.0.1, ROC curve for b Ver. 2.0 using SM 1.0.1, c Ver. 3.0 using SM 1.0.1, d SM 1.0.1 using SM 1.0.1,

e Licq using SM 1.0.1

Fig. 5 a Training performance of Licq, ROC curve for b Ver. 2.0 using Licq, c Ver. 3.0 using Licq, d SM 1.0.1 using Licq, e Licq using Licq

Int. j. inf. tecnol. (April 2021) 13(2):667–675 671

123

6 Results

In this paper Accuracy, Precision, MSE, and ROC curve

are used to evaluate the performance of the model. More

accuracy means the model performs better.

Table 3 shows results for 500 epochs where model is

trained on one dataset and is tested on all datasets.

From the above results it was analyzed that the Licq

dataset has highest precision i.e. 1 means Licq produces the

outputs which are more closed to each other. But the Licq

doesn’t give accuracy. The Ver. 3.0 has lowest precision

i.e. 0.0139 but it has highest accuracy for defect prediction

i.e. 98.77% when tested using Ver. 2.0 and Ver. 3.0. The

accuracy of proposed model is up to 99% which means the

proposed model with 500 epochs has good accuracy rate

while applying it over the same version or subsequent

versions. Corresponding graphs of above data is shown in

Figs. 2, 3, 4 and 5.

Table 4 shows the results of proposed model for 1000

epochs. In this the dataset is trained using 1000 iterations.

From the above results it was examined that the pro-

posed model gives accuracy in the range from 55 to 99%.

The highest accuracy is shown by Ver. 2.0 and 3.0. The

accuracy has higher values indicates that the model pro-

posed in this paper effectively identifies defective modules

in the software. Corresponding graphs of above data are

shown in Figs. 6, 7, 8 and 9.

In the Table 5, the results of proposed model are shown

using 2000 epochs i.e. the training is performed using 2000

iterations.

Using the Table 5 it is examined that the models have

MSE values below 0.4. Ver. 3.0 has MSE value 0.0123

Table 4 Results for 1000 Epochs

Training on Testing on %Accuracy MSE AUC Precision

Ver. 2.0 Ver. 2.0 98.21 0.0182 0.730 0.500

Ver. 3.0 98.77 0.0123 0.743 0.375

SM 1.0.1 98.76 0.0217 0.767 0.300

Licq 55.36 0.04464 0.400 1.000

Ver. 3.0 Ver. 2.0 98.21 0.0179 0.654 0.500

Ver. 3.0 98.77 0.0123 0.821 0.375

SM 1.0.1 98.76 0.0217 0.815 0.300

Licq 55.36 0.04464 0.351 1.000

SM 1.0.1 Ver. 2.0 98.12 0.0199 0.621 0.300

Ver. 3.0 98.65 0.0183 0.690 0.250

SM 1.0.1 98.59 0.0258 0.813 0.2105

Licq 56.07 0.04429 0.645 1.000

Licq Ver. 2.0 76.55 0.1958 0.320 0.0040

Ver. 3.0 77.59 0.1929 0.233 0.000

SM 1.0.1 76.55 0.2044 0.235 0.0011

Licq 57.14 0.2492 0.461 0.875

Fig. 6 a Training performance of Ver. 2.0, ROC curve for b Ver. 2.0 using Ver. 2.0, c Ver. 3.0 using Ver. 2.0, d SM 1.0.1 using Ver. 2.0, e Licq

using Ver. 2.0

Fig. 7 a Training performance of Ver. 3.0, ROC curve for b Ver. 2.0 using Ver. 3.0, c Ver. 3.0 using Ver. 3.0, d SM 1.0.1 using Ver. 3.0, e Licq

using Ver. 3.0

672 Int. j. inf. tecnol. (April 2021) 13(2):667–675

123

using Ver. 2.0 and Ver. 3.0 which is lowest among all. The

model performs better with cross projects, but doesn’t

show accuracy in defect prediction using cross-company

projects The Licq dataset has highest precision i.e. 1 when

tested using same version and the SM 1.0.1 has lowest

precision i.e. 0.0174 when tested using Licq. Related

graphs of above table are shown in Figs. 10, 11, 12 and 13.

7 Conclusion

Results show that if more training is used, better results can

be produced as with 500 epochs, model gives better results

only for with-in company projects but with 1000 and 2000

epochs it works good for cross projects also as shown in

Tables 4 and 5. But in case of Licq dataset the results of the

model are not improved. The reason behind this may be the

compact size of the Licq dataset.

