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Abstract Android malware is on the rise along with the

popularity of Android OS. Malware writers are using novel

techniques to create malicious Android applications which

severely undermine the capability of traditional malware

detectors which are incompetent towards detecting these

unknown malicious applications. The features obtained

from static and dynamic analysis of Android applications

can be used to detect unknown Android malware by using

machine learning techniques. This paper presents an anal-

ysis of various Android malware detection systems and

compares them based on various parameters such as

detection technique, analysis method, and features extrac-

ted. We were able to find research work in all the Android

malware detection techniques which employ machine

learning which also highlights the fact that machine

learning algorithms are used frequently in this area for

detecting Android malware in the wild.

Keywords Android malware � Anomaly detection �
Dynamic analysis � Machine learning � Misuse detection �
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1 Introduction

The dominant market position of Android OS has also

attracted the interest of malware authors exploring the

vulnerabilities of Android OS. As per G DATA mobile

malware report [1], their experts have discovered around

4900 fresh Android malware every day in the first quarter

of 2015. Malware have been categorized based on the

functionalities of their malicious payload as license esca-

lation, remote control by communicating with C & C ser-

ver, financial charge and collecting information [2]. The

scale of damage caused by an Android malware depends on

its functionality and sometimes the results of its activity are

invisible for the users which are a cause of concern. AVG

mobile security team [3] recently discovered an Android

malware, PowerOffHijack, which hijacks the shutdown

process and the device remains functional giving it the

freedom to move around on the device and steal data even

though it appears to be off. In 2014, Doctor Web [4] had

issued a warning to Android users about a new Trojan

(BankBot.21.origin) that can steal information about the

credit cards they use for transactions on Google Play. With

such sophistication and experimentation, Android malware

has become a critical threat.

This has led to an increase in the research work in the

area of Android malware detection where researchers have

introduced novel techniques and improvised the current

ones focusing on Android malware detection.

In this paper, we have presented various detection

techniques which give a better understanding of these

techniques and explore the fact that detecting known/un-

known malware using machine learning techniques is on

the rise. An updated image of the past and latest Android

malware detection techniques is discussed in this paper,

and illustrated with examples.
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This paper is structured as follows. In Sect. 2, we dis-

cuss Android Architecture and Sect. 3 presents the com-

ponents of an Android application. Section 4 provides an

overview of the security features present in Android. Sec-

tion 5 presents various Android application analysis

methods and Sect. 6 presents the Android malware detec-

tion techniques. Section 7 presents various Android mal-

ware detection systems that have been developed.

Emerging directions are discussed in Sect. 8 and finally,

we conclude in Sect. 9.

2 Android architecture

Android operating system is a software stack that contains

the following six layers [5]: Linux Kernel, Hardware

Abstraction Layer (HAL), Android Runtime, Native

Libraries, Application Framework, and Applications

(Fig. 1). At the base of the hierarchy is the Linux kernel

which presents a level of abstraction between the device

hardware and the upper layers of the software stack. It

manages all the core functionalities of Android such as

process management, memory management, security and

networking. It also contains various device drivers related

to camera, display, Wi-Fi, Bluetooth, audio, USB etc. On

top of Linux kernel is the Hardware Abstraction Layer

(HAL) which permits the Android application framework

to correspond with the hardware specific device drivers by

defining functional interfaces for each hardware compo-

nent such as the camera module, Bluetooth module etc. The

next layer is the Android Runtime which comprise a set of

core Java libraries that provides most of the functionality

for creating Android applications and the ART. Being

implemented in Java, Android is executed by a Java Virtual

Machine (JVM). Initially, Dalvik Virtual Machine (DVM)

was used which is Android’s implementation of JVM

optimized for mobile devices. DVM executes files in

Dalvik Executable (.dex) plan which is optimized for

nominal memory footprint. For Android devices running

Android version 5.0 or higher, a new runtime, DVM is

replaced by its successor- the Android Runtime (ART) [6].

