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Abstract Metagenomic gene classifications are significant

in bioinformatics and computational biology research.

There are huge interrelated datasets that deal with human

characteristics, diseases and molecular functionalities.

Analysis of metagenomic reorganization is a challenging

issue due to their diversity and efficient classification tools.

Graph based MapReducing approach can easily handle the

genomic diversity. MapReduce has two parts such as

mapping and reducing. In mapping phase, a recursive naive

algorithm is used for generating K-mers. De-Bruijn graph

is a compact representation of k-mers and finds out an

optimal path (solution) for genome assembly. Similarity

metrics have been utilized for finding similarity among the

De-Oxy Ribonucleic Acid (DNA) sequences. In reducing

side, Jaccard similarity and purity of clustering are used as

datasets classifier to classify the sequences based on their

similarity. Reducing phase can easily classify the DNA

sequences from large database. Extensive experimental

analysis has demonstrated that graph based MapReduce

analysis generate optimal solutions. Remarkable improve-

ments in time and space have recorded and observed. The

results established that proposed framework performed

faster than SSMA-SFSD when classified elements are

increased. It provided better accuracy for metagenomic

data clustering.

Keywords MapReduce � Metagenomic � K-mers �
De-Bruijn graph � Jaccard similarity

1 Introduction

Metagenomic is the study of organisms’ population by

fragmentation and sequencing of organism in our envi-

ronmental ecosystem [1]. It is basically applied in micro-

bial organism sampling from their host environment where

species wise separation is difficult, complex and time

consuming. Metagenomic process is important for such

types of data clustering or classification which reduce data

diversity. The microbial and biological data increased day

by day. To handle such increasing biological data,

metagenomic process play a vital role. Cloning and cul-

turing of biological data provide new challenges for

metagenomic data processing. So, metagenomic will

dominant in gene expression, next generation sequencing,

genome assembly, drug formulation, agriculture and

genomic functionalities. Metagenomic ensures that new

molecular or gene production performs in dynamic
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approaches. It contained several DNA sequences for

experimental process. The DNA sequences contains the

chain of nucleotide (A,C,G,T) for eukaryote cell or million

of base pairs in human body. Thus, computational tools for

gene finding are required for large biological data annota-

tion. Position of gene is not a vital issue but it is perquisite

for gene regulation, genome assembly and understanding

the coding regions. Finding the genes from genome is

difficult due to large data handling tools and space.

Metagenomic investigate the natural data for analyze the

shape, architecture or functional interaction in small spe-

cies. Different microbes from multiple areas [2, 3] are used

to analyze of the composite architecture community of

their own environment [4]. It is important to analyze the

microbe’s genomic interaction or human metagenomic

interaction for drug, foods or disease evaluation [5–7].

Several computational challenges are raised in metage-

nomic analysis. Complication informatics analysis is dif-

ficult due large amount of metagenomic data and its

complexity. For example, it can be difficult to determine

the genome in which reads are derived. Additionally, the

diversity of species is difficult for read generation and not

compares the sequence alignment [8]. Metagenomic anal-

ysis is trend to handle large volume of data to identify

accurate result. However, it faces a computational tools and

approaches. Sometimes, metagenomic contains unwanted

host DNA of microbiota, thus filtration is required to sep-

arate the DNA portion from the host DNA for DNA

sequencing. It is difficult to address the contamination

problem. For example it is difficult to determine read from

contamination genome. A metagenomic misleads analysis

for contamination genome assembly. Metagenomic trends

to expensive in complex sequence or microbial DNA

analysis.

To handle these metagenomic challenges, several

applications/approaches are used. Some graph based

approaches handle the gene annotation, classification or

prediction. Generally, graph is a mathematical tool that

removes the error from genome assembly and generates an

optimal solution. The De-Bruijn graph is a directed graph

with set of nodes and vertex, G (V, E), where V is the set of

nodes with k-mers and E is the connections between the

nodes. It is considered an efficient approach that represents

a sequence in terms of its k-mer components. The De-

Bruijn graph is considered a principal analysis for short

read sequencing assembly, where the sequences are divided

into fixed length or k-mers and build a directed graph

[9–11]. Figure 1 illustrated the simple example for the De-

Bruijn graph.

Peng et al. [12] introduced a transcriptome assembler for

the iterative De-Bruijn graph approach (T-IDBA), which is

a modified De-Bruijn graph approach that rearranges the

positive genome assembly from large irregular data sets.

Valvet is another graph based computational tool that

constructs an optimized De-Bruijn graph to discard the

redundant nodes and to generate optimal genome assembly

[13]. ABYSs [14] is a parallel and clustering based

approach that handles a large volume of data by using De-

Bruijn graph classification. This package strongly con-

nected with k-mers node and need large storage for data

sets. AllPaths [15] is another De-Bruijn based computa-

tional tools that manage the large scale data. This package

handle the large scale read in an optimal way. Some graph

portioning approaches [16, 17] also used to increase the

quality of metagenomic data analysis with low local cov-

erage of graph. Basically, De-Bruijn graph runs faster and

assigns memory space efficiently than other comparative

method. An optimized De-Bruijn graph performance is

better than other gene assembly algorithm and gene

annotation process.

Generally, data are increased day by day and handles by

data processing. To handle the data processing, clustering;

classification and sampling approaches are used to provide

efficient and effective solutions. Big data handling is a

challenging issue for the data mining due to system

capacity and storage size. Researchers proved that tradi-

tional machine learning is failed for big data processing.

So, efficient artificial and machine learning tools are

required for big data analysis [18]. The ultimate objectives

of big data processing is to achieve faster, scalable and

optimal solutions. Map reducing [19] is a new tool for big

data classification in which data are divided into small parts

and combined into parallel process. Another map reducing

approach is CLOSET [20], which developed based on

cloud computing. Mapping and reducing both phase per-

form in distrusted clustering approach. The Google Map

Reduced Framework [21] is a batching processing

implantation strategy, where mapping and reduce phases

allow fault tolerance mechanism for big data handling.

MapReducing is a parallel processing system that incor-

porates the system design and large data classifications. It

processes the data by using parallel software and hardware.

