
ORIGINAL RESEARCH

Fuzzy based task allocation technique in distributed computing
system

Seema Yadav1 • Rakesh Mohan1 • P. K. Yadav2

Received: 3 May 2017 / Accepted: 10 April 2018 / Published online: 9 May 2018

� Bharati Vidyapeeth’s Institute of Computer Applications and Management 2018

Abstract With the rapid growth of Distributed System

(DS) technology, the task scheduling has become an

important issue. Task scheduling in distributed system is

required to improve efficiency in applications such as

project management, communications etc. The most

important issue while designing any task scheduling algo-

rithm is how to reduce make span time and waiting time.

This paper proposes a novel fuzzy based task allocation

algorithm. This algorithm can allocate task efficiently over

different processors by balancing the load among proces-

sors with the objective of reducing execution and response

time.

Keywords Distributed system � Task scheduling � Fuzzy

execution time � Response time

1 Introduction

For last several years, distributed computing have become

user friendly and a very popular choice for effective and

efficient use of resources and for information processing.

The benefits of distributed computing are: better through-

put, effective use of available resources and access to wide

web of information. Distributed computing has many

challenges. A fair and balanced load distribution is one

such challenge. Improperly distributed load results in

reduced performance of the system. Therefore task

scheduling is a vital step for better performance of the

system, which can be done in the following ways:

Static Allocation In static allocation, the information of

the current stage of nodes is not used for assigning the

tasks. Thus an assignment pattern is needed to be found

that holds for a life time of a program and results in opti-

mum throughput [1].

Dynamic Allocation In dynamic allocation, the infor-

mation of current state of the system is used. To update the

information of the system, exchange of information is

necessary [2].

Static allocation is simple in implementation but is not

adaptable to the changes in system i.e. it does not change

the task distribution as the system state changes. Different

static allocation algorithms are discussed in [3–7]. Better

performance is given by dynamic allocation methods over

static methods as in dynamic methods, the distribution

configuration changes with change in system, but it results

in complicated algorithms [8–11].

A various number of methods are available for task

distribution in distributed environment. One of the tech-

niques is branch and bound technique as stated in [12–14].

Another method is integer programming which is a math-

ematical optimization technique where some variables are

restricted to be integers. For task allocation problems,

integer programming is simple in application. Another

method for task distribution, which gives a near optimal

solution is Genetic Algorithm (GA) which fosters a pop-

ulation of strings (chromosomes) using predefined genetic

operators [15, 16]. The process of selection, crossover and

& Seema Yadav

seemayadav.research@gmail.com

Rakesh Mohan

mohanrakesh.dit@gmail.com

P. K. Yadav

pkyadav@cbri.res.in

1 Department of Mathematics, DIT University, Dehradun,

India

2 CBRI, Roorkee, India

123

Int. j. inf. tecnol. (March 2019) 11(1):13–20

https://doi.org/10.1007/s41870-018-0172-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-018-0172-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-018-0172-6&domain=pdf
https://doi.org/10.1007/s41870-018-0172-6

mutation is repeated until the condition for termination is

satisfied.

1.1 Preliminaries

• Fuzzy Execution Time (FET): The execution time, ~eij; is

the amount of time taken by task ti, which is to be

executed on the processor pj, where 1� i�m; 1� j� n.

If a task ti is assigned to a processor pj but is not

executed due to absence of some resources, then ~eij of

the task on the processor is taken to be zero [17].

• Fuzzy Inter Task Communication Time (FITCT): The

Fuzzy Inter Task Communication Time, ~cik, is the

amount of time incurred due to the data units

exchanged between the tasks ti and tk if they are

executed on different processors. When some tasks are

assigned to same processor, then ~cik ¼ 0. Fuzzy Inter-

Task Communication Times for processor Pj is calcu-

lated by using Eq. (1) given as follows [17]:

FITCTj ¼
X

i 6¼k

~cik½ �; ðk ¼ 1; 2; 3; . . .;mÞ; 1� j� n:

ð1Þ

• Triangular Fuzzy Number: A triangular fuzzy number

A(x) can be represented by A(a,b,c;1) shown in Fig. 1,

with membership function lðxÞ [18, 19].

