
ORIGINAL RESEARCH

An unsupervised learning based neural network approach
for a robotic manipulator

Akanshu Mahajan1 • H. P. Singh2 • N. Sukavanam3

Published online: 22 February 2017

� Bharati Vidyapeeth’s Institute of Computer Applications and Management 2017

Abstract This paper presents a neural network approach

for solving the inverse kinematics of a robotic manipulator.

Inverse kinematics equations are more challenging than the

forward kinematics equations and therefore are more

computationally complex to solve. Here, we are using a

neural network approach due to its ability to give more

accurate results in complex situations as compared to the

other approaches. Moreover, we are using this model for

trajectory tracking of a two DOF robotic arm to test its

validity in real life situations.

Keywords Robotic manipulator �
Artificial neural network � Trajectory tracking �
Kinematics � Robotic ball catching

1 Introduction

Forward kinematics problem calculates the end effector’s

location in the Cartesian Space using joint variables as input.

Conversely, inverse kinematics problem deals with

obtaining the required manipulator joint values for a given

value of end effector’s position and orientation in Cartesian

Space. In case of rotational joints, the joint variables are the

angles between the links and in the case of prismatic joints,

these are the angles between the link extensions [1, 2].

It is a quite established fact that solving the inverse

kinematics problem is more challenging and complex as

compared to the forward kinematics problem [1–4]. The

complexity of the problem is described by the robot’s

geometry and the nonlinear trigonometric equations that

describe the relationship between Cartesian frame and co-

ordinate frame. The fundamental methods to solve inverse

kinematic problem are: geometric, algebraic and iterative

methods. A closed form solution is desirable for many

applications but it is difficult to find it using the traditional

methods as the number of degrees of robotic manipulator

increases [3, 4]. Application of neural networks in the field

of image recognition, speech recognition, data fitting etc.

show us their capability to work with complex functions

[5, 6]. A neural network architecture with 6 sub-neural

networks to solve the inverse kinematics problem for

robotics manipulators with 2 or higher degrees of freedom is

proposed in [7]. In Ref. [8], Jacobian Matrix is used to solve

the problem of inverse kinematics with neural network. In

Ref. [10], an evolutionary approach based on a real-coded

genetic algorithm is used to obtain the solution of the

multimodal inverse kinematics problem of industrial robots.

A neural network to produce the solution to the inverse

kinematics problem for a three-link robotic manipulator is

investigated in [14]. The neural network is trained using the

data provided by the forward kinematics to learn the inverse

forward mapping of the configuration space.

This paper investigates the use of neural networks to

solve the inverse kinematics problem for a two degree of

freedom (DOF) robotic manipulator using unsupervised

& H. P. Singh

harendramaths@gmail.com

Akanshu Mahajan

akanshumahajan@outlook.com

N. Sukavanam

nsukavanam@gmail.com

1 Department of Electronics, Sri Venkateswara College, Delhi

University, Delhi 110021, India

2 Cluster Innovation Centre, Delhi University, Delhi 110007,

India

3 Department of Mathematics, Indian Institute of Technology,

Roorkee 247667, India

123

Int. j. inf. tecnol. (March 2017) 9(1):1–6

DOI 10.1007/s41870-017-0002-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-017-0002-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-017-0002-2&domain=pdf

learning. We only give the end-effectors’ Cartesian coor-

dinates as input to the neural network and expect the neural

network to give us the joint angles as output. The

remainder of this paper is organized as follows. Problem

formulation is presented in Sect. 2. Numerical simulation

results are included in Sect. 3. Final conclusion is given in

Sect. 4.

2 Problem formulation and neural Network
Implementation

Consider a hypothetical robotic manipulator for testing the

proposed algorithm. It is a two-link planar manipulator

with rotational joints and the link lengths are given by:

L1 ¼ 4; L2 ¼ 5 For Problem 1ð Þ
L1 ¼ 0:5; L2 ¼ 0:5 For Problem 2ð Þ

ð1Þ

The joint angles of the robotic manipulator have a range of

[0:2p]. The workspace of the robotic arm can be given by

Eq. (2)

L1 � L2j j � x2 þ y2
� �1=2 � L1 þ L2 ð2Þ

The calculation of inverse kinematic solution for any values

of x-coordinate and y-coordinate satisfying the above con-

dition is possible using the proposed algorithm. For the

values of x-coordinate and y-coordinate not satisfying the

above equation, the result will be ambiguous since the

manipulator cannot reach that point. Figure 1 shows the

representation of a two degrees of freedom robotic manip-

ulator with OA = L1 and AB = L2. The axis of rotational

joints of these links is perpendicular to their plane.