It provides the programmer and user a compatible data

processing environment in parallel mechanism. Thus, Map

Fig. 1 A simple De-Bruijn graph
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reducing is an optimal framework for big data

classification.

The main contribution of the current work is to design

an architecture that can handle large volume biological

datasets. In this regards, the proposed approach employed

the De-Bruijn graph centric MapReduce framework for

Metagenomic clustering. Mapping part of MapReduce has

constructed with k-mers generation, De-Bruijn graph and

similarity matrix. On the other hand, the reduce part has

organized with Jaccard similarity and purity o classifica-

tion. The classification approach for metagenomic large

data analysis used the De-Bruijn graph and Jaccard simi-

larity matrix for large metagenomic data classification.

The structure of the remaining sections of the current

work is as follows. ‘‘Section 2’’ introduced the literature

review, followed by the system outline and methodology in

‘‘Sect. 3’’. There are few subsections that narrate in-depth

of the system layout and overall methodology. ‘‘Section 4’’

delineated the relationships between Map and Reduce parts

of MapReduce. Performance evaluations and implementa-

tion are accomplished in ‘‘Sect. 5’’. Finally, the conclusion

is included in ‘‘Sect. 6’’.

2 Literature review

Recently, researches attempt to develop assemblers that

support data processing in various applications. Yinan

et al. [22] introduced the VirAmp, which is an embedded

assembler that compared with traditional assembler by

web based graphical user interface (GUI). This assem-

bler supported data classification in parallel process. The

classification process performed in single platform for

large biological data processing and provided an inter-

active platform for the users. However, this package not

efficiently handled the overlapped genomes as well as

the time complexity was high with interactive genome

sets. Chang et al. [23] proposed an application system

called Bridgers that measured the genome arrangement

by the help of de novo assembler. In this tool, Cufflinks

based algorithm was used to overcome the limitations of

de novo assembler. It reduced the computational time

and storage than other assemblers. However, this tool

did not fit in accuracy and sensitivity of Cufflinks

algorithm and not efficiently handled the overlap gen-

ome. Edena is another graph based de novo assembler,

which used suffix tree to handle the overlap genome

sequence [24]. Edena used heuristic approach to find the

overlap length and to construct a bidirectional graph.

However, the graph traversing cost was too high with

high space complexity. Wang et al. [25] suggested an

ontological based approach called ClusDCA, which

rearrange the information for all data sets that have

unique activity of annotation function. In interconnected

process, ontology took more time for data mapping. A

mapping based algorithm can overcome the problem

where reads were mapping into short read by using De-

Bruijn graph [26]. Hashing function and other data

structure techniques were used to handle the k-mers for

graph mapping. This technique was used in metage-

nomic transcription to utilize the metagenome data.

Accurate gene finding and gene annotation process error

free sample data are required for classifying the gene based

on their functionalities. There are a large number of gene

finding approaches, such as GENESCAN [27], GENEID

[28] and GLIMMER [29]. On other side, gene prediction is

a similarity based program, where similarity was measured

between two gene sequences. Some similarity based pro-

grams are AGenDA [30] and GENEWISE [31]. Sequence

similarity is important for many cases such as new dis-

covered similarity sequences are added in current database

which provides a compatible environment for next gener-

ation sequencing. Protein similarity region have a signifi-

cant impact in phyla [32]. Similarity measure is a challenge

for metagenomic read analysis. Recently, computation

tools can address this problem. Some new programs are

widely used to handle the metagenomic data processing.

These programs are MetaGene [33], Orphelia [34] and

GeneMarker [35].

MapReducing approach provides an efficient and con-

venient Metagenomic gene clustering environment to the

scientist, researcher and reader. Several processes are

used to design MapReducing framework. MapCluster [36]

is a MapReducing clustering approach which has two

phases: top-down separation and bottom up merging to

cluster the Metagenomic data based on k-mers frequency

and spearman distance technique. However, the relation-

ships between these two phases are cumbersome. Yang

et al. presented popular MapReducing approach called

Hadoop, which provided high level development platform

for Metagenomic clustering [37]. It facilitated a dis-

tributed file system and cloud environment for classifi-

cation. Map reducing a computational framework with

query supportable large database. MapReduce blueprint

has translated by different programming language such as

Pig [38], Hive [39] and SCOPE [40]. MapReduce has also

applied to organize imbalanced datasets [41] Random

Forest classifier in the field of large data handling

scenario.

Variation in samplings and faster learning environ-

ment have addressed in the current work. However,

threshold values for minority classes were absent during

the mapping phase. Moreover, relationships among

underlying datasets have ignored. In contrast, threshold

values are assured by Jaccard similarity in our motivated

research.
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3 System architecture and methodology

Graph based MapReduce is an integrated framework that

constitute a dynamic processing unit with several inter-

linked parts as illustrated in Fig. 2. Input sequences have

collected from the national center for biological informa-

tion (NCBI) and DNA data bank of Japan (DDBJ) refer-

ences databases. Additionally, real world datasets of

human have collected. Every DNA sequences input file is

represented in FASTA formatas a text-based sequence

alignment, which is passed into next phase.

The proposed system architecture in Fig. 2 is divided

into four phases: Input, Output, Mapper and Reduction

phase. In the mapper phase, DNA sequences are trans-

formed into smallest units/fixed in length K-mers. K-mers

have critical impact in bioinformatics as they determine the

characteristics genome segments, where K-indicates the

length and mers is a Greek word that means part. Suppose a

DNA segment as is AGACCTAA, where AGAC is 4-mer,

AGA is a 3-mer. Proper identification of k-mers helps

faster sequences processing. Another pivotal benefit is that

it exceptionally minimizes the search space during motif

detections and other Metagenomic applications. After

generating k-mers de brujin graph have designed for find-

ing optimal path for genome assembly. Optimal sequences

are encoded by generating similarity metrics. Similarity

metrics is used to find out similarity between two

sequences. Encoded value of similarity metrics is passed

into next phase. In reduction phase, classification approa-

ches for classifying sequences are utilized according to

their similarity. Finally, Jaccard similarity and purity have

imposed for sequence clustering.