l xð Þ ¼

x� a

b� a
; a� x� b

1 x ¼ b
c� x

c� b
; b� x� c

0; Otherwise

8
>>><

>>>:
:

• Trapezoidal Fuzzy Number: A trapezoidal fuzzy num-

ber A(x) represented by A(a,b,c,d;1) as shown in Fig. 2,

with membership value lðxÞ [18, 19].

l xð Þ ¼

x� a

b� a
; a� x� b

1 b� x� c
d � x

d � c
; c� x� d

0; Otherwise

8
>>>><

>>>>:

:

• Defuzzification: The method of converting the fuzzy

number into crisp value is defuzzification. Here the

Fuzzy numbers (triangular/trapezoidal) are converted

into crisp values by using Robust Ranking Method

(RRM), which is represented by Eq. 2 [20].

aij ¼ R ~aij
� �

¼ 1

2

Z1

0

aLa þ aUa
� �

da: ð2Þ

2 Proposed algorithm

2.1 Fetch the data set

Fetch the data set in the form of triangular/trapezoidal

fuzzy numbers. Inputs are:

1. A program of m tasks i.e. t1; t2; t3; . . .; tmf g:
2. A set of n processors i.e. P1;P2;P3; . . .;Pnf g.

3. FET ~eij
� �

and FITCT ~cikð Þ are in the form of

triangular/trapezoidal fuzzy numbers. FET and FITCT

are taken in the form of matrices as Fuzzy Execution

Time Matrix (FETM) and Fuzzy Inter Task Commu-

nication Time Matrix (FITCTM).

2.2 Determination of minimum link (ML)

Find those ‘‘n’’ tasks, which have minimum link with other

tasks using Eq. (1). This minimum link is stored in a two

dimensional array, Minimum Link (ML), the first column

of which represents the task number and second column

represents the average minimum link between the tasks.

The ML in fuzzy form is defuzzified into crisp values using

1

b ca x

A(x)

O

Fig. 1 Triangular fuzzy number

1

O c d

A(x)

a
b

x

Fig. 2 Trapezoidal fuzzy number

14 Int. j. inf. tecnol. (March 2019) 11(1):13–20

123

Robust Ranking Method (RRM). This array is sorted in

ascending order by assuming second column as sorting

key, to find which tasks are to be allocated first.

Table 1 Fuzzy execution time matrix

P1 P2 P3

t1 (5,10,20) (5,10,15) (10,15,20)

t2 (10,15,20) (10,20,30) (10,15,25)

t3 (10,20,30) (10,15,25) (10,15,20)

t4 (5,10,20) (10,15,20) (5,10,15)

t5 (5,10,15) (5,10,20) (5,15,20)

Table 2 Fuzzy inter task communication time matrix

t1 t2 t3 t4 t5

t1 (0,0,0) (20,30,40) (10,20,30) (40,45,50) (5,10,20)

t2 (20,30,40) (0,0,0) (40,50,60) (10,20,30) (30,40,50)

t3 (10,20,30) (40,50,60) (0,0,0) (10,15,25) (10,20,30)

t4 (40,45,50) (10,20,30) (10,15,25) (0,0,0) (15,25,30)

t5 (5,10,20) (30,40,50) (10,20,30) (15,25,30) (0,0,0)

Table 3 List of minimum

linked task
t1 (75,105,140)

t2 (100,140,180)

t3 (70,105,145)

t4 (75,105,135)

t5 (60,95,130)

Table 4 Listed minimum linked tasks in ascending order

Tasks FITCT Crisp value (FITCT)

t5 (60,95,130) 95

t4 (75,105,135) 105

t3 (70,105,145) 106.25

t1 (75,105,140) 106.25

t2 (100,140,180) 140

Table 5 Initial assigned tasks on processors (Using Hungarian

Method) are as follows:

P1/crisp values P2/crisp values P3/crisp values

t1 (5,10,20)/11.25 (5,10,15)/10 (10,15,20)/15

t2 (10,15,20)/15 (10,20,30)/20 (10,15,25)/16.25

t3 (10,20,30)/20 (10,15,25)/16.25 (10,15,20)/15

t4 (5,10,20)/11.25 (10,15,20)/15 (5,10,15)/10

t5 (5,10,15)/10 (5,10,20)/11.25 (5,15,20)/13.5

Bold indicates the tasks which are assigned initially to different

processors using Hungarian method

Start

Fetch Data set

Determine Minimum Link (ML) of FITCT,
by defuzzification using RMM

Use Hungarian Method to allocate tasks (with
minimum execution time)

If tie in FITCT

Yes

Allocate tasks to processors and create Tassgn

Create array Tnon-assgn of unassigned tasks

Fuse one unassigned task with all assigned
tasks one by one

Fuse the unassigned task with that already assigned
task for which response time is minimum

If all tasks of Tnon-assgn

are assigned

Yes

Stop

No

Arranging ML in ascending order

No

Allocate that task (having tie) to the remaining processor
having minimum execution time in FETM

Allocate ML task to that processor having minimum
execution time in FETM

Fig. 3 Flowchart showing the sequence of proposed algorithm

Int. j. inf. tecnol. (March 2019) 11(1):13–20 15

123

2.3 Determination of initial assignment for tasks

with minimum execution time using Hungarian

method

Select first ‘‘n’’ tasks from minimum linked array and apply

Hungarian method to these ‘‘n’’ tasks in FETM, to allocate

the tasks to the processors, having minimum execution

time. Even if there is tie between two or more tasks in

defuzzified ML array, the above mentioned method is used

for the assignment of tasks. But now the task is assigned to

the processor for which execution time is minimum in

FETM. Let Tassgn denotes the set of tasks assigned to

processors P0
js; j ¼ 1; 2; 3; . . .; n and Tnon�assgn denotes a set

of ðm� nÞ task, m � n; which are not assigned to any of

the processors. Then all tasks are given by union of these

two as Eq. (3).

T ¼ TassgnU Tnon�assgn: ð3Þ

2.4 Fusion of remaining unassigned tasks

Remaining m� nð Þ unassigned tasks are stored in an array

Tnon�assgn. Pick one non assigned task and fuse it with all

assigned tasks one by one to calculate Process Response

Table 6 List of fusion of unassigned task t2 with already assigned tasks

Processor Tasks fused with assigned

tasks

FET (1) FITCT (excluding time of fused

tasks) (2)

PRT = FET ? FITCT

(1) ? (2)

Crisp value of

PRT

P1 t2 ? t5 (15,25,35) (100,155,210) (115,180,245) 180.00

P2 t2 ? t1 (15,30,45) (135,185,240) (150,215,285) 216.25

P3 t2 ? t4 (15,25,40) (155,205,255) (170,230,295) 231.25

Table 7 List of fusion of unassigned task t3 with already assigned tasks

Processor Tasks fused with assigned

tasks

FET (1) FITCT (excluding time of fused

tasks) (2)

PRT = FET ? FITCT

(1) ? (2)

Crisp value of

PRT

P1 t3 ? t5 (15,30,45) (110,160,215) (125,190,260) 191.25

P2 t3 ? t1 (15,25,40) (125,170,225) (140,195,265) 198.75

P3 t3 ? t4 (15,25,35) (125,180,230) (140,205,265) 203.75

Table 8 Final list of assigned

tasks
Processor Tasks

P1 t2,t3,t5

P2 t1

P3 t4

Table 9 Final allocation task list with calculated OPRT value

Processor Assigned Tasks FFET (1) FFITCT (2) OPRT = FFET ?

