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Abstract Estimating the tracking efficacy of vehicles in

traffic videos is one of the most desirable analysis specially

in the presence of a challenging weather conditions. In this

paper, a fine-tuning Kalman filter based tracking system

has been proposed so that it will work robustly on the

traffic videos. Such tracking efficacy has been tested and

tuned by integrating a system that calculates the distance

between adjacent vehicles as a case study. The integrated

system could provide some sort of traffic warning system

according to the allowable traffic safety standards. Analysis

has been utilized in two phases; phase (1): by changing the

performance indices of Kalman filter parameters (initial

estimation error, motion noise, and measurement noise).

We have measured both average number of assigned tracks

and processing time of interest in order to acquire best

tuning decision. From observations, changing values of

initial estimation error has no effect on the performance of

the tracking efficacy however increasing both motion noise

and measurement noise has an adverse impact on the

tracking performance. Phase (2) by applying the integrated

system on a degraded version of a captured urban traffic

video to measure performance of the tracking procedure

according to the existence of salt and pepper, Gaussian, and

Speckle video degradations. Such video disturbances could

perform an evaluation for some sort of challenging weather

conditions (e.g., rain, fog, and reduced light conditions). It

is obviously that average number of assigned tracks has

been degraded in the presence of video disturbance with

respect to percentage of occurrence and the appropriate

statistical features (mean, and variance) of such degrada-

tion. Twelve different types of filtering mask have been

applied in order to measure average number of assigned

tracks (correct predictions) after the cleaning process. We

have measured the deviation between both the no noise and

the with noise traffic video to study effect of each filter

mask within each noise type of video disturbance. Such

deviation measurements introduce a decision making cri-

teria for best tuning that increases the efficacy of the

vehicular tracking.

Keywords Intelligent transportation system (ITS) � Blob

analysis � Kalman filter � Assigned tracks � Video

degradation � Salt and pepper � Gaussian noise � Speckle

noise � Filter mask

1 Introduction

Intelligent transportation systems (ITS) refers to a variety

of tools, software, hardware, and communication tech-

nologies that could be applied in an integrated fashion to

improve the efficiency and safety of vehicular traffic [1, 2].

ITS provides support to enhance operation of transportation

services, transit management and information to travelers

[3, 4]. Research in ITS is targeting improvements in safety

of future transportation systems through integrating safety

enhancing functions within vehicles. Technologies such as

Radar/Lidar, loop detectors and traffic video analysis have
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been used to provide such safety features. We discuss these

technologies in Sect. 2 below.

The on-road automated vehicular detection and tracking

has been considered as one of the most valuable research

point over the past decades [5, 6]. Such point of interest

plays a vital role in the evolution of intelligent trans-

portation systems (ITS). Many available techniques have

been grown up for the on-road vehicular detection. Those

techniques can be classified into software based computer

vision technique and hard ware active sensors based Mil-

limeter radar and lidar techniques. Computer vision

methodology introduces a good point of view in the state of

the art of analyzing traffic videos. Vehicle interaction,

automated traffic warning system, traffic rule violation, and

congestion are good examples which can be targeted using

surveillance on-road installed cameras. Foreground esti-

mation, background estimation, and motion tracking are

classical visual techniques for detecting and classifying

vehicles on highways of interest. Video analysis of urban

areas are still more challenging because of its dependency

on some sort of road parameters such as traffic density,

variation of road users, and the degree of occlusion [7]. In

order to performing a comparison study between the pro-

posed algorithms, it would be more difficult to perform

such study as there is no standardized benchmark dataset to

be used [8].

ITS provide the opportunity to establish functions in the

infrastructure and/or vehicle to mitigate these deficiencies.

For example, sensors in the main line highway could pro-

vide an advance warning about an oncoming vehicle to side

street traffic on a stop-controlled intersection, to compen-

sate for any sight distance deficiencies for the side street

traffic. In-vehicle sensors could provide advance warning

to inattentive or drowsy drivers before hitting another

vehicle or object, or before running off the road. The

possibilities to improve the safety of our transportation

system are endless [9].

In this paper, video analysis has been proposed in order

to consider vehicular tracking operations under different

weather conditions (e.g., rain, fog, and reduced light con-

ditions). accordingly, such analysis has been rarely per-

formed in spite of being highly desirable. The proposed

traffic video analysis setup a Kalman filter in the presence

of weather conditions. The paper uses three different types

of video degradation noises (salt and pepper, speckle, and

Gaussian) with different levels of occurrence to analyze

traffic videos. In addition, a system of filters has been

applied to the degraded version of the test video producing

a new record with respect to filter masking system. We

calculate distance between two vehicles as an example

application of vehicular tracking. Calculating such distance

enhances safety function in order to provide an automated

warning system in order to increase safety. This may result

in reducing aggressive driving behavior as well as pro-

viding drivers with more time to react to road events.