3.1 Generating k-mers

The sub parts are known as k-mers, where every K-mers

contains key field that represent the biological information,

these k-mers provides a feasible and compatible environ-

ment for genome assembly. Generating K-mers in a linear

time is a challenging issue for DNA sequences analysis. A

simple and optimal algorithm is proposed for generating

desire substring from n-1 string length. The proposed

algorithm is executed in constant time with linear time per

string/substring generation. This strategy is simple recur-

sive solution with certain parameters. It generates unique

K-mers to reduce errors such as tips and bubbles, which are

shown in overlapping K-mers generation (Algorithm 1).

Fig. 2 System architecture

metagenomic mapping

Fig. 3 Generate a substring (AGT, ATC, etc.) using recursive

approach

Fig. 4 A De-Bruijn graph with k = 3 mers

62 Int. j. inf. tecnol. (March 2017) 9(1):59–75

123



Algorithm 1: Generate k-mers(r, k)
{
// r is the given string contain A, G, C or T.
// k is desire substring length
If given string less than k
{
exit from process
}
For every string r
{
generate substring from j to k// j is initial position
// k is desire length
}
k-mers(r, k)// call the function recursively
}

Suppose a string b = b1b2b3b4………bn with n length. If

experiments generate m length of substring (k-mers), then

subdivide every character from initial string to m position

and next group construct recursively until last position.

This algorithm always runs in constant time. The recursive

function maintains three parameters, namely S is substring

with desire length, R is rest of string and K is desire length.

Figure 3 illustrates an example to generate a substring

(AGT,ATC,…) using the recursive approach.

3.2 De-Bruijn graph

In genome analysis, De-Bruijn graph [42, 43] is built from

nodes of all k-mer of a DNA sequence. A De-Bruijn graph is

a directed graph with certain set of nodes and vertices. Let a

directed graph G = {V, E} where vertices V are set of all

k-mers and edge E is connected path between k-mer and k-1

mer. If k-mer coincide with v1 and k-1 mer coincide with v2,

an edge is substituted between v1 and v2. Reverse edges are

generated when two k-mer and k-1 mer are overlapped.

In de novo assembler [44], constructing de brujin graph is

the first step by using all the k-mers and their neighboring

nucleotides. Let all k-mers include four nucleotide A, C, G, T

which encode in bit with 00, 01, 10, 11; respectively. Thus,

every k-mer needs 2 9 k ? 4 9 2 bits of memory. If a

genome have N diversity, total memory space = N 9 (2 9

k ? 4 9 2).Sometimes, it is necessary to simplification of de

brujin graph without any loss of information or data. Blocks

or chains are interrupting in simplification but it is easily

handle by using sub-graphs. This fragmentation reduces

memory space and shortens the execution time. Whenever,

node v1 has only one incoming edge and v2 has only one

outgoing edge, these two nodes can merge. Basically, a De-

Bruijn graph constructs by the following processes [45]:

1. Construction of k-mers: every overlapping k-mers are

generated from DNA sequences or read. In the present

work, an iterative recursive process is used to construct

k-mers. Every overlap k-mers is considered as an

adjacency neighboring. A unique k-mers is constructed

for de brujin graph construction.

2. Node generation: in the de brujin graph each node N is

represented by the unique k-mer. N node connected

with N1 node by using arc. The initial k-mer

represented the start node and marginal and the last

k-mers represented the ending node of de brujin graph.

3. Edge creation: a directed edge is connected from

N node to N1 node. K-mer of N node indicates as prefix

and N1 represent the suffix of the read. A repeated

k-mer generates a circular arc.

Figure 4 demonstrates an example for a De-Bruijn graph

with k = 3 mers. Map reducing approach [46, 47] is per-

formed in parallel and designed for handling large data set. It

handles large data sets by using parallel hardware and algo-

rithmic approaches. It provides the users a compatible and

feasible environment for large data processing. Basically,

map reducing approach has two phases: mapping and reduce

phase. In the map phase, input file are splits into N number of

subparts with contains key filed. It handles a complicated

operation because it operates every part at a time. Map

reducer adds all spilt part in mapping list. All spilt portions

combine in mapping phase. In genome assembly, large DNA

sequence files are spilt into more sub parts (k-mers). Then all

k-mers include in mapping list. For classifying or similarity

measure, it combines all k-mers. De-Bruijn graph is used to

connect all k-mers and makes a mapping among the k-mers.

It makes a link between the k-mers and each link represent

the mapping between the neighboring k-mers. Connected

edges implicitly represent the presence of information

between two neighboring nodes. To construct a graph in

mapping phase indicates that it generates links between the

k-mers for finding optimal solution.

3.2.1 Error correction

In graph construction process, nodes are formed from a

significant number of chains, loops, blocks or directly

connected edges due to overlapping or repeated k-mers.

This type of formulation increases the graphs complexity,

cost memory space and more time for processing. Thus,

Graph simplification or error correction is important for

finding an optimal or feasible path for genome assembly

without any loss of data or information and reducing

complexity. Graph simplification approach focuses on edge

and node reduction or extraction optimal solution from

original graph to reduce the operational complexity and

redundant mapping among the k-mers. A simplified graph

represents the optimal mapping by removing links, nodes

or structures which is feasible for finding feasible path.
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Error are created in the k-mers generation phase due to

repeated pattern or during sequence generation or data

processing. It is important to remove error after graph

generation. Generally, erroneous data generates two type of

error as demonstrated in Fig. 5, namely (1) tips are short

and dead-end divergent in main path that occurred due to

the end position of the sequence and low divergence and

(2) bubbles which generated when two paths start and end

from the same node due to polymorphism and biological

data divergence. It generally caused random overlapped

two or more tips. Bubbles are especially common of high

diversity data and more frequent density of reads. Bubbles

are also occurs for consequence of error in a long read or

due the re-inserts of reads between the paths and makes a

loop.

Some algorithmic approaches [48, 49] are used to

remove tips and bubbles. The tip chain can be discarded

in a straightforward manner without disrupts the connec-

tivity. This discards information has only local effects but

not affects the genuine sequence. Tips are corrected in

two categories: length and minority count. If the tip

length is less than the k-mers length, thus it can be

removed. It is difficult to reassemble the short read. In the

case of long tips, the arbitrary cut of tips which are

greater than k-mer that can be generate two mistakes. A

tip length is longer than k that indicates original read or

biological data error. To resolve such problem, minority

count is applied. The ‘‘minority count’’ is the properties

where tips are connected with a junction and it have

another path to reach the junction without traverse the

tips. A tip can be removed, if the path from start node to

junction node without traverse the tips, is reachable.

