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Abstract Class imbalance problem is the problem of

classification when we seek out exceptional cases using

traditional classification algorithms. Traditional classifica-

tion algorithms are designed to look for either bigger

classes or classes with the similar size. These algorithms

when used to identify smaller class from the data either

fails to detect or gives erroneous results. Researchers have

worked on this problem using various concepts, logics or

by modifying existing classification algorithms. This paper

discusses existing research trends used to solve class

imbalance problem. It also highlights the issues and gaps

related to this problem.
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1 Introduction

Classification is a data mining tool which identifies classes

from the data based upon certain criteria. There are many

real life scenarios where we look for exceptional cases

from the whole data-set like looking for credit card frauds

from the whole data set of credit card transactions, brain

tumor images from the data-set of images, web spam

detection from the data base of all e-mails etc.,

[22, 38, 51, 60]. When the traditional classification pro-

cedures were used with above mentioned scenarios, they

did not give accurate results as the results were deviating

towards the bigger class whereas the need was to sense the

smaller class. This issue is interpreted as Class imbalance

problem. We were using existing classification algorithms

to detect classes from the unbalanced data whereas those

algorithms were designed to identify classes from balanced

data [22, 38, 51, 60].

Imbalanced data is a combination of classes with

unequal size. In Class imbalance domain, we refer these

classes as minority (Smaller) and majority (bigger) class

and the purpose of proposed solutions is to accurately

identify minority class. Researchers have suggested many

ways to solve this issue. As per the existing proposed work

by the researchers, we can divide the solutions into four

categories. Data level, algorithm level, Feature based and

hybrid (Data ? Algorithm) algorithms. Data level algo-

rithms basically pre-process the data and convert it to a

balanced data-set so that existing classification algorithms

can be used to handle this problem. Depending upon the

logic suggested by the authors data-level algorithms are

further divided into oversampling, undersampling and

hybrid (Oversampling ? Undersampling) sampling cate-

gories. In oversampling methods, data is balanced by

increasing the size of smaller class either by copying the

existing data or by using some other intelligent method.

After balancing, the existing classification procedures are

applied to classify the data [1, 2, 4, 7, 8, 23, 24, 28, 36,

39, 43, 45, 61]. Undersampling methods decrease the size

of majority class either by randomly deleting or by using

some other intelligent approach to remove the data from

the class so as to balance the data-set before applying

traditional classification algorithms [12, 20, 25,
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41, 46, 48, 59]. In addition to algorithm and data level

approaches, feature selection is another important aspect

that can alone alleviate the class imbalance problem.

Another study observed that instead of feature selection,

interaction between different features is also important.

Highly co-related feature can results into more accurate

partitions [10, 17, 37, 53, 63]. Recently, the work is

reported where the PCA technique is clubbed with the

algorithm or data level procedures [14, 35] to solve this

issue. Hybrid method uses the concept of undersampling

and oversampling in combination to pre-process the data

before classification [3, 32, 42]. In algorithm level

approaches, authors either worked upon the internal

structure of the traditional classification procedures in

order to modify the sensitivity of the algorithm towards the

bigger class or developed new method to aaliviate class

imbalance situation [5, 11, 13, 15, 19, 27, 29, 30,

34, 40, 47, 49, 50, 54–58, 62, 64]. Hybrid category com-

bines algorithm or data level methods with the ensemble

approaches like bagging, boosting, random forest etc.,

[6, 9, 16, 18, 21, 26, 31, 33, 44, 52]. After analyzing the

above methods from the year 1997 to 2016, we represented

various research trends taken to solve this issue graphically

in this paper. It will help the researchers to tackle this

problem and face the challenges, which are coming in this

domain, in a better manner and in the right direction.

2 Research trends

From the above study, we have recognized four categories

which are further divided into nine categories as displayed

(Fig. 1). All the techniques suggested in past to alleviate

class imbalance problem have used 18 different approaches

in their concept as listed in Table 1. Some of the tech-

niques have used more than one approach to tackle the

problem. Based upon above analysis, we have decided

following parameters to know the research trends in class

imbalance domain.

2.1 Publication trend category wise

Figure 2 shows the publication trend category wise for the

four categories as data level, algorithm level, Feature based

and hybrid level. The work done reported under algorithm

level is highest followed by data level and Hybrid level,

which has reported almost similar %age of techniques.

Considering the sub-categorywise analysis (Fig. 3), we

observed that maximum number of techniques (26.58%)

are reported in cost-sensitive algorithm level. In data-level

category, maximum publications are reported in oversam-

pling (18.99%) and in case of hybrid approach, it is

Boosting level (13.92%). Latest category that have been

observed during survey is the Hybrid Level Rotation Forest

category (1.27%). It is noticed that in the recent years

Hybrid ensemble approaches are becoming very famous

[55–64].