FFITCT (1) ? (2)

Crisp value of OPRT

P1 t2 ? t3 ? t5 (25,45,65) (70,120,175) (95,165,240) 166.25

P2 t1 (5,10,15) (75,105,140) (80,115,155) 116.25

P3 t4 (5,10,15) (75,105,135) (80,115,150) 115.00

Table 10 Fuzzy execution time matrix

P1 P2 P3 P4

t1 (2,4,6,10) (8,10,12,14) (5,8,10,12) (10,15,17,20)

t2 (6,9,11,14) (2,4,6,8) (8,10,12,15) (6,8,10,12)

t3 (15,20,23,25) (8,11,14,16) (4,7,9,13) (15,17,19,21)

t4 (2,3,5,9) (4,6,9,12) (3,4,6,9) (8,10,12,16)

t5 (7,10,13,15) (6,10,12,16) (5,7,10,12) (1,3,5,8)

t6 (8,10,12,16) (10,12,13,15) (6,9,11,15) (6,8,11,13)

16 Int. j. inf. tecnol. (March 2019) 11(1):13–20

123

Time (PRT). The Fused Fuzzy Execution Time (FFET) of a

task ta 2 Tnon�assgn with some other task ti 2 Tassgn on

processor Pj is obtained using Eq. (4).

FFETai ¼ ~eaj þ ~eij
� �

; 1� i�m; 1� j� n; m� nð Þ� a�m; i
6¼ a:

ð4Þ

Let ~cai be the Fused Fuzzy Inter Task Communication

Time (FFITCT) between ta 2 Tnon�assgn and ti 2 Tassgn. The

FFITCT for ta with ti is obtained using Eq. (5).

FFITCTai ¼
X

ti 2 Tassgn
a 6¼ i

~cai½ �: ð5Þ

Here ~cai ¼ 0 if a ¼ i (i.e. if ta is fused with ti) and the

remaining values of ~cai are added.

2.5 Fused process response time (FPRT)

The Fused Process Response Time (FPRT) is calculated

using Eq. (6) as follows:

FPRTai ¼ min ðFFETa1 þ FFITCTa1Þ;f
ðFFETa2 þ FFITCTa2ð Þ; . . .; ðFFETam þ FFITCTamÞg:

ð6Þ

FPRT is in the form of triangular/trapezoidal fuzzy

numbers, which is then converted into crisp values using

RRM given by Eq. (2). Task ta 2 Tnon�assgn is assigned to

that processor for which FPRT, i.e. ðFFETai þ FFITCTaiÞ,
is minimum. This process is continued until all the tasks,

ta 2 Tnon�assgn 8 ðm� nÞ� a�m; are fused with the

already assigned tasks, ti 2 Tassgn 8 1� i�m.

2.6 Overall process response time (OPRT)

When the procedure of assigning the tasks to different

processors gets over, the OPRT for the distribution is cal-

culated using Eqs. (4) and (5). These values are then

converted into crisp values using Eq. (2). The OPRT, after

assigning all the tasks, is calculated using Eq. (7) as

follows:

OPRT ¼ max FFETþ FFITCTÞf : ð7Þ

Table 11 Fuzzy inter task

communication time matrix
t1 t2 t3 t4 t5 t6

t1 (0,0,0,0) (4,6,10,12) (0,2,4,7) (10,12,15,17) (12,14,15,17) (0,0,0,0)

t2 (4,6,10,12) (0,0,0,0) (2,4,7,10) (5,7,12,15) (4,6,9,11) (4,5,7,9)

t3 (0,2,4,7) (2,4,7,10) (0,0,0,0) (10,12,14,16) (16,17,18,20) (2,5,9,11)

t4 (10,12,15,17) (5,7,12,15) (10,12,14,16) (0,0,0,0) (2,4,6,10) (0,0,0,0)

t5 (12,14,15,17) (4,6,9,11) (16,17,18,20) (2,4,6,10) (0,0,0,0) (10,12,15,17)

t6 (0,0,0,0) (4,5,7,9) (2,5,9,11) (0,0,0,0) (10,12,15,17) (0,0,0,0)