Basically valvet [46] approach removed the tips in such

two criteria. The graph will be simplified when no tips are

present.

Tour bus algorithm [46] is for removing bubbles from

De-Bruijn graph. Bubbles contain similar sequence and

paths are redundant because they start and end at common

nodes. Tour bus is used effective approach to find out

feasible path or solution. Dijjakajta and breath first search

[50] is used to find out redundant path in tour bus algo-

rithm. This algorithm starts from arbitrary node and tra-

verse along the directed graph. Distance is calculated from

origin to end node for every possible path. Optimal path is

considered which has minimum cost. Redundant paths are

merged which belong maximum cost. Tour bus algorithm

merged the node progressively and removes the bubbles

from constructed graph (Fig. 6). Tips and bubbles correc-

tion are occurred recursively until the generation of sim-

plified graph.

After reducing tips and bubbles, a simplified De-Bruijn

graph is generated without loss of any information. A

simplified De-Bruijn graph represents the optimal mapping

between the spilt portions (k-mers) of large data sets. An

optimal mapping provides a compatible environment for

users or programmer. In mapping phase optimal De-Bruijn

graph provides a high scalable and low fault tolerance

environment. From that environment the optimal paths or

Fig. 6 Bus Tour algorithm for

bubbles correction a original

graph, b node are traverse

randomly (green line) and

calculate distance. A, B and A0,
B0 nodes start and end at same

node. Distances are calculated

progressively for both multipath

and c A0, B0 nodes are merged

with A, B because the path cost

of AB is minimum

Fig. 5 Error in construction

De-Bruijn graph. a Tips,

b bubbles
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DNA sequences can be determined, which similarities are

measured by generating similarity metric.

3.3 Similarity matrix

The DNA similarity is concerned with understanding the

DNA information and biological analysis. It is mainly

performed by the comparison of different heterogeneous or

homogenous organism. Sequence comparisons or similarity

measurements play vital rule for biological functional or

evaluation inference. Sequence alignment or similarity

measure compared by searching common character pattern

among the related sequences [51].

String matching is a challenging issue in pattern reor-

ganization or similarity measure. Approximate string

matching is a factor in matching algorithm, small differ-

ence indicates that compared strings are almost similar and

zero return indicates exact similar strings.

In order to handle DNA sequences, it is essential to

differentiate between global and local alignment. Local

alignment is a common approach for DNA stands, which is

more effective for dissimilarity measure between certain

regions of motif sequences. Alignment algorithms search

maximum matching score for source and target sequences.

Maximum matching character or nucleotides indicate high

score and mismatch or penalty for alignment is less

alignment score. The standard way of DNA sequence by a

string with consecutive chains of characters (A, C, G, T).

Typically, string matching problem character of first

position is checking of one strings (reference sequence)

with the first location of other strings (query sequen-

ce).This matching approach proceed until the last character

of query sequence as illustrated in Fig. 7. This method is

time consuming if large data set are used for DNA align-

ment. Dynamic algorithm is used in efficient DNA

sequence alignment [45, 46].

A similarity matrix has designed for DNA sequence length

with equal or unequal lengths. These sequences are generated

from De-Bruijn optimal path traverse. Similarity between

optimal solutions (sequences) in mapper phase. Classification

of sequences are performed from similarity matrix, then the

classifier reduces the sequence class in reduce phase.

In the current work, the similarity matrix has three

phases: initialization, matrix fill and trackback. Suppose a

sequence S1 with m length and another sequence S2 with

n length. The algorithm operates on (n ? 1) 9 (m ? 1)

matrix M. For each of the matrix element (i, j)th are cal-

culated by matching and mismatching score (Algorithm 2).

Algorithm 2:  Similarity_matrix(S1,S2,m,n)
{
//S1 is a DNA sequence with m length
//S2 is another sequence with n length
Begin Check
{
For every  i=0 to m and every j=0 to n
{ 
If M[i] and M[j] is equal then
M[i, j]=1
Else 
M[i, j]=0 
}
}

3.3.1 Initialization

In this phase, matrix M is initialized with two DNA sequences

in top row and left most column. These sequences are generated

from De-Bruijn graph and placed two sequences among the

optimal sequences for similarity measure. Two sequences

AGCTC and AGTT for similarity matrix have considered.

These two sequences are unequal length, so the gap sign (-) can

be used in the matrix initialization, which presented in Table 1.

3.3.2 Matrix fill

Matrix M is starting to fill up from left top corner to bottom

right cornet. Every cell of the matrix is filled up considering

two possible options: if the element or nucleotide i and j is

similar or not similar. If two nucleotide in (i, j)th position is

similar, thus assign ‘1’, otherwise assign ‘0’. When, every cell

is filled up by 1 or 0, then the whole matrix M is consider as

filled up matrix. The formulation of matrix fill up is as follows:

S i; jð Þ ¼ 1; i ¼¼ j

0; i 6¼ j

�
; ð1Þ

where, S(x, y) is the score function of similarity or dis-

similarity score for DNA sequence. Every cell is filled up

using Eq. (1) and after competition phase bottom right

corner holds the last position of the scoring value.

Fig. 7 Local sequence alignment

Table 1 Initialization and

matrix fill
A G T T –

A 1 0 0 0 0

G 0 1 0 0 0

T 0 0 1 1 0

G 0 1 0 0 0

C 0 0 0 0 0
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3.3.3 Trackback

Trackback approach is used to determine the number of similar

nucleotide. It starts from bottom right cell and visit every

diagonal cell up to left top cell. In traversing process, the total

number of ‘1’ is counted. Total number of 1s indicated similar

nucleotide between two sequences as shown in Table 2. Then,

the similarity ratio can be measured, which used to classify the

sequences into two classes, namely in same group or not.