Fig. 1 Categories of class

imbalance domain
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2.2 Use of approaches by the techniques

To address the Class Imbalance Problem, authors have

used various approaches to enhance the classifier’s per-

formance. Figure 4 recorded the trend of popularity in

terms of usage of approaches in developing various

techniques whereas Fig. 5 recorded it in terms of duration

i.e., starting and recent year of the approach used in

developing techniques. We observed that most popular

approach in terms of usage is the nearest neighbor with

17.86% usage. Other closer approaches are SVM (16.43%),

Boosting (15.71%) and Kernel function (14.29%). In terms

of duration, the most popular approach is Nearest neighbor

with 19 years duration (1997–2015).

SVM and Bagging are sharing popularity with 17 years

duration (1999–2016). There are approaches which are

used in the single technique only like noise filter (2014),

Rough sets (2011), Geometric mean (2013), Rotation forest

(2015) and Immune network (2015).

2.3 Tools used by the techniques

Tools are required by researchers for quick implementation

and automatic analysis of their work. Different kinds of

tools are used by the authors to develop techniques. Based

on the availability of information in research papers

WEKA (Waikato Environment for Knowledge Analysis),

MATLAB and KEEL are the famous tools used by

researchers for implementing and analyzing information

Table 1 Approaches used in

proposed techniques
S. no Name of the approach S. no Name of the approach

1 Nearest neighbor 10 Rough sets

2 Random principle 11 Greedy divide and conquer

3 Genetics 12 Kernel function

4 Clustering 13 Fuzzy rule base

5 Neural networks 14 Bagging

6 PCA (principal component analysis) 15 Boosting

7 SVM (support vector machine) 16 Rotation forest

8 Noise filter 17 Geometric mean

9 Fuzzy logic 18 Immune networks

31.15%

39.34%

29.51%

11.48%

Publica�on Trend categorywise

Data Level

Algorithm Level

Hybrid Level

Feature Based

Fig. 2 Publication trend categorywise (color figure online)
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(Fig. 6). WEKA is the popular tool for analyses. Recently

KEEL is used by authors wherein WEKA is already

embedded in the tool itself.

2.4 Data set used

We observed from this study that majority of the tech-

niques are evaluated with the data-sets available at UCI

repository. Figure 7 shows that 56% techniques out of 79

have used data-set from UCI repository.

3 Issues and challenges related to class imbalance
problem

This section discusses various issues that are recognized in

class imbalance problem and can be taken as a research

challenge to address this problem.

‘‘What if the imbalance ratio is changing dynamically?’’

Imbalance Ratio (IR) is the ratio of instance count in the

bigger class to the instance count in smaller class. IR value
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may vary from[ 1 to any number. The problem become

more risky with the enhanced value of IR. No such tech-

nique in literature exists which can act dynamically by

taking this factor into consideration. One technique may

work efficiently for one specific value of IR [51].

‘‘Where is the best re-balance option?’’ ‘‘Whether

IR = 1 will achieve best results?’’ Another issue is that

performance of techniques does not only depends upon the

balancing of data otherwise at IR = 1, techniques will

perform in the best manner. So, where is the best re-bal-

ance option and on which other factors it depends upon is

another open question that can be looked into.

‘‘Is class imbalance the only problem with data?’’

Majorly, the work done under this field is to remove class

imbalance effect in the data-sets but if we consider the real

situations, there are other data distribution complexities

that play a major role in the degraded performance of

classifiers. Very less literature is available which deals with

the combine effects of CIP and other abnormalities like

class overlapping, small disjuncts, class distribution within

class etc.

‘‘Is data free from noise?’’ Another important issue in

real data-sets is noise, which is present in real data-sets of

every possible field in one form or another. In some cases,

we have missing values which acts as a noise. In medical

data, there is the possibility of vague information in the

data due to the acquisition process of images. In web data,

there is a possibility of manipulated or changed informa-

tion due to signal noise/impulse noise etc., very less work

is recorded where the researchers have processed noise

within the techniques. The techniques are developed either

by neglecting the missing values or by assuming that data

is cleaned before classification. An efficient technique is

still to be developed which can handle such situation along

with the other data distribution complexities.

‘‘Which is the best performance metric to assess the

techniques developed for CIP?’’ There are many perfor-

mance metrics that are designed specifically to deal with

Skewed Data Sets (SDS) like F-measure, ROC, AUC,

Precision, G-Mean, PRC Curve, K-S Statistics, Recall,

Specificity. The reason behind developing these metrics is

that the accuracy performance metric used with traditional

classifiers gives biased results towards the majority class.

But, it is really an open question that which performance

metric should be preferable in the specific situation and

which metric is more relevant in one situation than the

other.

‘‘What if the class distribution of training set differs

from the test set?’’ Class distribution is another important

issue in developing an efficient technique as the distribu-

tion of test and training data may differ but the techniques

are designed by assuming that the distribution of training

and test data is same [51].

There is very less literature on Multiclass imbalance

problem [38]. Major research is on binary classification.

Although researchers have worked with multiple class

data-sets but by reducing the multiclass to binary problem

by joining majority and minority class separately. These

kinds of problems do not work well when applied to the

multiclass problem.
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