Figure 1 shows the main block diagram of the introduced

study.

The rest of this article has been organized as follow:

Sect. 2 ITS vehicular tracking technologies; Sect. 3 dis-

tance estimation and tracking algorithm; Sect. 4 introduces

code setup; Sect. 5 introduces experimental results; Sect. 6

conclusion; references.

2 ITS vehicular tracking technologies

In this section, an overview has been introduced for the

following ITS technologies: radar/Lidar and computer

vision. One of the most widely used techniques that serves

the process of detecting vehicles is the Millimeter radar

active sensor. Typically, a continuous waveform signal

which is frequency modulated will be emitted. Once

receiving the demodulated wave form, the frequency con-

tent will be analyzed. The distance between the active

sensor and the appropriate vehicle of interest will be easily

calculated according to the frequency shift between the

transmitted and the received signal. Tracking the detected

objects will be performed according to motion character-

istic of interest [10].

Vehicular detection and tracking based active millimeter

radar works fairly in a challenging weather conditions

(rain, fog, and darkness). In addition, in case of noisy

measurements, a cleaning process would be extensively

required. Millimeter radar detects and tracks all moving

objects. A classification process would be necessary to

classify those objects as vehicles according to the appro-

priate relative acceleration, motion, and size of interest.

Furthermore, detection of stopped vehicles would be fairly

performed [10, 11]. As millimeter radar, lidar detects and

tracks all moving objects. A classification process would

also be necessary to classify those objects as vehicles

according to the appropriate relative acceleration, motion,

D
is

ta
nc

e 
es

tim
at

io
n Average 

number of 
assigned 

tracks = x

test video 

Noisy test video 

add noise 

filtering 
Average number of 
assigned tracks = yCleaned video 

=
|

|
D

ev
ia

tio
n 

Fi
lte

ri
ng

 
de

ci
si

on
 

Fig. 1 Proposed analysis block diagram
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and size of interest too. However, lidar provides cleaner

measurements and more sensitivity to precipitation than

radar. Lidar use a rotating hexagonal mirrors which split

the laser beam [11]. The upper three beams are used for

detecting vehicles and appropriate obstacles however the

lower three beams are used for detecting road features and

land marks [12]. Lidar cost remains a challenging issue.

Vehicular detection and tracking based computer vision

uses a system of installed surveillance cameras. Acquisi-

tion system based cameras provide a wide range view

which allowing the vehicular detection and tracking across

multiples lanes [13]. The appropriate imaging system

contains a lens and a charged coupled device (CCD). By

using means of computer vision, sophisticated computa-

tions would be required due to the presence of large

amount of homogeneous mapped pixels in the digital video

frames of interest. Successive video frames provide

researchers with rich visual information source for manual

inspection. In addition, there will be no traffic disruption

for installation and maintenance. By using means of

computer vision, recognizing objects as vehicles would be

easier than active lidar and radar. In addition, there will be

no need for any classification processes [14].

One of the most foundational and valuable technique

based computer vision is the Kalman filter (KF). Kalman

filter is an estimator which infers the appropriate parame-

ters of interest from inaccurate, indirect, and uncertain

perceptions [15]. Its filtering functionality based on a linear

mean square error estimation. The main target of its fil-

tering functionality is to minimize the estimated mean error

covariance according to some sort of presumed conditions.

Kalman filter produces good results due to optimality and

structure in addition, KF offers a convenient form for

online real time processing. However, KF also does not just

clean up the data observations, but also projects these

observations into an enhanced version of measurements

[16]. The basic mathematical model for the KF involves a

discrete-time nonlinear dynamic enhanced system as

follow:

xkþ1 ¼ Fðxk; vkÞ; ð1Þ
yk ¼ Hðxk; nkÞ; ð2Þ

where xk represents the un-observed state of the system and

yk represents the only observed state of the system, vk

represents the process based noise which drives the

dynamic system, and nk represents the observation noise

[15]. The dynamic model based system F and H has been

assumed to be known. In state-estimation, the KF is the

best predictor which has the ability to achieve a recursive

maximum likelihood estimation of the state [16]. KF model

could be expressed as follow:

cXk ¼ KK � ZK þ 1 � KKð Þ � dXK�1 ; ð3Þ

where cXk is the current estimation, KK is the Kalman filter

gain with discrete values (K1, K2, K3,…..), Zk is the

measured value, and dXK�1 is the previous estimation.

Kalman filter has five performance indices which affect

directly on the accuracy of the tracking methodology:

1. Motion model The KF can follow one of two motion

models. The first model is the constant velocity based

model where the velocity of the moving object is

assumed to be constant. The second model is the model

based constant acceleration where the object is

assumed to be accelerating at a constant rate.