Construction a similarity matrix it is convenient to find out

similarity between two sequences (Algorithm 2). A sequence

is AGTGC and another one is AGTT, Table 2 is used to

construct a similarity matrix between the two sequences. After

trackback, the total number of 1s is computed, which found to

be 3 (Table 2) and the longest DNA sequence length is 5.

Thus, finally the similarity ratio is computed as follows:

Similarity ratio ¼ 3

5
� 100% ¼ 60%: ð2Þ

Afterwards, the similarity group can be classified based

on the threshold value of the similarity ratio. These simi-

larities reduce the ungroup sequence in reducing phase and

reduce cost of memory in big data handling.

3.4 Jaccard classifier

Jaccard index or Jaccard similarity coefficient is a statistical

similarity measurement approach between two data sets to

indentify the degree of similarity between them. A significant

number of supervised and unsupervised classification algo-

rithms, such as UCLST [52], CD-HIT [53], which used for

Metagenomic samples classification. Improved Metagenomic

assembly allows spices diversity and reduces computational

complexity inferred from successful sequence classification or

grouping. In MapReducing approach, Jaccard classifier is used

for Metagenomic classification in the reducing phase. Jaccard

similarity uses minimum hashing [54] for quickly and accurate

computation for whole Metagenomic classification. Clustering

result provides different taxonomic class and using threshold

value provides a same classification class. Jaccard classifier

provides a quality of classification class and reduces groups in

reducing phase.

Given a sequence represented as a set of k-mers, the

similarity between two sequences can be defined by Jac-

card classifier. If a sequence S1 with k-mers sets denoted by

JS1 and second sequence S2 with k-mers sets denoted by

JS2, then Jaccard similarity can be defined as:

S S1; S2ð Þ ¼ Js1 \ Js2j j
Js1 [j jJs2

; ð3Þ

here S(S1, S2) is the similarity measurement scores. The

expression by independent permutation Sn is defined. An

independent family, F (classifier group) is defined with any

set of independent family element X is randomly chosen.

Then, the probability P is given by:

Pðminf uðxg ) ¼ u xð Þ ¼ 1

X
; ð4Þ

where u(x) is the independent probability of X that equal to

the minimum element of X under the permutation of u.

Thus, any the probability of an element becomes the

minimum number of permutation values [48]. Given a set

of input l with k-mers (maximum length = 4k) and a min-

wise independent permutation u, then the similarity mea-

sure for two data sets JS1 and JS2 is given by:

Pðminf uðJs1g ) ¼ Pðminf uðJs2g ) ¼ Js1 \ Js2j j
Js1 [j jJs2

¼ S S1;S2

� �
: ð5Þ

The minimum permutation probabilities of two sets are

equal to the similar of the Jaccard similarity. The similarity

function provides the degree of their similarity. Based on

their similarity, the sequences are classified into groups.

Calculated similarity value of two sequences is equal or

greater than prescribed threshold value h, then this two

sequences are in same group (Algorithm 3).

Algorithm 3:Jaccard_classifier (A,S)
{
// A is initial array
//S is whole sequences 
RepeationBlock
{
Choose Si from S // where Si is a DNA sequence
Assign A[Si] as a new cluster label
Remove Si from S

Loop start Sj → S do
{

if ( 
∩

| ∪|

|| )≥ then

{
Add A[Si] to A[Sj]

Remove Sj from S
}
} Loop End
Until S is empty and all sequenced are completed
// Repeating block end

return A
}

Table 2 Similarity matrix and

Trackback process (green

shade)

A G T T –

A 1 0 0 0 0

G 0 1 0 0 0

T 0 0 1 1 0

G 0 1 0 0 0

C 0 0 0 0 0
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When the threshold is assigned 0.95 then reducer phase

allows those clusters which similarity is 95%. That’s mean

95% similarity sequences are allowed by reducer which is

in same class.

3.5 Purity of clustering

Clustering purity is an external evaluation approach for

clustering quality and the performance of class generation.

Clustering evaluation demands a reliable and independent

measure for determining the elements of clusters, which are

coherently connected similar or dissimilar groups. In

common groups, every element shares the same feature and

categories. The most popular cluster evaluation is cluster-

ing purity. Purity [55] focuses on the frequency of cluster

categories in each same cluster. Let C is the set of cluster,

N is the set of cluster categories and M is the number of

cluster items in each cluster. The Purity expression by

measuring the maximum precession value is given by:

Purity ¼
X
i

Cij j
M

max ðPrecission Ci;;Nj

� �
Þ: ð6Þ

The precision of cluster group Ci with Nj categories can

be defined as:

Precission Ci;Nj

� �
¼

Ci \Nj

�� ��
Cij j : ð7Þ

The purity determines the percentage of each cluster

items consist in each cluster. It takes its value [0; 1]. In

the current study, all clusters items are considered to exit

in same cluster group, which indicates 100% accurate

clustering group. In map reducing approach, reducer

measures the cluster purity. Based on purity of

clustering, reducer ranked cluster group in cluster list. In

cluster list, highest purity cluster belongs in top position

and so on. Purity of clustering provides the reducer to

represent the clustering group in optimal way and effi-

cient manner.

4 Correlation between approaches in Map
and Reduce phase

Mapping operation is performed through three phases:

K-mer, De-Bruijn graph and similarity matrix. Input

sequences are spilt into N numbers of unique k-mers.

K-mers generation is a substring process by using recursive

algorithm. Subparts of sequences (K-mers) are the initial

stage of mapping phase [56–58]. K-mers are small unit of

input sequence. A collection of K-mers are constructing

De-Bruijn graph. In De-Bruijn graph every nodes are

consist the k-mers and every edges are mapping direction

between the k-mers. De-Bruijn graph represents the total

mapping scenarios among the k-mers. Optimal solutions

(sequences) are generated from De-Bruijn graph by random

traversing. The closeness of generated sequences is mea-

sured by using similarity matrix. Closeness is measured by

similarity ratio. Reducing phase allows those sequences

which covers desire similarity ratio. Satisfied sequences

whose covers the similarity ratio are passed in reduced

phase. In reducing phase, Jaccard similarity is used to

classify the sequences in certain class. Maximum similarity

between the sequences belongs the same class as illustrated

in Fig. 8. Purity of classification arranges the classification

groups in an order based on their purity value. Purity of

classifier indicates that specific class belong maximum

Fig. 8 Correlation among the

components of mapping and

reducing phase
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accurate sequences in same class. According to their purity

value, the class is ordered and is represented in a hierar-

chical structure.