Table 12 List of minimum

linked tasks
t1 (26,34,44,53) 39.25

t2 (19,28,45,57) 37.25

t3 (30,40,52,64) 46.5

t4 (27,35,47,58) 41.75

t5 (44,53,63,75) 58.75

t6 (16,22,31,37) 26.5

Table 13 List of minimum linked tasks in ascending order

Tasks FITCT Crisp value (FITCT)

t6 (16,22,31,37) 26.5

t2 (19,28,45,57) 37.25

t1 (26,34,44,53) 39.25

t4 (27,35,47,58) 41.75

t3 (30,40,52,64) 46.5

t5 (44,53,63,75) 58.75

Table 14 List of initial

assigned tasks on processors

using Hungarian method

P1/crisp values P2/crisp values P3/crisp values P4/crisp values

t1 (2,4,6,10)/5.5 (8,10,12,14)/11 (5,8,10,12)/8.75 (10,15,17,20)/15.5

t2 (6,9,11,14)/10 (2,4,6,8)/5 (8,10,12,15)/11.25 (6,8,10,12)/9

t3 (15,20,23,25)/20.75 (8,11,14,16)/12.25 (4,7,9,13)/8.25 (15,17,19,21)/18

t4 (2,3,5,9)/4.75 (4,6,9,12)/7.75 (3,4,6,9)/5.5 (8,10,12,16)/11.5

t5 (7,10,13,15)/11.25 (6,10,12,16)/11 (5,7,10,12)/8.5 (1,3,5,8)/4.25

t6 (8,10,12,16)/11.5 (10,12,13,15)/12.5 (6,9,11,15)/10.25 (6,8,11,13)/9.5

Bold indicates the tasks which are assigned initially to different processors using Hungarian method

Int. j. inf. tecnol. (March 2019) 11(1):13–20 17

123

Flow Chart of the algorithm is shown in Fig. 3.

2.7 Illustrated examples

This section will illustrate the proposed method by using

two scenarios:

2.8 Scenario I

In this example triangular fuzzy numbers are taken to test

the proposed algorithm:

Consider a fuzzy DCS consists of set T ¼
t1; t2; t3; t4; t5f g of tasks m ¼ 5 and a set P ¼
P1;P2;P3f g of processors n ¼ 3.The execution time of

each task on processors and inter task communication time

between communicating tasks has been taken in the form

of matrix FET ~eij
� �

and FITCT ~cik½ � of order m� n and

m� m respectively, whose elements are triangular fuzzy

numbers as given in Tables 1 and 2 [17].

From Table 2, minimum linked tasks are calculated

shown in Table 3.These tasks are then converted into crisp

values using RRM (Eq. 2) and then arranged in ascending

order as shown in Table 4.

To assign ML tasks to processors, Hungarian method is

used and the tasks are allocated as shown in Table 5.

Tasks are assigned by Hungarian Method by considering

t1, t4 and t5 vs P2, P3, P1.

Tassgn ¼ t1; t4; t5f g ! P2;P3;P1ð Þ and Tnon�assgn

¼ ft2; t3g:

To allocate task t2, it is fused with the already allocated

tasks one by one and finally fused with the task having

minimum PRT as shown in Table 6:

Minimum cost is (115,180,245). So task t2 is fused with

t5 on processor P1.

Tassgn ¼ t1; t2; t4; t5f g ! ðP2;P1;P3;P1Þ
Tnon�assgn ¼ft3g:

Table 15 Fusion of task t3 with already assigned tasks

Processor Tasks fused with assigned

tasks

FET (1) FITCT (excluding time of fused

tasks) (2)

PRT = FET ? FITCT

(1) ? (2)

Crisp value of

PRT

P1 t3 ? t1 (17,24,29,35) (56,70,88,103) (73,94,117,138) 105.5

P2 t3 ? t2 (10,15,20,24) (48,60,83,101) (58,75,103,125) 90.25

P3 t3 ? t4 (7,11,15,22) (37,51,71,90) (44,62,86,112) 76

P4 t3 ? t6 (21,25,30,34) (42,52,65,79) (63,77,95,113) 87

Table 16 Fusion of task t5 with already assigned tasks

Processor Tasks fused with assigned

tasks

FET (1) FITCT (excluding time of fused

tasks) (2)

PRT = FET ? FITCT

(1) ? (2)