2. Initial location For the KF to be able to track a certain

object, its initial location must be known. This

parameter is given in X and Y coordinates.

3. Initial estimation error This parameter expresses the

amount of error in the X and Y directions which the KF

should accept before deeming a certain track as

‘‘unacceptable’’ and dropping it altogether. It only

affects the accuracy of the first few predictions since

the KF adapts and creates its own estimation error

values later on based on the previous results.

Increasing this value will make it possible for the KF

to adapt faster but it might also make the first few

predictions inaccurate.

4. Motion noise This parameter represents the accept-

able deviation from the set Motion Model because it

might not fit the object’s velocity or acceleration

perfectly. Increasing this parameter might be good for

the reason of making the KF more suitable for the

object’s movement but it might also cause some

inaccuracy.

5. Measurement noise This value is given as a scalar.

Increasing it causes the KF to adhere more to the set

Motion Model.

3 Distance estimation and tracking algorithm

Figure 2 introduces the main algorithm for estimating the

distance between two adjacent vehicles after the detection

procedure for the vehicle in a certain video and how this

vehicle is kept tracked through that video according to their

centroids and how any other moving objects being elimi-

nated according to specifying a minimum threshold size of

interest. The following steps summarize the algorithm:

Step 1 traffic video based multiple moving vehicles

would be read according to Algorithm 1:
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Algorithm1: read traffic video contains multiple 
moving vehicles

// Load traffic video using a video reader object
x= vision.videofilereader(‘test video.extension’)

// Create video player object to play traffic video file
// Read and play traffic video frames

While ~isDone(x)
x=video_frame
Video_player(x)
End

// Release both video reader and player objects
Release (x)
Release (video player)

Step 2 Separate the background from the foreground

(vehicles). A number of consecutive frames have been

taken and the pixels have been divided into static and

dynamic pixels. Foreground detector uses means of back-

ground subtraction technique. The appropriate methodol-

ogy has been utilized as follow:

a) Specify a reference frame which represent the

appropriate back ground of interest. Now, the

background model based frame would be initialized.

b) Estimate the appropriate threshold value in order to

satisfy the required detection rate of interest. The

selection of the threshold plays a vital role in the

subtraction operation.

c) Identify and classify the type of given pixel with

respect to degree of both brightness and chromaticity

compared with pixels in the background frame. The

four pixel classes would be summarized as follow:

Class 1: moving foreground based pixels According to

both chromaticity and brightness, they would be different

from the expected values in the background frame.

Class 2: shaded background based pixels According to

both chromaticity and brightness, chromaticity would be

similar to those in the background frame however bright-

ness would but lower.

Class 3: ordinary background based pixels According to

both chromaticity and brightness, they would be similar to

those in the background frame of interest.

Class 4: highlighted background based pixels According

to both chromaticity and brightness, chromaticity would be

similar to those in the background frame however bright-

ness would but higher.

A binary frame has been resulted where black represents

the background and white represents the moving as shown

in Figs. 3 and 4. The mathematical representation for the

background subtraction was as follow:
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Fig. 2 Shows the flow chart for detection, estimating distance and

tracking procedure in the proposed system
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xt sð Þ ¼ 1 dðIs;t;BsÞ[ s
0 elsewhere

�

; ð4Þ

where I: observed video sequence, Is,t: foreground model at

pixel s within time t, Bs: background model at pixel s, B:

static background, s: threshold, xt: motion mask, d: the

distance between Is,t, and Bs. The occurrence probability of

color I at pixel s is given by:

p Is;t
� �

¼
X
k

i¼1

wi;s;t � N li;s;t;Ri;s;t

� �

; ð5Þ

where N li;s;t;Ri;s;t

� �

:is the ith Gaussian model and wi,s,t is

the appropriate weights.

Step 3 Apply morphological operations to preprocess the

appropriate test video and remove undesirable objects. Two

phases have been introduced for such analysis; first phase

is to get rid of undesirable objects such as smaller (i.e.

birds) and larger (i.e. pedestrians) moving objects com-

pared with the size of the desired moving vehicles of

interest [17, 18]. This phase would be concerned in the

state of the art of adaptive thresholding. Algorithm 2

introduces phase 1 based morphological operations of

interest.