5 Result and implementation

In the current study, object oriented programming (OOP)

using Java was applied for the development of this

analysis. Java is platform independent framework that

helps to design a small memory space system. To eval-

uate the performance of the proposed framework

(MapReduce-based technique), three different types of

datasets from three different species, namely the Escher-

ichia coli, Gluconobacter oxydans and Acinetobacter

baumanniias given in Table 3 were collected and evalu-

ated [59]. Every datasets have unique sequence id with

spices name and different cluster group. The sequences

have different length of Reads. Reads are split into dif-

ferent length of k-mers.

The simulation results measured several metrics to

evaluate the Metagenomic data analysis by computing the

accuracy rate, speed up and execution time using the fol-

lowing expressions:

• Accuracy: measures how accurately classifier classified

the elements within a group. It counts the total number

of classified groups to total number of elements. It

expresses in percentage (%) as follows:

Accuracy ¼ TG

TN
� 100%; ð8Þ

where TG is the total number of groups and TN is total

number of elements.

• Speedup: is a ratio between execution time of tradi-

tional approach and MapReduce-based approach (pro-

posed), which given by:

Speedup ¼ Ttd

Tmr
; ð9Þ

where Ttd is a run time for traditional approach and Tmr
is the run time.

• Timeliness or execution time: measures the total time

spent by the Map reducing phase including every

operational steps in the proposed framework.

These evaluation metrics are used to evaluate the pro-

posed framework; additionally comparisons to other

approaches are conducted.

5.1 Performance of k-mers

The generations of k-mers evaluation are measured by

execution time and speedup. For comparing the error rate,

it is required to construct De-Bruijn graph. In De-Bruijn

graph construction, the sequence error is added and

enhanced the graph complexity for finding optimal paths.

For that reasons, the k-mers performance evaluation is

important for accurate graph generation. Different lengths

of k-mers are used to measure the execution time and

speedup for every length of k-mers. Moreover, comparative

speed up is compared with MapReduce-based approach

and the previous research work MSuPDA in [60].

In k-mer generation linear recursive substring genera-

tion is used. The MSuPDA is used, divided and conquered

approach for sequence segmentation. The K-mers perfor-

mance evaluation for different k-mer lengths for the

Table 3 Three types of metagenomic data records

Species name Cluster number Reads

Escherichia coli 3 49,996

Gluconobacter oxydans 4 99,998

Acinetobacter baumannii 2 4000

Table 4 K-mers performance evaluation for different k-mer length

Species name Number of

read

K-mers

length

MapReduce-based approach MSuPDA

Execution time

(s)

Speed up

(%)

Accuracy

(%)

Execution time

(s)

Speed up

(%)

Accuracy

(%)

Escherichia coli 49,996 3 102.34 72.4 78.5 130.21 65.3 69.56

5 98.45 75.6 77.5 128.25 64.3 68.70

9 84.5 79.5 79.1 125.34 62.5 63.21

Gluconobacter

oxydans

99,998 3 145.35 67.25 74.6 176.45 59.4 58.6

5 139.45 69.10 72.10 167.45 58.3 57.5

9 135.72 72.32 69.78 165.34 54.9 56.9

Acinetobacter

baumannii

4000 3 35.5 80.3 77.5 63.6 72.5 64.6

5 32.6 79.8 80.3 58.4 72.5 66.5

9 28.5 77.5 81.5 55.7 70.5 64.3
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different dataset types is illustrated in Table 4. In addition,

the proposed approach is compared to the MSuPDa algo-

rithm based on execution time, speedup and accuracy

(Table 4).

Table 4 illustrated that the recursive substring genera-

tion algorithm required linear time, while the MSuPDA

spent more time for every k-mers generation. Moreover,

the MSuPDA is less accurate than the proposed approach

in k-mers generation. When the spilt portions not satisfy

the k-mers length, the MSuPDA discarded the length,

however the recursive algorithm overcome the problem.

Table 4 established that the proposed framework generated

accurate unique k-mers and generated an error free De-

Bruijn graph. Figure 9 demonstrated a comparative anal-

ysis of the proposed algorithm and to the MSuPDA

approach.

Figure 9 depicted that the proposed approach reduced the

execution time with respect to the increase of k-mers lengths.

When, the k-mers length is increased, the proposed approach

required less time to split the whole genome reads. The

MSuPDA required similar execution time for every length of

k-mers as demonstrated in Fig. 9a. However, the MapRe-

duce-based technique achieved higher speed up than

MSuPDA for every k-mers length as illustrated in Fig. 9b.

When the lengths of k-mers increased, the speed up value of

the proposed algorithm is slightly increased. Similar accu-

racy is noticed for every k-mers generation from sequence

reads. Increases the sequence length have no remarkable

effects on the proposed approach accuracy. The MSuPDA

accuracy is decreased with increased data sets. In MapRe-

duce-based analysis, about 80% accuracy rate are computed

where MSuPDA achieve maximum 70% accuracy as

demonstrated in Fig. 9c.

A comparative analysis of the proposed approach to the

MSuPDA in terms of the execution time and the accuracy

rate for the three data sets is given in Fig. 10.

Figure 10a established that the Gluconobacter oxydans

spices required more time than other two spices because near

about 1 million reads belongs in this data set. On contrary, the

Acinetobacter baumannii data set required less timing for

k-mers generation because it has near about 4000 reads. The

proposed approach required linear time for k-mers generation

for every data set. Figure 10b illustrated the accuracy com-

parison between the proposed approach and MSuPDA for

three data sets. More accuracy is noticed for k-mers five and

nine of newly proposed approach for Escherichia coli and

Acinetobacter baumannii. The accuracy rate of these two

spices is near about more than 75%, while the MSuPDA

measure the accuracy for the same spices is not greater than

70%. In both algorithms measure less accuracy for every

Fig. 9 Performance evaluation for different k-mers of Escherichia coli: a execution time measurement, b speed up, c accuracy
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k-mers of Gluconobacter oxydans spices. When the data size

is increased execution time and speedup increase and accu-

racy becomes decreased.