Advantages of ART over DVM are ahead-of-time (AOT)

compilation, improved garbage collection and debugging

support. AOT means applications are compiled into native

machine code upon their installation and stored in device

internal memory. Thus, any subsequent execution of the

application would be faster since the translation has already

taken place during installation. Parallel to the Android

Runtime is the layer for native C/C?? libraries that are

utilised by the operating system as well as various com-

ponents of Android. Some of the major native libraries

included are—C/C?? core libraries libc and SSL,

OpenGL ES libraries for rendering 2D and 3D graphics,

SQLite for native databases support, surface manager for

display management, media library for playback of audio

and video and so on. Android also provides Android Native

Development Kit (NDK) to access these native libraries for

implementing parts of an application. On top of the native

libraries and Android Runtime lies the Java API Frame-

work that provides the building blocks in the form of APIs

written in Java language to create Android applications

such as call management, location management, resource

management, activity manager, user interface management

via View system, data sharing via content providers, etc.

The topmost layer is the System Application layer. This

layer provides both—set of core built-in applications

installed with every device (SMS messaging, dialer, web

browser, contacts, calendar, and more) and an interface to

any third-party application to access the key services by

using the APIs provided by the API framework.

3 Android application components

Android Studio [7]—the official Android SDK, provides an

extensive set of application programming interface to

developers for developing Android applications. Android

applications are written in Java programming language and

can also be written in native code. They are compiled and

packaged in an APK (Android package) which is an

archive file. Each application runs in a separate process and

is composed of a mandatory XML descriptor file called

AndroidManifest.xml. The Android Manifest file contains

all the details required by the android system about the

application. It allows defining the packages, APIs, libraries

needed by an application, permissions enforced and

requested by the application, descriptors of application

components etc. Application components can be of four

types: Activity, Service, Content Provider, and Broadcast

Linux Kernel 

Hardware Abstraction Layer (HAL)

Native C/C++ Libraries

Android Runtime

Core Libraries

ART

JAVA API Framework

System Applications

Fig. 1 Android architecture
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Receiver [8]. These components communicate through

messages called Intents.

• An Activity represents a single screen with a user

interface.

• A Service runs in the background to perform long-

running tasks.

• A Content Provider is used to share and store structured

and persistent data using a database interface.

• A Broadcast Receiver is responsible to receive and

react to system-wide announcements.

Consider the caller application of an Android device.

This application may include various components such as

activities for viewing contacts and calling them. There may

be a service for continuing a call in the background in case

you want to use another application in the middle of a call

for writing text. A broadcast receiver might be there for

incoming calls. Lastly, content providers for sharing con-

tacts on the device.

4 Android built-in security mechanisms

The Android platform being open-source makes it easily

vulnerable to security attacks. Hence, security of Android

applications becomes a major concern and a challenge. For

that Android provides various built-in security mechanisms

both at Linux kernel level and application framework level

to develop secure applications. The Android security model

consists of the following security features in order to pro-

tect user data, system resources and provide application

isolation [9]:

• Application sandbox—Each application runs in its own

process and address space. After installation, each

application is assigned a unique Linux user ID which

remains constant. Thus, applications run in sandboxes

having limited access to system resources.

• Secure IPC mechanism—An application can interact

with other applications as well as remote servers through

secure Interprocess Communication (IPC) mechanisms.

• Signatures—Before installation, each application

developed must be digitally signed with a certificate

which identifies the developer of the application. This

makes sure that that the future updates for an applica-

tion are coming from the same developer and also

establishes trust between applications. Applications

having the same signature can share the same user ID

and thus, become visible to each other and can also run

in the same process.

• Permissions—If any application needs to access com-

ponents of another application, it must have the required

permissions to do so. Android’s manifest file declares the

permissions that an application requires and these

permissions must be granted during installation. Con-

versely, applications can also declare their own permis-

sions for other applications to use in the manifest file.

5 Android application analysis

Before proceeding towards Android malware detection

techniques it is important to introduce how the Android

applications are analyzed. There are three methods—Static,

Dynamic and Hybrid. In the static method, the source code

of the Android application is analyzed and this technique

does not require to execute the application. A major

problem with static analyzers is their incapability to detect

the malicious behavior of an application at runtime. On the

other hand, dynamic analysis involves extracting infor-

mation from the traces obtained by executing an Android

application in a sand-boxed environment but it involves the

overhead of executing the applications and moreover it is

not known when an application will show malicious

behavior which makes dynamic analysis a slow process.

The hybrid method combines the use of static and dynamic

methods for analysis thus utilizing the pros of both meth-

ods for a better detection methodology.