Crisp value of

PRT

P1 t5 ? t1 (9,14,19,25) (46,59,77,94) (55,73,96,119) 85.75

P2 t5 ? t2 (8,14,18,24) (55,69,90,110) (63,83,108,134) 97

P3 t5 ? t4 (8,11,16,21) (67,80,98,113) (75,91,114,134) 103.5

P4 t5 ? t6 (7,11,16,21) (40,51,64,78) (47,62,80,99) 72

Table 17 Final list of assigned

task
Processor Tasks

P1 t1

P2 t2

P3 t4,t3

P4 t6,t5

Table 18 Final allocation task list with calculated OPRT value

Processor Assigned Tasks FFET (1) FFITCT (2) OPRT = FFET ? FFITCT (1) ? (2) Crisp value of PRT

P1 t1 (2,4,6,10) (26,34,44,53) (28,38,50,63) 44.75

P2 t2 (2,4,6,8) (19,28,45,57) (21,32,51,65) 42.25

P3 t4 ? t3 (7,11,15,22) (37,51,71,90) (44,62,86,112) 76

P4 t6 ? t5 (7,11,16,21) (40,51,64,78) (47,62,80,99) 72

Bold indicates the overall (maximum) time taken by the system to execute all tasks i.e. overall process response time

18 Int. j. inf. tecnol. (March 2019) 11(1):13–20

123

The above step is repeated for task t3 as shown in

Table 7. Now fusing the remaining task t3 with initially

allocated tasks:

Minimum cost is (125,190,260). So task t3 is fused with

t5 on processor P1.

Final list of assignment of all tasks on each processor is

shown in Table 8.

For Overall Process Response Time (OPRT), the total

cost for all distributed tasks is calculated as shown in

Table 9:

The maximum of crisp values is OPRT (Overall Process

Response Time), which is 166.25 for this scenario-I.

2.9 Scenario II

In this example trapezoidal fuzzy numbers are taken to test

the proposed algorithm:

Consider a fuzzy DCS consists of set T ¼
t1; t2; t3; t4; t5f g of tasks m ¼ 6 and a set P ¼
P1;P2;P3;P4f g of processors n ¼ 4.The execution time of

each task on processors and inter task communication time

between communicating tasks has been taken in the form

of matrix FET ~eij
� �

and FITCT ~cik½ � of order m� n and

m� m respectively, whose elements are trapezoidal fuzzy

numbers as given in the Tables 10 and 11 [17].

From Table 11, minimum linked tasks are calculated

and converted into crisp values using RRM (Eq. 2) as listed

in Table 12 and then arranged in ascending order as shown

in Table 13.

To assign minimum linked tasks to processors, Hun-

garian method is used and the tasks are allocated as shown

in Table 14.

Tasks are assigned by Hungarian Method by considering

t1, t2, t4, t6 vs P1, P2, P3, P4.

Tassgn ¼ t1; t2; t4; t6f g ! ðP1;P2;P3;P4Þ and Tnon�assgn

¼ ft3; t5g:

To allocate task t3, it is fused with the already allocated

tasks one by one and finally fused with the task having

minimum PRT as shown in Table 15.

Minimum cost is (44,62,86,112). So task t3 is fused with

t4 on processor P3.

Tassgn ¼ t1; t2; t3; t4; t6f g ! ðP1;P2;P3;P3;P4Þ
Tnon�assgn ¼ ft5g:

The above step is repeated for task t5 as shown in

Table 16.

Minimum cost is (47,62,80,99). So task t5 is fused with

t6 on processor P4. The final list of all assigned tasks is

shown in Table 17.

For overall PRT, the total cost for all distributed tasks is

calculated as shown in Table 18.

The maximum of crisp values is OPRT (Overall Process

Response Time), which is 76 for this problem.

The crisp value of OPRT (Overall Process Response

Time) for both the above mentioned problems (166.25 and

76) are less than the OPRT of the paper compared (250 and

119).

‘‘A Task Allocation with Fuzzy Execution and Fuzzy

Inter Task Communication Times in a Distributed Com-

puting system’’.

‘‘International Journal of Computer Application (0977-

8887) Volume 72–No.12, June 2013’’.