5.2 Performance of De-Bruijn graph

In noise free simulation, De-Bruijn graph is an efficient

approach for genome assembly. It establishes a link among

the read by generating k-mers. The proposed technique has

constructed an error free graph for finding an optimal path.

Construction time, error rate and accuracy for finding

optimal paths are the performance parameters for graph

construction. Optimized De-Bruijn graph or error free De-

Bruijn graph ensure that the performance rate will be high.

De-Bruijn-based MapReduce (proposed) method is com-

pared to another graph based approach Edena [24]. Edena

used suffix tree array for overlapping reads. Edena is a

bidirectional graph construction and can traverse twice

between two nodes. It generates high complexity for

traversing to find optimal path. Several k-mers generation

performance with construction time and accuracy has been

tested under De-Bruijn graph-based MapReduce as given

Fig. 10 Execution time and accuracy rate for three data sets. a Execution time of k-mers (3, 5 and 9) of the three spices, b accuracy comparison

between our approach and MSuPDA

Table 6 Performance

evaluation of Edena
Sequence length (bp in thousands) K-mers Construction time (s) Accuracy (%) Error rate (%)

3500 5 242.45 75.34 20.5

10 255.50 73.21 18.45

15 248.45 72.50 19.85

4200 5 270.45 72.45 24.25

10 275.25 73.55 19.50

15 280.50 72.45 18.75

4600 5 285.50 75.65 22.50

10 290.55 72.45 19.45

15 305.75 70.55 18.75

Table 5 Performance

evaluation of De-Bruijn graph
Sequence length (bp in thousands) K-mers Construction time (s) Accuracy (%) Error rate (%)

3500 5 202.50 85.34 10.5

10 175.57 83.21 11.25

15 174.45 80.50 12.75

4200 5 220.50 81.50 14.25

10 212.23 79.45 15.50

15 204.45 78.50 17.50

4600 5 230.15 77.50 9.50

10 224.50 75.50 11.50

15 219.45 74.50 15.50
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in Table 5, while the performance evaluation of Edena is

given in Table 6.

Table 6 demonstrated that Edena required more time for

establishing link between the nodes because it used bidi-

rectional approach. Accuracy rate of the Edena is com-

paratively lower than the accuracy of the proposed De-

Bruijn graph based MapReduce approach. Moreover, the

error rates are higher than the obtained using the proposed

approach in Table 6. Thus, the De-Bruijn graph is faster

than Edena during graph construction.

Figure 11 illustrated a comparative analysis between the

De-Bruijn graph and Edena with respect to the average

excitation time for graph generation, accuracy and the error

rate.

Figure 11a depicted that both algorithms suffer exces-

sive execution time when sequence length is increased. The

accuracy of De-Bruijn graph is slightly decreased, when

the sequence length is increased for every k-mers. Fig-

ure 11b illustrated that the De-Bruijn graph average accu-

racy was not less than 75%, while the Edena average

accuracy was near to 72%. In addition, the error rate of

both algorithms was computed. The error rate measures the

numbers of redundant nodes are used in graph construction.

A simplified graph reduced error and computational com-

plexity. Figure 11c demonstrated that the De-Bruijn and

Edena had similar error rate for base length 3000(thou-

sands) and error rate still similar for every sequence length.

However, the Edena error rate is slightly increased due to

overlapping k-mers and bidirectional edges creation.

5.3 Accuracy of mapping and reduction capabilities

In this section, the accuracy of mapping and reduction

capabilities of the proposed framework was narrated,

where the accuracy rate is important when mapping and

reduction approaches are used with large date sets. High

mapping and reduction rate indicates the classification time

for new instances. System complexity is reduced when the

reduction rate is increased. Another MapReducing tech-

nique, namely the SSMA-SFLSD [61] is considered with

De-Bruijn graph based MapReduce. This algorithm oper-

ates two steps: selection and generation. In selection step,

the memetic algorithm [61] is used to select the promising

number of instances from the datasets. In generation phase,

different evaluation algorithms in [62, 63] were used to

adjust the selected instances.

Fig. 11 Comparative analysis between De-Bruijn graph and Edena. a average excitation time for graph generation, b accuracy, c error rate
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Tables 7 and 8 included the running time calculations

for the mapping and reduction phase with different

sequence length for the proposed framework and the

SSMA-SFLSD, respectively. During the reduction phase,

classification time is considered as a reduction time; also

the mean (average) and the standard deviation are com-

puted for mapping time and classification time. Mapping

time measure from total time spends in mapping phase.

Tables 7 and 8 established that when the length of

k-mers increased, the classification time is decreased. In

the proposed framework, the mapping phase required more

time than the reduction process because in mapping runs

more sub-process than reduction phase. Figure 12 demon-

strated a comparison between the proposed approach and

the SSMA-SFSD with respect to the average running time.

Figure 12a established that in the mapping phase, the

proposed frame work required less time than the SSMA-

SFSD. The mapping time is lightly increased when

sequence length is increased. In small sequence length, the

k-mers length has no significant impact in mapping phase,

Table 7 Accuracy evaluation

of the proposed approaches for

different data length

Sequence length (bp in thousands) K-mers Mapping time (s) Classification time (s)

Avg Std Avg Std

3500 5

835.34

123.45 1124.26 235.45

10

774.56

105.45 1150.77 215.67

15

723.23

98.25 1560.35 202.35

4200 5

945.67

137.25 1235.67 255.65

10

867.56

124.58 1103.45 225.34

15

853.45

118.35 1045.75 205.33

4600 5

1022.55

145.50 1450.25 265.32

10

987.45

138.20 1225.55 254.57

15

923.25

125.25 1105.75 248.56

Table 8 Accuracy evaluation

of SSMA-SFLSD for different

data length

Sequence length (bp in thousands) K-mers Mapping time (s) Classification time (s)

Avg Std Avg Std

3500 5

1845.34

403.45 1579.93 557.01

10

1779.26

395.85 1606.44 537.23

15

1693.23

388.65 2016.02 523.91

4200 5

1905.47

537.05 1691.34 577.21

10

1827.56

524.38 1559.12 546.9

15

1843.65

518.32 1501.42 526.89

4600 5

2022.35

545.50 1905.92 586.88

10

1997.05

538.20 1681.22 576.13

15 527.25 1561.42 570.12
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thus the SSMA-SFSD achieved the same performance as

the proposed framework, when the data size is small. In the

reduction phase, the proposed framework performed better,

however it required more time than the mapping phase.