Algorithm2: phase 1 based morphological operations
// Read successive frames

While ~isDone(x)
x=video_frame

//partition each frame for (for examples) four 
equally partitioned regions. Assume 256×256 
frame based test video

p1=x(:,1:64)
p2=x(:,65:128)
p3=x(:,129:192)
p4=x(:,193:256)

//Thresholding each region of interest

Array_g1=frame_thresholding(p1)
Array_g2= frame_ thresholding(p2)
Array_g3= frame_ thresholding(p3)
Array_g4= frame_thresholding(p4)

//Concatenate all partitions based frame
concatenated_array= [g1 g2 g3 g4]

end

Second phase based morphological analysis guarantee

the process of filling undetectable pixels in vehicle win-

dow. The appropriate filling would be concerned by using

means of vehicle closing. This mathematical morphology

based technique has been derived by applying dilation

process cascaded by erosion process. The closing process

working in the state of the art of enlarging the appropriate

bright boundaries of the foreground objects (vehicles) in

each frame and shrinking the appropriate background holes

in such vehicles regions. Algorithm 3 introduces phase 2 of

interest [19].

Algorithm3: phase 2 based morphological operations
// perform Algorithm2
// Assume a frame to have the following binary values

y = array_thresholded _binary_frame
set y=[1 0 0 0 1 1 1 0 1 1]

//assume structing element z containing only 1’s
set z=[1 1 1 ]

// frame dilation
If z touches y_foreground (1’s)
//write a “1” at the origin of the structuring element
Output1= [1 0 1 1 1 1 1 1]
end

// frame erosion
input= [1 0 1 1 1 1 1 1]
If z touches y_background (0’s)

//write a “0” at the origin of the str ucturing element
Output2= [0 0 1 1 1 1] 
end

Fig. 3 Shows detected vehicles

Fig. 4 Shows the next frame of interest
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The proposed system has been utilized regardless the

possibility of object losses due to the conditions that

change the objects appearance.

Step 4 Apply blob analysis in order to isolate the blobs

(vehicles) in each binary frame. A blob consists of a group

of connected pixels which represent each vehicle of inter-

est. Blob analysis methodology has the ability of extracting

the most salient statistical features; area, perimeter, cen-

troids, bounding box [20]. All these features would be used

in order to classify blobs (vehicles) in order to ease the

decision making of that if they hold the objects which we

are concerned about or not. In the introduced paper, we

have concerned with the calculation and the assignment of

the following properties to each detected vehicle; Area of

the objects, Bounding box of the object, and X and Y

coordinates of the blob’s centroid [24]. Figures 3 and 4

show the output from the proposed system for two suc-

cessive frames after applying blob analysis according to

calculating centroids of the moving objects [21, 22]. The

state of the art of blob detector is based on normalized

Laplacian of Gaussian (LOG)norm:

L x; y; tð Þ ¼ g x; y; tð Þ � f ðx; y; tÞ; ð6Þ

where g x; y; tð Þ ¼ 1
2pt2 e

�x2þy2

2t2 is the Gaussian kernel and

f(x,y,t) is the video frame of interest. The (LOG)norm can be

estimated as follow:

r2
normL ¼ t Lxx þ Lyy

� �

: ð7Þ

Step 5 For each detected blob, perform the following:

• Assign an ID number that identifies the vehicle

throughout the duration of its appearance in the video

as shown in Figs. 3 and 4.

• Apply KF to actually track the appropriate vehicle and

associate its detections throughout the video to a single

track.

• Calculate duration of how long has a particular object

been detected.

• Estimate total Visible Count which indicates how many

consecutive frames has the particular object been

detected.

• Estimate consecutive invisible count to indicate how

many consecutive frames has the object been

undetectable for.

Step 6 Estimate distance between two adjacent vehicles

according to spatial coordinates of the centroid of each

blob (calculated in step 4). The distance between these two

centroids (x1, y1) and (x2, y2) of two blobs is calculated

using the Euclidean equation:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � x1ð Þ2þ y2 � y1ð Þ2
h i

r

: ð8Þ

Step 7 For each of the following frames, the KF will

predict new locations of blobs and places a bounding box

around it [21].The reason of using KF instead of any other

object tracking [i.e. Hidden Markov Model (HMM)]

[22, 23] is that KF introduces some facilities; its ability to

Predict moving vehicles in future locations, its ability to

reduce the appropriate noise that introduced by inaccurate

detections, KF provides some sort of Facilitating the pro-

cess of association of multiple objects to their tracks,

finally, KF introduces multiple moving vehicles tracking

with lower processing time.

In addition, the reason of using the concept of Euclidean

distance instead of any other distance estimation tech-

niques [(i.e. K-nearest neighbor’s algorithm (k-NN)]

[24, 25] is that this method offers an acceptable processing

time and simplicity in computations [26, 27]. however,

K-NN is a learning methodology with more sophisticated

analysis due to its main applications as a classifier detector

and predictor [28–31]. In the proposed analysis, a simple

way for calculating such distance is required due to the

continuous variation of the centroid values for each

detected based in each frame.