Forward kinematics is the use of known parameters of a

robotic manipulator along with q1 and q2 to find the x-

coordinate and y-coordinate in the Cartesian coordinate

system. The forward kinematic equations for the two link

planar manipulator given in Fig. 1 are given as

xe ¼ L1 cos q1ð Þ þ L2 cos q1 þ q2ð Þ
ye ¼ L1 sin q1ð Þ þ L2 sin q1 þ q2ð Þ

ð3Þ

where L1 and L2 represent the link lengths and q1 and q2

represent the known joint angles.

To test the validity of the proposed algorithm, we have

the following two problems.

2.1 Problem 1

The robotic arm is required to draw a circular trajectory in

its workspace. The points on this trajectory is given by the

parametric equation of the circle

xp ¼ xc þ r cosH

yp ¼ yc þ r sinH

H ¼ 0 : 2p½ �
ð4Þ

where r is the radius of the circle, (xp, yp) are the coordinates

of the centre of circle and H is the parametric variable.

The neural network is executed for every increase inH by

one degree in Eq. (4) till it reaches 2p, therefore forming a

circular trajectory. The neural network gives the inverse

kinematic solution every time H increases and thus we end

up having the angles for a two degrees of freedom robotic

manipulator which would result in a circular trajectory.

2.2 Problem 2

The robotic arm is required to catch a ball approaching in

its workspace. The trajectory of the ball is supposed to be

given by the following equation

xb ¼ �2 þ 0:15t2 � 0:01t3

yb ¼ �4 þ 0:6t2 � 0:04t3 � 0:0225t4 þ 0:003t5 � 0:0001t6

ð5Þ

The time (t) is incremented by 0.2 till it reaches its

maximum value i.e. 10. For every sample value, the slope

of the line joining the ball and end-effectors’ position is

calculated. The inverse of the slope is calculated which

gives us the angle. The derived angle is used as a variable

in Eq. (6) which acts as an input to the neural network.

xp ¼ o1 þ v cos b

yp ¼ o2 þ v sin b

v ¼ k � d
b ¼ tan�1 yb � o2ð Þ= xb � o1ð Þ

ð6Þ

Fig. 1 A two link planar manipulator

2 Int. j. inf. tecnol. (March 2017) 9(1):1–6

123

Here (yb - o2) and (xb - o1) are always taken to be pos-

itive, v represents the velocity of the robotic arm which

keeps on decreasing as the ball approaches the end-effector

and k is taken to be the constant initial velocity. Once the

ball is caught by the manipulator, it follows the trajectory

of the ball for some time before coming to rest. For the

manipulator to show good results, it is important that the

ball should enter the workspace of the manipulator as early

as possible.

2.3 The artificial neural network

Since there is a significant amount of research going on to

develop artificial systems that can respond to environ-

mental changes intelligently and not in a pre-programmed

manner, a lot of algorithms have been proposed by dif-

ferent authors for the same. Fuzzy logic and PID controller

based systems have already made their way into various

industries but in the past decade a considerable amount of

research has been done in the area of artificial neural net-

works [7–10]. Artificial neural networks have proved to be

more feasible and accurate in complex tasks such as image

processing and have yielded great results even in an

undesirable situation.

In this paper we are solving the inverse kinematics

problem for a two-DOF robotic manipulator using a feed-

forward neural network which has two input neurons, four

hidden neurons and two output neurons as shown in

Fig. 2.

In Fig. 2, the x-coordinate and y-co-ordinate is given as

an input to the neural network and the angles q1 and q2 are

the outputs. The transfer function for the hidden layer is

taken to be a sigmoid function.

