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Abstract
During physical and chemical processes, aerosol particles often undergo coagulation to form Agglomerates. Agglomerates 
are fractal-like in a statistical sense, whose dynamical evolution of particle size distribution is governed by the population 
balance equation (PBE). In this study, the Radial Basis Function (RBF) method RBF is firstly extended to the solution of 
fractal-like agglomerate dynamics problems. The applicable conditions, and advantages and disadvantages of this method 
are studied. Two dynamic processes of fractal-like agglomerates, namely Brownian coagulation in the continuum regime and 
Brownian coagulation in the free molecular regime, are investigated. As a comparison, the sectional method (SM) is utilized 
as the referenced method. The initial geometric standard deviation (GSD) and the fractal dimension ( Df  ) of agglomerates 
are found to be the two main key factors affecting the accuracy and efficiency of the RBF. The RBF method is more suitable 
for calculating cases with larger GSD. As the GSD increases (i.e., GSD > 1.2), the computational efficiency and accuracy of 
the RBF increase accordingly. The RBF method is more suitable for calculating cases with larger Df  . As the Df  decreases, 
the calculation error of RBF method becomes further larger, which is more obvious in the free molecular regime. Compared 
with the SM method, the calculation efficiency of RBF method increases by 3–4 orders of magnitude. This study provides 
excellent application of RBF method to the solution of the PBE.

Keywords  Radial basis function method · Population balance equation · Fractal-like agglomerate dynamics · Brownian 
coagulation

List of symbols
Df  	� Fractal dimension
Mk 	� Kth moment of agglomerate size distribution
N0 	� Initial agglomerate number concentration
r 	� The number of Gauss–Laguerre points
s 	� The number of Gauss–Legendre points
vg0 	� The initial mean volume
t 	� Time
uk	� k th Gauss–Laguerre point position
uk′	� k th Gauss–Legendre point position
ṽ, 𝜈 	� Agglomerate volume
wk	� k th Gauss-Laguerre point weight
wk′	� k th Gauss–Legendre point weight

Greek letters
�0 	� Initial geometric standard deviation
� 	� Collision kernel

1  Introduction

Aerosol particles tend to aggregate into agglomerates of 
varying sizes through physical and chemical processes, 
with diameters typically ranging from several nanometers to 
0.1 µm (Hinds and Zhu 2022). Under this condition, agglom-
erates are fractal-like in a statistical sense. The evolution of 
agglomerate size distribution is a very sensitive function of 
agglomerate structure, volume loading and process condi-
tions. Due to its fractal property, the dynamics of agglom-
erate has absolutely different characteristics relative to the 
coagulation process of coalescing particles, which can be 
calculated by solving the classical Smoluchowski equation 
using an appropriate expression for the collision kernel (Yu 
and Lin 2009b). It is found as the idea of fractal theory is 
introduced into the power law relationship between agglom-
erate and primary particles, the classical Smoluschowski 
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equation, shown in Eq. (2), can be also applied to study the 
dynamics of agglomerates (Yu and Lin 2009b). Here, the 
power law relation is,

where Np is the number of primary particles in an 
agglomerate, vc is the particle collision volume and vp0 
the radius of primary particle and Df  the mass fractal 
dimension (or Hausdorff dimension). For compact spherical 
agglomerates, the Hausdorff dimension is 3, while for chain-
like structure the Hausdorff dimension is 1.

The classical Smoluschowski equation, only involving 
coagulation process, can be seen as a simplified form of 
the well-known population balance equation (PBE) (Jeldres 
et al. 2018). The PBE can describe particle evolution under 
all kinds of processes (i.e., advection, diffusion, coagulation, 
nucleation, surface growth, and other physical or chemical 
phenomena, etc.). In a statistical sense, the evolution of 
nanoparticles, whether is spherical or fractal, in air or 
solution is controlled by PBE, which is a highly nonlinear 
partial differential equation (Friedlander 2000). However, 
it is computationally demanding to directly solve the PBE 
mainly because of its dependence on the particle volume 
(Xie et  al. 2012). Since the PBE is a complex integral 
differential equation, obtaining its analytical solution is 
challenging. Nevertheless, various numerical solution 
methods have been developed and used (Yu et al. 2016), 
such as the sectional method (SM) (Rodrigues et al. 2018; 
Yu et al. 2017), the moment method (MOM) (Fox et al. 
2022; Yu et al. 2008), the Monte Carlo method (Apelgren 
et al. 2019), and so on. Each of the commonly used PBE 
numerical methods has its advantages and limitations. SM 
has the highest precision and the highest time cost. The 
moment method can maintain high accuracy and speed, 
but the result obtained by the moment method is only the 
statistics of the particles, and there are errors in the variation 
law of particle size distribution (PSD) obtained by using 
statistical information.