Step 8 As a particular vehicle is predicted, a possibility

of error is generally expected. To ensures tracking vehicles

in spite of changing position, speed and acceleration, we

calculate the distance of centroids of each blob calculated

in two consecutive frames using the Euclidean Eq. (1). If

this difference is found to be less than a specified threshold

value, then this prediction is deemed ‘‘accurate’’ and the

track’s confidence level is incremented. If the difference

value is greater than the threshold value, then the predic-

tion is deemed ‘inaccurate’ and the track’s confidence level

is decremented. In order to illustrating this mechanism, a

cost matrix, shown in Fig. 5, is created. This matrix con-

sists of M rows and N columns. M is the number of tracks

(predictions) and N is the number of detections. Each

Fig. 5 Shows cost matrix for detection and prediction
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element in this matrix represents the cost of matching the

Mth prediction to the Nth detection. This cost is calculated

via the Euclidean equation for distance calculation. If this

cost is low, then a match between the prediction and

detection is achieved, otherwise the match does not hap-

pen. Another parameter that goes into the process of

deciding whether the track is to be assigned to the detection

or not is the ‘‘Cost of non-assignment’’ which represents

the cost of not assigning a prediction or a detection. The

higher this parameter is the more likely for most detections

and predictions to be matched. Figure 5 show the cost

matrix from the proposed system.

Step 9 Based on the values regarding ‘‘accurate’’ pre-

dictions obtained from steps 7 and 8, perform the

following:

• Update the bounding box of the object to the current

one instead of the previously predicted one.

• Adds [1] to the age of the track.

• Adds [1] to the visibility count for the track.

• Sets the invisibility count to [0].

Step 10 Based on the values regarding ‘‘inaccurate’’

predictions obtained from step 7 and 8, perform the

following:

• Adds [1] to the age of the track.

• Adds [1] to its invisibility count.

Step 11 Delete tracks with frequent inaccurate predic-

tions (it stays invisible for a certain number of consecutive

frames).

Step 12 Create new tracks for every new vehicle that

enters the camera’s scope, assign a corresponding track

structure to start tracking by the KF.

4 Code setup

The Software of the proposed system has been developed

using Matlab 2015 release (a) with a PC that have 4 GB

RAM and 2.5 GHZ dual core processor. According to the

following procedure. A graphical user interface has been

integrated for estimating the required observations of the

two appropriate phases based computer vision analysis.

Set up objects
1. Create a video file reader. 
2. Create a video player to display the original video.
3. Create a video player to display the distance.
4. Create an object from the Foreground detector. 
5. Create an object from the Blob Analyser. 

Initialize Tracks
Create an empty array of tracks with the following 
parameters:

ID 
Bounding Box

Instance from the KF 
Age 
Total visible count 
Consecutive invisibility count 

Read appropriate Frame 
Detect objects

1. Use the Foreground detector object to get the mask 
for the frame.

2. Apply morphological operations on the frame.
3. Identify the blobs and their characteristics 

(Centroids and Bounding Boxes) using the Blob 
analyser object. 

4. Calculate the distance between any two adjacent 
vehicles according to the following steps:

The coordinates of the centroids of all detected 
vehicles will be stored in a matrix called 
Centroids.
The distance between each of the centroids will 
be calculated. 
If the distance between two vehicles goes below 
a certain value, a danger indication will appear. 

This could be utilized as follow:

for (each element in the centroid array)
{
calculate distance 

if distance < threshold
{

display distance
end

}
if distance < safe value

{
initiate warning alarm
display warning message

end
}

End
}

Assign a track structure to each detected blob.
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Fig. 6 Shows the interface of phase 1 system topology

424 Int. j. inf. tecnol. (December 2018) 10(4):417–434

123



Predict New Locations of Tracks
Predict the location of the blob in the next frame 
using the KF. 
Detection to track assignment 

1. Create cost matrix
2. Assign a Cost of Non Assignment value 
3. Call the Assign Detections to tracks function which 

based on the cost matrix will decide which 
predictions are acceptable and which aren’t. (As in 
which predictions match the detections and which 
ones don’t match any detections). 

Update Assigned Tracks 
1. Increase the age of each matched track by 1. 
2. Set the invisibility count of that track to zero. 
3. Set the centroid and bounding box of the track to 

the currently detected values instead of the      
previously predicted ones to be used for the next 
prediction. 

Update Unassigned tracks
1. Increase the invisibility count for unassigned 

tracks by 1. 
Delete Lost Tracks
1. Delete a track if one of two conditions is 

satisfied: 
The invisibility count surpasses the 
acceptable invisibility count threshold.
The age is less than 8 and less than 0.6 of 
that age was visible. 