As compare to previous work, these results are better.

The proposed model gives AUC value 0.821 using Firefox

Ver. 3.0 on Firefox Ver. 3.0, 0.815 for SM 1.0.1 when the

model is trained with Firefox Ver. 2.0. The model proposed

by [7] with the use of clustering as classification and Cliff

ranking as analysis, is tested on few datasets, so it may not

applicable for other datasets. Further, they had boldly

written it as limitation of analysis. The model proposed by

[8] with the help of Naı̈ve Bayes technique also helps to

transfer the results of one dataset to others to predict

defects in the dataset. It doesn’t provide any defined model

for cross-project and cross-company projects. The model

propose by [21] with the Random Forest analysis technique

uses a Just In Time (JIT) for defect prediction, which

requires more training for more accurate results. After

Fig. 8 a Training performance of SM 1.0.1, ROC curve for b Ver. 2.0 using SM 1.0.1, c Ver. 3.0 using SM 1.0.1, d SM 1.0.1 using SM 1.0.1,

e Licq using SM 1.0.1

Fig. 9 a Training performance of Licq, ROC curve for b Ver. 2.0 using Licq, c Ver. 3.0 using Licq, d SM 1.0.1 using Licq, e Licq using Licq

Table 5 Results for 2000 Epochs

Training on Testing on %Accuracy MSE AUC Precision

Ver. 2.0 Ver. 2.0 98.23 0.0177 0.681 0.600

Ver. 3.0 98.77 0.0123 0.770 0.375

SM 1.0.1 98.78 0.0214 0.764 0.3333

Licq 55.36 0.04464 0.669 1.000

Ver. 3.0 Ver. 2.0 98.21 0.0179 0.700 0.500

Ver. 3.0 98.77 0.0123 0.705 0.375

SM 1.0.1 98.78 0.0214 0.811 0.333

Licq 55.36 0.04464 0.602 1.000

SM 1.0.1 Ver. 2.0 98.19 0.0181 0.654 0.4286

Ver. 3.0 98.75 0.0137 0.787 0.333

SM 1.0.1 98.73 0.0219 0.700 0.2727

Licq 55.36 0.04464 0.652 1.000

Licq Ver. 2.0 38.26 0.2933 0.709 0.0265

Ver. 3.0 36.41 0.2978 0.726 0.0177

SM 1.0.1 36.66 0.3010 0.772 0.0174

Licq 57.50 0.2433 0.629 0.5574

Int. j. inf. tecnol. (April 2021) 13(2):667–675 673

123

analyzing these results, we can say that proposed model is

well suited for predicting defects in both with-in company

projects as well as in cross projects but for cross-company

projects, results are not as good enough as compare to with-

in and cross-project models. The reasons for it may lie

under various domains and require to be analysed to

Fig. 10 a Training performance of Ver. 2.0, ROC curve for b Ver. 2.0 using Ver. 2.0, c Ver. 3.0 using Ver. 2.0, d SM 1.0.1 using Ver. 2.0, e Licq

using Ver. 2.0

Fig. 11 a Training performance of Ver. 3.0, ROC curve for b Ver. 2.0 using Ver. 3.0, c Ver. 3.0 using Ver. 3.0, d SM 1.0.1 using Ver. 3.0, e Licq

using Ver. 3.0

Fig. 12 a Training performance of SM 1.0.1, ROC curve for b Ver. 2.0 using SM 1.0.1, c Ver. 3.0 using SM 1.0.1, d SM 1.0.1 using SM 1.0.1,

e Licq using SM 1.0.1

Fig. 13 a Training performance of Licq, ROC curve for b Ver. 2.0 using Licq, c Ver. 3.0 using Licq, d SM 1.0.1 using Licq, e Licq using Licq

674 Int. j. inf. tecnol. (April 2021) 13(2):667–675

123

achieve more accuracy. To get more accuracy of the pre-

diction model various other techniques of machine learning

can be tested (Table 6).