6 Android malware detection techniques

A malware detector identifies and contains malware before

it can reach a system or network [10]. This section intro-

duces the commonly used Android malware detection

techniques and their evaluation criteria. Before proceeding

further, let us briefly discuss what Machine learning is and

how it is categorized.

Machine learning [11] is the study of computer pro-

grams capable of learning their own previous experience to

improve their performance of a task. Machine learning has

been used widely in the field of Android malware detection

to either learn malicious characteristics to detect malware

based on the similarity (misuse detection) with them or

learn from the benign characteristics to detect malware

based on the deviation from them (anomaly detection) [12].

Machine learning algorithms can be segregated into two

categories (Fig. 2)—supervised and unsupervised learning.

Supervised learning is inferring a function from labeled

data for classifying data for responses that have few known

values or for performing regression for responses that are

continuous and real-valued. Unsupervised learning is

exploring the data to find some intrinsic structures in them

such as clustering data to find similarity group called

clusters.
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The interested reader is referred to the overview of

supervised [13] and unsupervised machine learning algo-

rithms [14] for further study.

The Android malware detection techniques can be

broadly classified into two categories [15, 16]—Misuse

Detection (or Knowledge-based or Signature-based) and

Anomaly Detection (or Behavior-based).

In this paper, we’ll use the terms—misuse detection and

anomaly detection for the above two categories which are

discussed below.

6.1 Misuse detection

This technique detects malware by comparing them with

the knowledge accumulated from known malware in the

form of their signatures. Malware is detected based on the

similarity with the known malware. It can accurately detect

known malware but is quite ineffective against unknown

attacks as no signatures are available. Also, variants of the

previous malwares that deviates slightly are difficult to be

detected by this technique. To overcome this restriction,

machine learning has been used in misuse detection to

automatically generate signatures for detecting unknown

malwares [17]. Misuse detection requires continuous

updation of the signature database with the signatures of

the known malware. Another problem is that with such

large increase in the number of malwares which have been

detected [1], the size of the signature databases has also

increased which makes it not feasible to be stored on the

mobile phones being constrained by limited storage [15].

6.2 Anomaly detection

It is considered complementary to misuse detection. It

focuses on the normal behavior of an Android application

rather than detecting the presence of malware signatures.

Malware is detected based on the deviation from the normal

behavior. Machine learning has also been used in anomaly

detection which is characterized by two phases—training

phase and a detection phase. In training phase, the normal

behavior of Android applications is learned using machine

learning and then during detection phase, the learned normal

behavior is compared with the current behavior of an

Android application being analyzed for classification as

malicious or benign or in other words malware detection.

Since this technique does not rely on the characteristics of

known malware, it can detect novel ones since similar

behavior patterns are shared by novel and existing malware

because novel malwares are often created by adding new

malicious behaviors to the existing malware [18]. However,

any previously unobserved normal behavior can also be

flagged as malicious by this technique resulting in false

alarms. To reduce the false alarms, specification-based

detection is performed in which specifications of Android

applications are manually developed and then detection is

performed based on the deviations from normal specifica-

tions of an Android application. The disadvantage of this

technique is that developing the specifications of Android

applications is a very time-consuming process [15].

For the evaluation of the efficiency of these techniques

following parameters are highlighted in [16, 19] in the

context of intrusion-detection systems:

• Accuracy—It’s a measure of correctness. Inaccuracy

occurs when a legitimate application is flagged as

malicious i.e., false positive.

• Performance—It’s the rate at which the applications are

analyzed for malware detection by a malware detector.

Low rate implies compromising real-time detection.

• Completeness—It’s the capability of a detector to

detect all the malicious applications. Incompleteness

occurs when a malicious application is flagged as

legitimate i.e., false negative.

• Fault Tolerance—The malware detector itself should

be resilient to malicious attacks. Being vulnerable to

such attacks would defeat the whole purpose of the

malware detection.

• Timeliness—Timely detection of a malware will not

only help in preventing the damage caused but also

curb its propagation. ESET, an IT security firm [20]

recently detected a malware Android/Spy.Feabme.A

which steals facebook credentials. This malicious

application was installed by over 500,000 Android

users from Google play store and following its detec-

tion it was taken down. This fact highlights the timely

detection of malware and prevention of its propagation.