2.4 Implementation

The training algorithm used for the neural network is

unsupervised learning i.e. no prior target data set is given to

the neural network. This algorithm is different from other

algorithms because it gives us a method to implement

neural network controller on robots with less data

requirement i.e. no data is required initially [8, 9, 12].

Hence, the memory consumed by desired output matrix is

eliminated. Whereas, in other algorithms we require a

desired output matrix for supervised learning [11–13].

The unsupervised learning is implemented by consid-

ering that the neural network has an invisible layer after the

output layer having two neurons each of which contains

forward kinematics equation for x-coordinate and y-coor-

dinate respectively. The input to this invisible layer is q1

and q2, respectively and the outputs are o1 and o2,

respectively, given by Eq. (7).

o1 ¼ L1 � cos q1ð Þ þ L2 � cos q1 þ q2ð Þ
o2 ¼ L1 � sin q1ð Þ þ L2 � sin q1 þ q2ð Þ

ð7Þ

An important fact about the invisible layer is that this layer

is not directly connected to the output layer using any

weight and hence updating the weight is not done in this

layer. This approach can be represented by the block dia-

gram given in Fig. 3.

The desired output values of the neural network are the

inputs (xp, yp) only and therefore, the error of the neural

network is calculated using the formula given in Eq. (8).

E ¼ xp � o1ð Þ2þ yp � o2ð Þ2
� �h i

ð8Þ

The objective is to minimize this error using artificial

neural network. This is done by updating weights using

delta (d) which is the partial differentiation of error with

respect to weights for which the equations are given by

d i, jð Þ ¼ oE=oW i,jð Þ i ¼ 1 : 4½ �; j ¼ 1; 2½ � ð9Þ
d k,lð Þ ¼ oE=oW k,lð Þ k ¼ 1; 2½ �; l ¼ 1 : 4½ � ð10Þ

Equation (9) calculates delta for hidden layer and Eq. (10)

calculates delta for input layer. The updated weights are

given by the formula

Fig. 2 The architecture of neural network Fig. 3 Block diagram representation of invisible layer

Int. j. inf. tecnol. (March 2017) 9(1):1–6 3

123

W n þ 1ð Þ ¼ W nð Þ � learning rateð Þ � dð Þ ð11Þ

Here n represents the iteration number and learning rate is

taken according to the problem. The maximum number of

iterations is 5000 and the neural network stops processing

if the error reaches below a certain threshold value set by

the user.

3 Results

3.1 Problem 1

The coordinates of the points on the desired trajectory,

which is a circle of radius one having center at (3, 4)

are given as an input to the neural network and H is

varied from [0:2p] in steps of one degree. We were

able to obtain satisfactory results using the above

proposed algorithm. Figure 4 shows the desired tra-

jectory and the actual trajectory of the robotic

manipulator.

It is evident from Fig. 4 that there is a negligible amount

of difference in both the trajectories. Figure 5 shows the

value of error for each input sample.

It is evident from Fig. 5 that for every input sample, the

error converged to a value less than the threshold value

which was taken to be 0.0002.

Artificial neural networks are considered to be compu-

tationally complex and time consuming due to high number

of iterations. But in our model, the maximum number of

iterations taken to reach the threshold error value is 451,

thereby proving its efficiency. The number of iteration

along with input sample is given in Fig. 6.

The convergence of error with respect to the number

of iterations for first input value (which took the maxi-

mum no. of iterations) is shown in Fig. 7. As expected

from a neural network controller, the error converges to

zero.

3.2 Problem 2

In this problem, the coordinates of the trajectory of ball is

given by Eq. (5) and the robotic manipulator trajectory is

given by Eq. (6). The above proposed algorithm performed

exceptionally well and gave satisfactory results. Figure 8

shows the ball trajectory and the actual trajectory of the

robotic manipulator whereas Fig. 9 shows the number of

iterations with respect to the input sample.Fig. 4 Actual trajectory versus desired trajectory

Fig. 5 Error/input sample

Fig. 6 Number of iterations versus input Sample

Fig. 7 Error versus number of iterations

4 Int. j. inf. tecnol. (March 2017) 9(1):1–6

123

As can be seen in the above figure, some the samples

stopped only when the number of iteration exceeded the

threshold value which was set to be 5000. This is because of the

limitation of manipulator’s workspace. The desired location of

the end-effector’s was out of reach due to constrained motion

and hence the neural network could not converge. But as soon

as the ball enters the workspace of the robotic arm, the algo-

rithm starts to converge within very little iteration.