Create New Tracks
1. Create new tracks for unassigned detections.
2. Add them to the track array

5 Experimental results

The objectives are to calculate distance between adjacent

vehicles as an application of vehicular tracking. The main

procedure was to measure efficiency of the tracking by

Fig. 7 Initial estimation error representation for all cases with no

change
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analyze a raw test video with ideal weather conditions (i.e.,

no noise) and a simulated challengeable weather conditions

(i.e., adding noise). A complete GUI interface has been

utilized with the following indicators: number of assigned

tracks, average number of assigned tracks, number of cars,

distance alarm indicator, and processing time indicator.

Figure 6 show screen shots from the interface of interest.

5.1 The no-noise case

The number of assigned tracks (correct predictions) has

been measured in each frame according to the test video in

response to varying the following KF parameters: initial

estimation error, motion noise, and measurement noise.

Motion model has been set to a constant velocity model

and initial location has been set to the coordinates of the

centroids. Figures 7, 8, and 9 represent the relation

between number of frames (along horizontal axis) and

number of assigned tracks in each appropriate frame (along

vertical axis).

In Fig. 7, the initial estimation error is varied along the

[X Y] direction which the KF should accept before deeming

a certain track as ‘‘unacceptable’’ and dropping it alto-

gether. Table 1 represents all case studies of initial esti-

mation error as a response for applying a gradual variation

in its coordinate value according to a 500 frames test video.

In each case, the average number of assigned tracks have

been calculated in all frames as well as processing time. It

is observed that the value of the initial estimation error

does not have a significant effect on the number of assigned

tracks (correct predictions) and all case studies remain

unchanged. This is due to the fact that the KF adapts and

changes its estimation error value based on input data.

Figure 8 is concerned with the change of motion noise

according to four categories of observations. Table 2 rep-

resents all case studies of interest of motion noise. From

the obtained results, it is observed that as for the motion

noise, choosing a value that is above [150, 150] would be

unsuitable. This is due to the fact that increasing its value

could lead into a great deviation from the motion model set

which causes inaccuracy that appears as a drop in the

values of the average number of assigned tracks. This drop

causes some sort of wrong predictions which leads to in

accurate tracking.

Figure 9 is concerned with the changing of the mea-

surement noise according to five categories of observa-

tions. Table 3 represents all case studies of interest. As for

the Measurement Noise, increasing its value causes inac-

curacy measurements for estimating the average number of

assigned tracks. The number of assigned tracks is indeed

increasing with the increase in its value. But, this increase

could still have an adverse impact on the long run. From all

previously discusses observations, a first stage fine-tuned
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Fig. 9 Shows the measurement noise with each case study
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tracking criteria has been concluded as follow; by adjusting

the performance indices of KF (for a 500 frames test video)

as follow:

• Choose initial estimation error to have any coordinates

below 500.

• Choose motion noise to have any coordinates below

150.

• Choose measurement noise to have any value below

150.

5.2 The with-noise case

Now, the analysis of non-ideal test video would be started

by adding noise into test video. In addition, the previously

discusses conclusions have been considered for the

required modifications in the proposed GUI system. The

appropriate modifications are needed to acquire the anal-

ysis of test video with different disturbances. In addition,

the tracking accuracy has been utilized and tested again.

Table 1 Initial estimation error

with [X Y] direction
Initial estimation error Average number of assigned tracks Processing time per 500 frame test video

10, 5 1.996 14.998908

20, 10 1.996 14.774024

30, 15 1.996 14.726030

40, 20 1.996 14.933885

50, 25 1.996 14.983851

60, 30 1.996 14.906489

70, 35 1.996 15.829720

80, 40 1.996 15.328098

90, 50 1.996 15.580287

120, 70 1.996 14.847166

Table 2 Motion noise
Motion noise Average number of assigned tracks Processing time per 500 frame test video

10, 10 1.996 15.270699

100, 25 1.996 15.233302

100, 100 2.002 14.852864

150, 150 2.006 14.961544

170, 170 2.004 15.242621

200, 200 2.004 15.400802

250, 250 2.004 15.255876

270, 270 2.004 15.074271

300, 300 2.004 14.801201

350, 350 2.004 15.286121

370, 370 2.004 15.198801

400, 400 2.004 14.815989

Table 3 Measurement noise
Measurement noise Average number of assigned tracks Processing time per 500 frame test video

10 1.996 15.171940

50 1.994 15.079669

100 1.996 15.043541

150 1.996 15.300675

200 2.002 15.121708

300 2.004 15.324122

350 2.006 14.982728

400 2.006 15.218703

450 2.006 14.905973
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The main purpose for that phase is to create simple

simulation criteria for some of the most challenging

weather conditions. Modifications has been utilized by

adding salt and pepper noise, Gaussian noise, and speckle

noise as three types of video disturbances with different

levels of occurrence percentages. In addition, system of

filters has been added to the interface in order to measure

the required performance (correct tracking) after the

cleaning processes. Many distinguishing filtering systems

have been applied for each type of noise; average, maxi-

mum, minimum, wiener, disk, Laplacian, of Gaussian

(LoG), motion, sobel, prewitt, median, and Gaussian filters.