The idea of combining radial basis functions with 
collocation methods to solve numerical solutions of partial 
differential equations has been successfully applied in many 
fields (Mirzaei 2020; Motaman et al. 2018). In Wang's study 
(Wang et al. 2020), the RBF theory was first applied to solve 
the PBE, and it achieved favorable results. Later, Alzyod 
et al. (2020) used the multiple quadratic basis function to 
convert PBE into the form of ordinary differential equations. 
They used the Runge–Kutta method to solve the particle 
growth, nucleation, coagulation and breakage problems. 
In another of their studies (Alzyod 2021), they proposed 
that the adaptive radial basis function is used to the 
hydrodynamics of liquid–liquid dispersions. Adaptive radial 

(1)Np =

(
vc

vp0

)Df

basis functions alleviate the problems of steep gradients and 
wide ranges during particle coagulation and breakage. Later, 
Wang used the log-Gaussian function as the basis function to 
calculate problems such as Brownian coagulation and self-
preserving distribution (Wang et al. 2022). The advantage 
of the RBF method is that the evolution of the PSD over 
time can be obtained directly, and this method is a mesh-
free method. As far as we know, there is no report on the 
application of RBF in agglomerate dynamics problems. 
Especially, as the fractal theory is introduced to the PBE, 
whether RBF is suitable for solving problems such as PBE 
equations is still unknown.

In this article, the RBF method is extended to the 
Brownian coagulation equation for fractal-like agglomerates. 
The coagulation kernel in agglomerate systems is different 
from spherical particle systems in mathematical structure. 
Whether the RBF is applicable to the study of this type 
of collision kernel needs to be further clarified. More 
importantly, as a new powerful method for solving the 
PBE, there is still a lot of specific work, including the 
applicability conditions of this method, the advantages and 
disadvantages compared with other methods, etc., still need 
further confirmation.

The purpose of this article is to further investigate the 
RBF method. The range of parameters suitable for the 
calculation of the RBF method was studied, including initial 
GSD and fractal dimension, Df  . The reason for the influence 
of these parameters on the RBF method are analyzed. The 
remainder of this article is organized as follows. In Sect. 2, 
the theory about the RBF is presented. In this section, how 
to use the RBF to solve the PBE is described in detail. In 
Sect. 3, the computational condition and parameters are 
presented. In Sect. 4, the accuracy of the RBF method and 
its suitable computational range were investigated. And a 
brief comparison of computational speeds was conducted. 
This is followed by some concluding remarks in Sect. 5.

2 � Theory

Smoluchowski gave the calculation equation of particle 
number concentration in a multiphase flow system in 1917 
(Smoluchowski 1918). This equation was further improved 
by Müller later (Müller 1928), and the continuous form of 
the equation was given. Its continuous form is as follows:

the above equation is known as the Smoluchowski 
coagulation equation or the population balance equation 
(PBE). n(v, t)dv is the number of particles whose volume is 

(2)

𝜕n(v,t)

𝜕t
=

1

2

v

∫
0

𝛽(ṽ, v − ṽ)n(ṽ, t)n(v − ṽ, t)dṽ − n(v, t)
∞

∫
0

𝛽(ṽ, v)n(ṽ, t)dṽ
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between v and v + dv at time t , 𝛽(ṽ, v) is the collision kernel 
function between the volumes v and ṽ.

In Mountain's research (Mountain et al. 1986), the fractal 
dimension parameter was successfully applied to the particle 
collision equation. The form of collision kernel in the free 
molecular regime is as follows:

The form of collision kernel in the continuum regime is 
as follows:

where K is the collision kernel coefficient, v and ṽ are the 
particle volume. Df  is the fractal dimension. By adjusting the 
parameter Df  , the PSD of agglomerates with various fractal 
structures can be calculated.

Using the RBF method to approximate the PBE, n(v, t) 
should be constructed as follows:

where ninit(v) is the initial distribution of the equation, t is the 
time, and n∗(v, t) is the objective function to be approximated 
using the RBF method. The meaning of Eq. (5) is to make 
the approximate result satisfy the initial distribution.

To solve PBE by using RBF method, it is necessary to 
choose appropriate basis functions. Three parameters need 
to be determined, namely the center position of the basis 
function, the standard deviation (width), and the weight.

For the choice of the basis function, the Gaussian 
function is chosen here. As n∗(v, t) to be approximated 
depends on both variables v and t , the RBF method uses a 
two-dimensional Gaussian distribution as the basis function. 
Since the variables v and t  are independent of each other, 
n∗(v, t) can be expressed as follows:

where 1
v
 is a coefficient produced by the log transformation, 

p is the number of basis functions in the volume dimension. 
q is the number of basis functions in the time dimension. 
There are total p × q basis functions. wij is the weight 
corresponding to the (i, j) th basis function, �i is the i th basis 
function corresponding to the volume dimension, and �j is 
the j th basis function corresponding to the time dimension. 
The forms of �i and �j are as follows:

(3)𝛽(v, ṽ) = K
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(5)n(v, t) = ninit(v) + tn∗(v, t)

(6)n∗(v, t) =
1

v

p∑
i=1

q∑
j=1

wij�i(v)�j(t)

(7)�i(ln v) = exp
[
−

ln2 (v∕vi)

2�2
v

]

The center location of the basis function is selected using 
the uniform distribution. In Eq. (7), �v , and in Eq. (8), �t , 
denote the standard deviation of the Gaussian distribution. 
The standard deviation defines the shape of the basis 
function and is formulated as follows:

Figure 1 shows the image of the two-dimensional Gauss-
ian distribution as the basis function.