7 Comparative analysis and discussion

There has been a lot of quality research work done in the

area of Android malware detection where researchers have

used different techniques and analyzed them. In this

Machine Learning

Supervised Learning

Classifica�on

Regression

Unsupervised Learning

Clustering

Fig. 2 Machine learning
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section, we have listed various Android malware detection

systems and compared them based on various parameters

such as analysis method (Fig. 3) and detection technique

used (Fig. 4).

Android Application Sandbox (AA Sandbox) [21] detects

malicious applications by using both static and dynamic

analyses on Android applications. In static analysis, it

scans for usage of Java Native Interface, reflection, ser-

vices and IPC provision, permissions and creating native

children processes etc. In dynamic analysis, it summarizes

the system log file to create a system histogram which

contains how many times a system call is used during

application runtime.

Android Application Analyzer (AAA) [22] uses permis-

sions requested by Android applications during installation

as features. Both, unsupervised (k-Means clustering) and

supervised (Naı̈ve Bayes classifier) machine learning

algorithms are used. They successfully detected the fol-

lowing known malwares—DogWar (Trojan), ICalender

(Premium SMS) and SuperSolo (DroidDream). They cre-

ated two malware samples and were able to detect them as

malicious.

Andromaly [23] monitors Android devices and extracts

features such as CPU consumption, number of packets sent,

number of running processes, keyboard/touch-screen

pressing, battery level etc. It applies three feature selection

methods (Chi Square, Fisher Score and Information Gain)

to remove redundant or irrelevant features and then eval-

uates various classifiers (k-Means, Logistic Regression,

Histograms, Decision Tree, Bayesian Networks and Naı̈ve

Bayes).

Androsimilar [24] automatically generates statistically

robust variable length signatures for applications using

SDHash approach and detects malware based on a simi-

larity score. They claim that it is effective against code

obfuscation and repackaging.

APK Auditor [25] uses permissions, services and recei-

vers of Android applications as features and uses a statis-

tical scoring approach to detect malicious Android

applications.

Classifying Android Malware Through Subgraph Min-

ing (CAMAS) [26]—extracted a subset of frequent

subgraphs of system calls executed by Android application

and then applied machine learning techniques(Linear

discriminant classifier (LDC), Quadratic discriminant

classifier (QDC), k-NN, and Artificial neural networks

(ANN)) for Android malware detection.

Crowdroid [27] obtained real traces of applications’

behavior based on crowd sourcing and clustered them using

k-means algorithm on a server for detection. It achieved

100% detection of self-written applications and also tested

the system against few known malwares—Steamy Window

(PJApps) and Monkey Jump 2 (HongTouTou).

Drebin [28] extract features such as hardware compo-

nents, requested and used permissions, activities, Services,

Content providers, Broadcast receivers, Filtered intents,

Suspicious and restricted API calls, Network addresses etc.

It embeds them in vector space and then performs classi-

fication using linear Support Vector machines (SVM). On

five popular smartphones, Drebin required 10 s for an

analysis on average.

DroidAPIMiner [29] uses the requested permissions,

API calls, package and parameter level information as

features and evaluated them by using three different clas-

sifiers (Linear SVM, kNN, Decision Trees -C4.5 and ID3).

Android Applica�on 
Analysis Methods

Sta�c

AAA
Androsimilar 
APK Auditor

Drebin
DroidAPIMiner

DroidMat
PUMA

Dynamic

Andromaly
CAMAS

Crowdroid 
DroidDolphin

MADAM
RobotDroid

STREAM

Hybrid

AASandbox
Droid-Sec

Fig. 3 Classification of android malware detection systems based on

analysis methods

Android Malware 
Detec�on Techniques

Misuse 
Detec�on

Androsimilar
CAMAS

DroidAnaly�cs
DroidMiner
RobotDroid

Anomaly 
Detec�on

Andromaly
Crowdroid 
DroidMat
MADAM
STREAM

Misuse & Anomaly 
Detec�on

DroidSIFT

Fig. 4 Classification of android malware detection systems based on

detection techniques

Int. j. inf. tecnol. (March 2017) 9(1):111–117 115

123



DroidDolphin [30] uses dynamic features such as

incoming/outgoing network data, file read and write

operations, started services, loaded classes through

DexClassLoader, information leaks via the network, files

and SMS, logcat etc. SVM is then used to classify

applications as benign or malicious by using these

features.