References

1. Mittal P, Singh S, Kahlon KS (2011) Identification of error prone

classes for fault prediction using object oriented metrics. In:

Abraham A et al (eds) ACC 2011, Part II, CCIS 191, pp 58–68

2. Rawat MS, Dubey SK (2012) Software defect prediction models

for quality improvement: a literature study. IJCSI Int J Comput

Sci 9(5):288–296

3. Chidamber SR, Kemerer CF (1994) A metrics suite for object

oriented design. IEEE Trans Softw Eng 20(6):476–493

4. Singh S, Kahlon KS, Sandhu PS (2010) Re-engineering to ana-

lyze and measure object oriented paradigms. In: 2010 2nd IEEE

international conference on information management and engi-

neering, ICIME

5. Kitchenham BA, Mendes E (2004) A comparison of cross-com-

pany and within-company effort estimation models for web

applications. In: Proceedings Metrics’04. IEEE Computer Soci-

ety, Chicago

6. Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009)

Cross-project defect prediction: a large scale experiment on data

vs. domain vs. process. In: Proceedings of ESEC/FSE 2009

7. Zhang F, Mockus A, Keivanloo I, Zou Y (2014) Towards

building a universal defect prediction model. In: MSR 2014

proceedings of 11th working conference on mining software

repositories, pp 182–191

8. Ma Y, Luo G, Zang X, Chen A (2012) Transfer learning for

cross-company software defect prediction. Inf Softw Technol

54:248–256

9. Mahaweerawat A, Sophatsathit P, Lursinsap C, Musilek P (2015)

Fault prediction in object-oriented software using neural network

techniques. In: Proceedings of the InTech conference, Huston,

pp 27–34

10. Aggarwal KK, Singh Y, Kaur A, Malhotra R (2007) Investigating

effect of design metrics on fault proneness in object-oriented

systems. J Object Technol 6(10):127–141

11. Singh M, Salaria DS (2013) Software defect prediction tool based

on neural network. Int J Comput Appl 70(22):22–28

12. Canfora G, Lucia AD, Penta MD, Oliveto R, Panichella A,

Panichella S (2013) Multi-objective cross-project defect predic-

tion. In: Proceedings of the 6th IEEE international conference on

software testing, verification and validation. IEEE, Luxembourg,

pp 252–261

13. Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking

classification models for software defect prediction: a proposed

framework and novel findings. IEEE Trans Softw Eng

34(4):485–496

14. Kumar Vijai, Sharma Arun, Kumar Rajesh (2013) Applying soft

computing approaches to predict defect density in software pro-

duct releases: an empirical study. Comput Inform 32:203–224

15. Kaur A, Singh S, Kahlon KS (2009) A metric framework for

analysis of quality of object oriented design. Int J Comput Inf Eng

3(12):2875–2878

16. Kaur J, Singh S (2016) Neural network based refactoring area

identification in software system with object oriented metrics.

Indian J Sci Technol 9(10)

17. Hitz M, Montazeri B (1996) Chidamber and Kemerer’s metrics

suite: a measurement theory perspective. IEEE Trans Softw Eng

22(4):267

18. Singh S, Kaur S (2017) A systematic literature review: Refac-

toring for disclosing code smells in object oriented software. Ain

Shams Eng J

19. Singh S, Singla R (2017) Classification of defective modules

using object-oriented metrics. Inter J Intell Syst Technol Appl.

https://doi.org/10.1504/IJISTA.2017.081311

20. Song Q, Jia Z, Shepperd M, Ying S, Liu J (2011) A general

software defect-proneness prediction framework. IEEE Trans

Softw Eng 37(3):356–370

21. Fukushima Takafumi, Kamei Yasutaka, McIntosh Shane,

Yamashita Kazuhiro, Ubayashi Naoyasu (2014) An empirical

study of just-in-time defect prediction using cross-project models.

Proc MSR Proc Work Conf Min Softw Repos 2014:172–181

22. Satapathy SC, Avadhani PS, Udgata SK, Lakshminarayana S

(2013) ICT and critical infrastructure. In: Proceedings of the 48th

annual convention of CSI, vol 2

Table 6 Comparison to previous work

Proposed model Jang et al. [7] Ma et al. [8] Fukushima et al. [21]

Technique used Multi layer perceptron NN model Clustering and cliffs ranking Naı̈ve Bayes Random forest

AUC for with-in company Projects 0.821 0.80 0.77 0.81

AUC cross-projects 0.815 0.79 N/A 0.79

AUC cross-company projects 0.722 0.82 0.71 N/A

Int. j. inf. tecnol. (April 2021) 13(2):667–675 675

123

https://doi.org/10.1504/IJISTA.2017.081311

	Defect prediction model of static code features for cross-company and cross-project software
	Abstract
	Introduction
	Literature survey
	Collection of data
	Multi layer preceptron model (MLP) based on neural network
	Performance evaluation parameters
	Results
	Conclusion
	References