Similarly, the SSMA-SFSD required more time in the

reduction phase as demonstrated in Fig. 12b. The speedup

for both algorithms is computed from the reduction steps

average time when several elements are classified in par-

allel. When the classification instances increased, the speed

up value is increased. The results depicted that both algo-

rithms have similar speedup, however the proposed frame

work performed faster than SSMA-SFSD when classified

elements are increased.

Consequently, the preceding results established the

superiority of the proposed approach over the other algo-

rithms. Nonetheless, it is essential to synthesis the con-

vinced research topic more comprehensively to address the

following issues: (1) identify overlapping sequences and

(2) use noisy datasets. Thus, in future demonstration,

dynamic and extensive reasoning are mandatory to address

the challenges mentioned above in order to cover the larger

datasets and scopes. This will result better performance and

applicability of the system.

6 Conclusion

In the current work, De-Bruijn-based-MapReducing

approach and classification technique provided significant

results for big data analysis. It reduced the error rate, system

fault and increase speedup and accuracy in both mapping and

reducing phase. A large number of metagenomic data are

manipulated in map reducing approach. It executed in par-

allel and reduced the execution time and space. With the

increased number of sequence of species, the proposed sys-

tem efficiently handled the datasets and accurately classified.

The results depicted that the proposed approach is capable to

handle and classify large metagenomic data sets.

The experimental results ensured that the proposed map

reducing approach with De-Bruijn graph and Jaccard

similarity can easily handle the large scale data with low

space, well speedup and less execution time.
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18. López V, del Rı́o S, Benı́tez J, Herrera F (2014) Cost-sensitive

linguistic fuzzy rule based classification systems under the

MapReduce framework for imbalanced big data. Fuzzy Sets Syst

258:5–38

19. Miner D, Shook A (2012) MapReduce design patterns: building

effective algorithms and analytics for Hadoop and other systems.

O’Reilly Media, Inc., Sebastopol, CA

20. Dean J, Ghemawat S (2003) MapReduce: simplified data pro-

cessing on large clusters. In: Proceedings. of Symposium on

opearting systems design and implementation, vol 6, pp 1–10

21. Dean J, Ghemawat S (2004) MapReduce: simplified data pro-

cessing on large clusters. In: OSDI 2004

22. Yinan W, Renner DW, Albert I, SzparaL ML (2015) VirAmp: a

galaxy-based viral genome assembly pipeline. GigaScience 4:19

23. Chang Z, Li G, Li J, Zhang Y, Ashby C, Liu D, Cramer C, Huang

X (2015) Bridger: a new framework for de novo transcriptome

assembly using RNA-seqdata. Genome Biol 16:30

24. Hernandez D (2008) De novo bacterial genome sequencing:

millions of very short reads assembled on a desktop computer.

Genome Res 18:802–809

25. Wang S, Cho H, Zhai CX, Berger B, Peng J (2015) Exploiting

ontology graph for predicting sparsely annotated gene function.

Bioinformatics 31:i357–i364

26. Yuzhen Y, Haixu T (2016) Utilizing de Bruijn graph of meta-

genome assembly for metatranscriptome analysis. Bioinformatics

32(7):1001–1008

27. Christopher BB (1997) dentification of genes in human geno-

micdna. Ph.d. Thesis. Stanford University, Stanford, CA,USA

28. Gens P, Enrique B, Roderic G (2000) Geneid in drosophila.

Genome Res 10:511–515

29. Arthur D, Kirsten B, Edwin P, Steven S (2007) Identifying bac-

terial genes and endosymbiontdna with glimmer. Bioinformatics

23:7

30. Ewan B, Michele C, Richard D (2004) Gene wise and genome

wise. Genome Res 14:988–995

31. Leila T, Oliver R, Saurabh G, Alexander S, Michael B, Serafim

B, Burkhard M (2003) Agenda: homology-based gene prediction.

Bioinformatics 19:1575–1577

32. Green P, Lipman D, Hillier L, Waterston R, States RD, Claverie

JM (1993) Ancient conserved regions in new gene sequences and

the protein databases. Science 259:1711–1716

33. Noguchi H, Park J, Takagi T (2006) MetaGene: prokaryotic gene

finding from environmental genome shotgun sequences. Nucleic

Acids Res 34(19):5623–5630

34. Hoff KJ, Lingner T, Meinicke P (2009) Orphelia:predicting genes

in metagenomic sequencing reads. Nucleic Acids Res 37:W101–

W105

35. Besemer J, Borodovsky M (1999) Heuristic approach to deriving

models for gene finding. Nucleic Acids Res 27(19):3911–3920

36. Yang B, Peng Y, Leung H, Yiu SM, Qin J, Li R, Chin FYL

(2010) Metacluster: unsupervised binning of environmental

genomic fragments and taxonomic annotation. In: Proceedingsof

the first ACM international conference on bioinformatics and

computational biology, pp 170–179

37. Yang X, Zola J, Aluru S. (2011) Parallel metagenomic sequence

clustering via sketching and maximal qQuasi clique enumeration

on map-reduce clouds. In: Parallel and distributed processing

symposium (IPDPS), 2011 IEEE International, pp 1223–1233

38. Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig latin:

a not-so-foreign language for data processing. In: SIGMOD

pp 1099–1110

39. Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Zhang N,

Anthony S, Liu H, Murthy R (2010). Hive-a petabyte scale data
warehouse using hadoop. In: ICDE, pp 996–1005

40. Chaiken R, Jenkins B, Larson PA, Ramsey B, Shakib D, Weaver

S, Zhou J (2008) Scope: easy and efficient parallel processing of

massive data sets. PVLDB 1(2):1265–1276
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