Observations has been recorded as follow: In each case of

salt and pepper noise, by increasing percentage of occur-

rence, observations have been targeted that the values of

assigned tracks have been deviated from the ideal case

value (zero noise). In addition, by adding a Gaussian noise

with a changeable mean and variance values, the number of

assigned tracks has been degraded than the ideal case (zero

noise) however, these degradations could be assumed non

Table 4 Effect of salt and

pepper degraded video
Salt and pepper noise percentage (%) Number of assigned tracks Processing time per 500 frame (s)

Zero noise 1.996 15.533471

5 2.056 21.989983

10 4.922 33.693454

20 8.858 55.756604

30 5.936 33.686794

40 5.438 33.280617

50 6.57 39.827585

60 5.896 46.375300

70 3.402 32.767757

80 0.996 26.726041

90 0.996 28.016424

100 0.996 28.807787

Table 5 Effect of Gaussian

noise degraded video
Gaussian mean, variance Number of assigned tracks Processing time per 500 frame (s)

Zero noise 1.996 15.533471

0, 0.01 1.228 16.762822

0, 0.05 0.028 13.653209

0, 0.1 0.022 13.832700

0.5, 0.01 1.398 17.116468

0.5, 0.05 0.9 16.964905

0.5, 0.1 0.578 16.586056

1, 0.01 0.202 14.436344

1, 0.05 0.928 16.274630

1, 0.1 1.26 17.218930

Table 6 Effect of speckle noise

degraded video
Speckle variance Number of assigned tracks Processing time per 500 frame (s)

Zero noise 1.996 15.533471

0.04 0.974 41.912283

0.05 0.976 19.138182

0.06 0.77 18.296054

0.07 0.61 18.330546

0.08 0.484 17.760295

0.09 0.306 17.024124

0.1 0.17 16.633673

cFig. 10 Shows two snapshots for the interface of phase 2
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Table 7 The deviation from original value after cleaning

Speckle Gaussian Salt and pepper

Average 1.399 1.022 0.368

Maximum 1.646 1.281 0.381

Minimum 1.798 1.107 0.526

Wiener 1.0419 0.701 0.065

Disk 1.021 0.775 0.056

Laplacian 1.487 1.217 1.708

LoG 1.229 1.065 1.408

Motion 1.355 0.867 0.276

Sobel 1.553 1.197 1.534

Prewitt 1.59 1.014 1.092

Median 0.661 0.469 0.276

Gaussian 1.5988 1.242 0.696

Table 8 Average number of

assigned tracks after adding salt

and pepper noise

Filter type % of occurrence

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average 1.606 1.518 1.096 0.684 0.236 0.022 0 0 0 0 0

Maximum 1.4 0.742 0.034 0.018 0 0 0 0 0 0 0

Minimum 0.232 0.114 0.018 0.012 0 0 0 0 0 0 0

Wiener 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83

Disk 1.952 1.884 1.736 1.49 1.188 0.858 0.454 0.132 0 0 0

Laplacian 2.992 5.344 7.498 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996