DroidMat [31] ses permissions, intents and API calls as

features. Initially it performs unsupervised machine learn-

ing on these features by using algorithms such as k-Means

or EM clustering. Then, the clustered features are used to

perform classification by using kNN or Naı̈ve Bayes

classifier.

DroidMiner [32] used a behavioral graph to abstract

malicious behavior patterns (activities, services, broadcast

receivers, content observers, permission-related API func-

tions etc.) into a sequence of threat modalities, and then

applied machine-learning techniques to identify Android

malware.

Droid-Sec [33] uses a hybrid approach to extract both

static (permissions and sensitive APIs) and dynamic (be-

haviors extracted from logs) features from Android appli-

cations. It then uses deep learning to perform classification.

DroidSIFT [34] classifies Android malware via API

dependency graphs and uses graph similarity metrics to

detect unknown malware by using Naı̈ve Bayes classifier.

It contains both, a signature detection system and anomaly

detection.

Multi-level Anomaly Detector for Android Malware

(MADAM) [35] globally monitors Android at the kernel-

level and user-level extracting features such as system

calls, running processes, free RAM, CPU usage, user

activity/idleness, key-stroke, called numbers, sent/received

SMS, and Bluetooth/Wi-Fi analysis to detect real malware

to distinguish between standard behaviors and malicious

ones. It uses various machine learning algorithms for per-

forming the classification.

Permission Usage to detect Malware in Android

(PUMA) [36] extract permissions from Android applica-

tions and evaluated by using different machine learning

classifiers (Simple Logistic, Naı̈ve Bayes, Bayes Net,

SMO, IBK, J48, Random Tree, and Random Forest) using

k-fold cross validation.

RobotDroid [37] extracts dynamic features such as

Intent issued and system resources access by applications

in Android-based smartphone operating systems. Then, it

performs SVM active learning to detect malware.

System for Automatically Training and Evaluating

Android Malware Classifiers (STREAM) [38] demonstrates

the effectiveness of different machine learning classifiers

(Random Forest, Naive Bayes, Multilayer Perceptron,

Bayes net, Logistic and J48) in detecting Android malware.

It focuses on profiling applications to obtain information

(battery, binder, memory, network, and permissions) used

in dynamic analysis.

From the above analysis, it is evident that the use of

machine learning algorithms is dominant. It is being used

irrespective of the analysis method used—static, dynamic

or hybrid and detection technique applied—Misuse, Ano-

maly or Misuse and Anomaly. Another important fact is

that a variety of machine learning algorithms are used in

Android malware detection. Even the new areas of machine

learning research such as deep learning are used in Android

malware detection [33]. Thus, each time a new machine

learning algorithm is introduced, it gives a new direction to

researchers to implement the same in the area of Android

malware detection which would not only help them to

analyze the efficiency of the algorithm but also help in

improving the Android malware detection efficiency.

8 Emerging directions

We have identified a number of directions in which

Android malware detection is progressing. Android mal-

ware is growing and this problem needs to be addressed by

creating more effective Android malware detection sys-

tems to not only improve the accuracy of detecting known

malwares but also uncover zero-day malware attacks.

Another desirable aspect is timely detection of malware to

prevent it to cause further harm by spreading itself. Hence,

we propose to create a new Android malware detection

system by performing static analysis and extracting fea-

tures such as permissions and APIs and then classifying

them by using Extreme Learning Machine(ELM) [39].

ELM has been used for Android malware detection in [40]

which extracts static features from Dalvik instructions. In

our proposed work, not only different set of features are

used but we also perform an empirical evaluation and

compare the performance of ELM with other machine

learning algorithms.

9 Conclusion

A lot of work has been done in the area of Android mal-

ware detection. Researchers are also using the combination

of misuse and anomaly detection for improving the

detection accuracy. This paper lists the features extracted

for the purpose malware detection as well as various

machine learning algorithms being used for the same. The

presence of machine learning algorithms in all categories

of malware detection techniques and analysis methods

highlights the fact that machine learning algorithms are

being used frequently in this area for detecting Android

malware in the wild.
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