3 Discussions

The task scheduling in distributed environment is much

difficult from the traditional methods. In traditional meth-

ods there is only one processor and there is a need for

allocation of multiple tasks on it, which is much easier and

also various predefined algorithms are present to do this. In

distributed environment it becomes difficult because there

are more than one processor and large number of tasks are

there for allocation. Several studies have been conducted

for task scheduling in distributed environment so that total

throughput can be reduced. In a study El-Abd [18] reported

a fuzzy model for load balancing in distributed system. The

author simulated the model and tried to solve the problem

of uncertainty in task selection for dynamic load balancing.

In a study Sriramdas et al. [19] proposed a model for

reliability allocation technique using fuzzy model and an

approximation method based on linear programming

approach. The model is based on centralized distributed

system (DS). In a study Barazandeh et al. [21] proposed an

algorithm based on fuzzy logic which works for centralized

distributed system. They have considered load, last com-

pleted task waiting time as input for fuzzy model and infer

specific weights as output variable. They have used

MATLAB software for simulation of the model. In a study

Park and Kuhl [22] proposed a fuzzy based load balancing

consistency model for uncertainty in decision making in a

large DS. Also they have simulated the model. In a study

Kang et al. [23] proposed an iterative greedy algorithm to

maximize the system reliability by considering the wide

range of parameters. The model has been simulated using

MATLAB. In a study Bey et al. [24] proposed a model

which is the combination of Adaptive Network based

Fuzzy Inference System (ANFIS) and clustering scheme to

estimate the value of CPU load. The proposed study

introduces novel algorithm based on fuzzy logic. The

proposed algorithm improves an overall process response

time by allocating the task on processors. For this purpose

Int. j. inf. tecnol. (March 2019) 11(1):13–20 19

123

Execution Time and Inter Task Communication Time have

been taken into consideration. The algorithm uses fuzzy

environment and therefore for defuzzification Robust

Ranking Method is used, whenever there is a need of crisp

values. The proposed algorithm is unique in a way that it

uses Hungarian Method for initial allocation of tasks, tasks

which are minimally linked, to different processors. From

the data sets given in illustrated examples it can be seen

that this algorithm improves the total response time in

comparison to other methods.

4 Conclusion

In this paper a fuzzy task allocation problem has been

formulated and shown in the form of mathematical model.

Paper proposes a novel algorithm for allocating the tasks

on different processors with the objective of minimum

response time by taking Fuzzy Execution Time and Fuzzy

Inter Task Communication Time into consideration. The

algorithm uses RRM (for defuzzification) and Hungarian

method (for initial allocation of tasks). Paper illustrated

two scenarios for testing the proposed algorithm which

gives PRT values 166.25 for scenario-1 and 76 for sce-

nario-2. The model has potential to minimize the Overall

Process Response Time by assigning an approximate bal-

anced load to the processors as per literature studied. The

limitation of paper is that it is restricted and focused on

static load balancing policy. Although the model presented

is efficient enough but leaves a number of situations where

further work can be done. In future it can be explored for

dynamic load balancing on processors.

References

1. Bhatia K (2001) Thesis on ‘‘design and analysis of some per-

formance enhancement algorithms for distributed systems’’.

2. Eager DL, Lazowska ED, Zahorjan J (1985) A comparison of

receiver-initiated and sender-initiated adaptive load sharing.

ACM Sigmetrics Perform Eval Rev 13(2):1–3

3. Foster I, Kesselman C, Nick JM, Tuecke S (2002) The physiology

of the grid: an open grid services architecture for distributed

systems integration. Technical Report, Open Grid Service

Infrastructure WG, Global Grid Forum

4. Elsadek A, Wells BE (1999) A heuristic model for task allocation

in heterogeneous distributed computing. Int Comput Appl

6(1):0–35

5. Yadav PK, Nadeem Ahmad (2011) Performance analysis of

heterogeneous distributed processing system through systematic

allocation of task. Int J Intell Inf Process 5(1):19–24

6. Yin PY, Yu SS, Wang PP, Wang YT (2006) Multi objective task

allocation in distributed computing system by hybrid particle

swarm optimization. Appl Math Comput 184:407–420

7. Ahmed AY (2012) Task allocation for minimizing cost of dis-

tributed computing systems using genetic algorithm. Int J Adv

Res Comput Sci Softw Eng 2(9):202–209

8. Kowk YK, Ahmad I (2005) Multiprocessor task scheduling using

efficient state space search approaches. J Parallel Distrib Comput

65:1515–1532

9. Kumar V, Singh MP, Yadav PK (1996) An Efficient algorithm

for multi-processor scheduling with dynamic reassignment. In:

Proc. of 6th National Seminar on Theoretical Computer Science,

Banasthali Vidyapeeth, India, pp 105-18

10. Kumar A (1999) Optimization for dynamic task allocation. In:

Proc. of 3rd Conference of the International Academy of Physical

Sciences, Allahabad, pp 281–291

11. Yadav PK, Singh MP, Kumar Harendra (2008) Scheduling

algorithm: task scheduling algorithm for multiple processors with

dynamic reassignment. Int J Comput Syst, Netw Commun

2008:1–9. https://doi.org/10.1155/2008/578180

12. Attiya G, Hamam Y (2004) Two phase algorithm for load bal-

ancing in heterogeneous distributed systems. In: Proceeding of

12th Euromicro Conference on Parallel, Distributed and Network

Based Processing, pp 434–439

13. Attiya G, Hamam Y (2004) Reliability Oriented task allocation in

heterogeneous distributed computing systems. In: IEEE Confer-

ence, pp 68–73

14. Attiya G, Hamam Y (2006) Task allocation for maximization

reliability of distributed systems: a simulated annealing approach.

J Parallel Distrib Comput 66:1259–1266

15. Tripathi AK, Sarkar BK, Kumar N (2000) A GA based multiple

task allocation considering load. Int J High Speed Comput

11(4):203–214

16. Yeh YS, Chui CC, Chen RS (2001) Maximizing reliability of

distributed computing system with task allocation using simple

genetic algorithm. J Syst Architect 47:549–554

17. Kumar H, Singh MP, Yadav PK (2013) A tasks allocation model

with fuzzy execution and fuzzy inter-tasks communication times

in a distributed computing system. Int J Comput Appl

72(12):24–31

18. El-Abd AE (2002) Load balancing in distributed computing

systems using fuzzy expert systems. In: Modern Problems of

Radio Engineering, Telecommunications and Computer Science,

2002. Proceedings of the International Conference, pp 141–144

19. Sriramdas V, Chaturvedi SK, Gargama H (2014) Fuzzy arith-

metic based reliability allocation approach during early design

and development. Expert Syst Appl 41(7):3444–3449

20. Srinivasan A, Geetharamani G (2013) Method for solving fuzzy

assignment problem. Appl Math Sci 7(113):5607–5619

21. Barazandeh I, Mortazavi SS, Rahmani AM (2009) Intelligent

fuzzy based biasing load balancing algorithm in distributed sys-

tems. In: Communications (MICC), 2009 IEEE 9th Malaysia

International Conference on, pp 713–718

22. Park C, Kuhl JG (1995) A fuzzy-based distributed load balancing

algorithm for large distributed systems. In: Autonomous Decen-

tralized Systems, 1995. Proceedings ISADS 95, Second Interna-

tional Symposium on, pp 266–273

23. Qinma Kang, Hong He, Jun Wei (2013) An effective iterated

greedy algorithm for reliability-oriented task allocation in dis-

tributed computing systems. J Parallel Distrib Comput

73(8):1106–1115

24. Bey KB, Benhammadi F, Mokhtari A, Guessoum Z (2009) CPU

load prediction model for distributed computing. In: Parallel and

Distributed Computing, 2009. ISPDC’09. Eighth International

Symposium on, pp 39–45. IEEE

20 Int. j. inf. tecnol. (March 2019) 11(1):13–20

123

https://doi.org/10.1155/2008/578180

	Fuzzy based task allocation technique in distributed computing system
	Abstract
	Introduction
	Preliminaries

	Proposed algorithm
	Fetch the data set
	Determination of minimum link (ML)
	Determination of initial assignment for tasks with minimum execution time using Hungarian method
	Fusion of remaining unassigned tasks
	Fused process response time (FPRT)
	Overall process response time (OPRT)
	Illustrated examples
	Scenario I
	Scenario II

	Discussions
	Conclusion
	References