Figure 10 shows that the error remained above the

threshold value when the ball was outside the workspace of

the robotic manipulator. But as soon as it entered the

workspace of the robotic manipulator, the error fell below

the threshold value. The threshold value of error in this

problem is 0.0002.

4 Conclusion

The results shown in the previous section are obtained

using Microsoft Excel. The inverse kinematics problem of

a robotic manipulator is solved by an artificial neural net-

work using unsupervised learning. The solution is useful

for practical purposes since the error is negligibly small. It

would also be better than already used methods because of

its ability to adapt itself with the change in environmental

conditions. The results show promising trajectory tracking

capabilities and hence the authors will try to apply this

work in real world problems.

Acknowledgements This work is financially supported by university

of Delhi, New Delhi, India.

References

1. Lee GCS (1982) Robot arm kinematics, dynamics and control.

Computer 15(12):62–79

2. Fu KS, Gonzalez RC, Lee CSG (1987) Robotics-control, sensing,

vision and intelligence. McGraw-Hill, Singapore

3. Aristidou A, Lasenby J (2009) Inverse kinematics: a review of

existing techniques and introduction of a new iterative fast solver.

Cambridge University Engineering Department, Technical

Report

4. Kucuk S, Bingul Z (2006) Robot kinematics: forward and inverse

kinematics. In: Cubero S (ed) Industrial robotics: theory, mod-

elling and control. InTech, pp 117–148

5. Daugman JG (1988) Complete discrete 2D Gabortransforms by

neural networks for image analysis and compression. IEEE Trans

ASSP 36:1169–1179

6. Lippmann RP (1989) Review of neural networks for speech

recognition. Neural Comput 1:1–39

7. Daya B, Khawandi S, Akoum M (2010) Applying neural network

architecture for inverse kinematics problem in robotics. J Softw

Eng Appl 3:230–239

8. Hasan AT, Al-Assadi HM, Isa AAM (2011) Neural networks

based inverse kinematics solution for serial robot manipulators

passing through singularities. In: Suzuki K (ed) Artificial neural

networks-industrial and control engineering applications. InTech,

pp 460–477

9. Jack H, Lee DMA, Buchal R, Elmaraghy WH (1993) Neural

networks and the inverse kinematics problem. J Intell Manuf

4:43–66

10. Kalra P, Mahapatra BP, Aggarwal DK (2006) An evolutionary

approach for solving the multimodal inverse kinematics problem

of industrial robots. Mech Mach Theory 41:1213–1229

11. Köker R (2011) A neuro-genetic approach to the inverse kine-

matics solution of robotic manipulators. Sci Res Essays

6:2784–2794

Fig. 8 Ball trajectory versus manipulator trajectory

Fig. 9 No. of iterations versus input sample

Fig. 10 Error versus input sample

Int. j. inf. tecnol. (March 2017) 9(1):1–6 5

123

12. Pajaziti A, Cana H (2014) Robotic arm control with neural net-

works using genetic algorithm optimization approach. Int J Mech

Aerosp Ind Mechatron Manuf Eng 8:1431–1435

13. SreenivasTejomurtula SubhashKak (1999) Inverse kinematics in

robotics using neural Networks. Inf Sci 116:147–164

14. Duka AV (2014) Neural network based inverse kinematics

solution for trajectory tracking of a robotic arm. Proc Technol

12:20–27

6 Int. j. inf. tecnol. (March 2017) 9(1):1–6

123

	An unsupervised learning based neural network approach for a robotic manipulator
	Abstract
	Introduction
	Problem formulation and neural Network Implementation
	Problem 1
	Problem 2
	The artificial neural network
	Implementation

	Results
	Problem 1
	Problem 2

	Conclusion
	Acknowledgements
	References