LoG 3.148 3.338 6.252 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996

Motion 1.742 1.62 1.218 0.762 0.312 0.034 0 0 0 0 0

Sobel 11.3 1.662 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996

Prewit 6.668 7.64 1.232 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996

Median 1.706 1.706 1.692 1.664 1.626 1.616 1.586 1.474 1.264 4.338 0.032

Gaussian 1.604 1.58 0.558 0.29 0.088 0.052 0.046 0.054 0.038 0.03 0.03

Table 9 average number of

assigned tracks after adding

Gaussian noise

Filter type Mean, variance

0, 0.01 0, 0.05 0, 0.1 0.5, 0.01 0.5, 0.05 0.5, 0.1 1, 0.01 1, 0.05 1, 0.1

Average 0.56 1.212 0.742 1.68 1.406 1.11 0.012 0.42 0.552

Maximum 1.697 0.788 0.726 0.96 0.404 0.016 0 0 0

Minimum 1.338 0.05 0.022 1.522 0.82 0.22 0.594 1.348 0.762

Wiener 1.972 1.738 1.404 1.842 1.84 1.766 0.006 0.398 0.58

Disk 0.616 1.81 1.62 1.902 1.848 1.758 0.006 0.442 0.66

Laplacian 1.228 0.028 0.022 1.398 0.9 0.578 0.202 0.928 1.26

LoG 2.784 0.996 0.996 2.648 5.168 1.022 0.594 1.788 3.594

Motion 1.784 1.3 0.856 1.796 1.518 1.224 0.02 0.452 0.61

Sobel 1.232 2.096 1.002 2.506 5.956 4.84 0.78 1.912 3.896

Prewit 0.706 2.926 5.172 2.216 1.87 4.654 0.632 1.704 2.114

Median 1.706 1.706 1.692 1.664 1.626 1.616 1.586 1.474 1.264

Gaussian 1.556 0.576 0.164 1.554 1.22 0.888 0.004 0.306 0.518

Table 10 Average number of assigned tracks after adding Speckle

noise

Filter type Variance

0.04 0.05 0.06 0.07 0.08 0.09 0.1

Average 1.636 1.632 1.605 1.592 1.552 1.51 1.494

Maximum 1.634 1.624 1.592 1.518 1.508 1.542 1.502

Minimum 1.436 1.45 1.464 1.392 1.382 1.356 1.284

Wiener 1.992 1.978 1.974 1.936 1.918 1.83 1.818

Disk 1.94 1.96 1.954 1.92 1.926 1.896 1.928

Laplacian 0.766 0.74 2.438 3.742 4.702 5.236 5.042

LoG 4.596 4.672 3.664 3.192 2.852 2.844 2.692

Motion 1.72 1.742 1.712 1.682 1.686 1.632 1.59

Sobel 1.73 1.76 2.882 3.818 4.666 5.156 5.228

Prewit 0.616 0.596 0.62 0.63 0.726 0.87 1.172

Median 1.738 1.706 1.688 1.688 1.684 1.62 1.636

Gaussian 1.48 1.474 1.376 1.316 1.204 1.162 1.088
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effective in cases of small mean value. Finally, in case of

speckle noise, we can see that these degradations will be

very small at large variance. Tables 4, 5 and 6 represents

the effect of video degradation on tracking accuracy.

By adjusting the GUI interface in filtering video mode as

shown in Fig. 10. New observations have been recorded

after applying the cleaning methodology of each filter mask

on each type of noise with its different percentage of

occurrence. These observations have been listed in

Tables 8, 9, and 10. In addition, the main target was to

measure the efficiency of each filter mask with each type of

noise disturbance with respect to different levels of

occurrences. This could be accomplished by measuring the

amount of deviation of the average number of assigned

tracks between the zero noise test video (value was

recorded approximately to be 1.996) and the noisy version.

Those deviations have been summarized in Table 7

according to comparing the observations listed in Tables 8,

9, and 10 (calculations after cleaning) with the ideal.

Observations were as follow: in case of Speckle noise: The

Wiener and Disk filters scored the least deviation from the

original values, thus it appears that they are the most

accurate and the processing times are approximately the

same. In case of Gaussian noise: The Median filter showed

the least deviation from the original values, thus it’s the

most suitable filter for this type of noise. However, its

processing time was high. Finally, in case of Salt and

pepper noise: The Median filter scored the least deviation

from the original values, thus it’s the most suitable one

however its processing time was high. Table 11 represents

snapshots from the system output for the applied three

types of video noises after the cleaning process. From all

previously discusses observations, a secondly stage fine-

tuned tracking criteria has been recommended to use such

median, wiener, and disk filter masks to discriminate

between video degradations.

Table 11 Some snapshots from the system output in each case study

Salt and pepper noise Gaussian noise Speckle noise

No filters

average

maximum

minimum

Int. j. inf. tecnol. (December 2018) 10(4):417–434 431

123



Table 11 continued

Gaussian

laplacian

LoG

median

sobel

prewit

motion

disk
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6 Conclusion

Measuring and enhancing the tracking efficiency for

moving vehicles in an urban video is an important chal-

lenging research points especially under abnormal weather

conditions. A new system has been developed for calcu-

lating distance between adjacent vehicles as an application

of vehicular tracking. Calculating such distance enhances

safety function in order to provide an automated warning

system for the drivers. Two phases based analysis have

been observed in order to establish such system in both

ideal and challenging weather conditions. Phase 1 is

responsible for adjusting performance indices of KF

parameters in order to achieve the best tracking in case of

no noise test video. We recommend the values of initial

estimation error, motion noise, and measurement noise to

be below one quarter the total number of frames for the

video of interest (in our case, we have used 500 frames test

video and performance indices were below 150 for best

tracking). For a noisy test video, the first procedure is to set

KF parameters as discussed before. Then we recommend

the use of wiener, disk, and median filters according to the

type of disturbance of interest (use wiener and disk filter

masking in case of speckle noise, use median filter in case

of Gaussian noise, and use median filter in case of salt and

pepper noise). Future work should be directed toward

cascading filters with a focus on realistic conditions during

evaluation taking in considerations the level of complexity.

In addition, a comparison study would be targeted in the

state of the art of using new algorithms for detection and

tracking moving vehicles such as Otsu method, k-nearest

neighbor’s algorithm (k-NN), and Hidden Markov Model

(HMM).
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