With the transformations described above, Eq. (5) can 
be approximated as a weighted sum of basis functions, 
represented as follows:

The PBE contains the partial derivative term and the 
integral term. For the partial derivative term on the left side 
of Eq. (2), the form after derivation is as follows:

the form of � �

j
(t) is as follows:

The algorithm needs to discretize the two integral terms on 
the right side of the Eq. (2). The first integral term after the 
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t
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Fig. 1   Basis function distribution
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equal sign is discretized using the Gauss-Laguerre quadrature 
method. The discrete result using the Gauss-Laguerre integral 
method is as follows:

where s is the number of Gauss-Laguerre points, uk is the 
position of the k th integral point, and wk is the weight of the 
k th integral point.

The second integral term after the equal sign is discretized 
using the Gaussian-Legendre quadrature method. The discrete 
result using the Gauss–Legendre integral method is as follows:

where r is the number of Gauss–Legendre points, u′
k
 is the 

position of the k th integral point, and w′

k
 is the weight of the 

k th integral point.
This method updates wij using the Levenberg–Marquardt 

optimization algorithm. The mean square error (MSE) is 
used as the evaluation standard to measure the accuracy of 
the model in the iterative process and its form is as follows:

Throughout the RBF method's training, the training data 
coincides in both position and quantity with the centers of the 
basis functions. With each iteration of the LM algorithm, the 
loss decreases, allowing the model to progressively conform 
to PBE constraints.

3 � Computations

The numerical computations are all performed on an Intel 
i7-8700 CPU 3.2 GHz computer with memory 16 GB and all 
numerical computation schemes of RBF method are run in 
MATLAB 2018. For the referenced SM, the section number 
is 500 and the time step is 0.001.
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4 � Result

4.1 � Agglomerates Coagulation in the Continuum 
Regime

Given that agglomerates size distributions often exhibit a 
log-normal distribution, the initial conditions used for this 
calculation are as follows:

where �0 is the initial geometric standard deviation, N0 is the 
initial particle number concentration, and vg0 is the initial 
geometric mean volume. Here the parameters are chosen 
to be N0 = 1 , �0 = 1.5 , vg0 = 1 , and K = 1 . The number 
of center points for v and t  , i.e., p and q , are 30 and 10, 
respectively. The calculation ranges are v ∈

[
10−3, 102

]
 

and t ∈ [0, 1] . The number of integration points for s and 
r are both 30. This parameter value does not represent the 
optimal choice. Within a certain range, the more the number 
of center points, the higher the calculation accuracy, but the 
corresponding calculation cost will also increase. To verify 
the accuracy of the calculation results, this method uses the 
SM (Vemury and Pratsinis 1995) as a contrast instead of the 
moment method.

Figure 2 displays the evolution of agglomerate size 
under various Df  values calculated using both the RBF 
method and SM method in the continuum regime.

The computational results from the two methods in 
Fig. 2 are highly consistent. To evaluate the accuracy of 
the RBF method, the root mean square error (RMSE) is 

(17)n(v, t) =
N0

3
√
2�v ln �0

exp

⎡
⎢⎢⎣
−

ln2
�

v

vg0

�

18 ln2 �0

⎤
⎥⎥⎦

Fig. 2   In the continuum regime, the evolution of PSD over time for 
various Df  is predicted using both the RBF method and the sectional 
method
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being used as a measure of error. The form of RMSE is 
as follows:

where YSM is the PSD calculated by the SM method, and 
YRBF is the PSD calculated by the RBF method.

The RMSE for Df = 3 and Df = 2 are 1.1033e−4 and 
1.4727e−04, respectively. These results suggest that the 
RBF method can still maintain accuracy when calculating 
the Df  from 2 to 3 in a limited region of the continuum 
regime.

In addition to directly calculating the evolution process 
of agglomerate size, the RBF method can also obtain 
moments of each order to analyze the evolution process 
of agglomerates. The k-order moment of agglomerate size 
distribution is as follows:

Figure 3 shows the calculated number concentration M0 
by the RBF method and the SM.

From Fig. 3, it can be observed that there is no significant 
disparity between the outcomes produced by the two 
methods. The moment computed through the RBF method 
can still maintain a high level of precision. The number 
concentration decreases over time. This is because Brownian 
coagulation constantly occurs between agglomerates, and 
smaller agglomerates form larger agglomerates through 
coagulation. The number of particles keeps decreasing, 
thus leading to a continuous decrease in particle number 
concentration. The decrease of Df  will lead to a faster 

(18)RMSE =

√(
YSM − YRBF

)2

(19)Mk =

∞

∫
0

vkn(v, t)dv

decline of number concentration. From the computational 
results, it can be observed that the influence of Df  on the 
particle number density function in the continuum regime 
is relatively small. This is consistent with the results of Yu 
(2009a).

4.2 � Agglomerates Coagulation in the Free 
Molecular Regime

The initial distribution and parameters are consistent with 
those in Sect. 4.1. p and q are 30 and 10, and r and s are both 
30. The calculated range is v ∈

[
10−3, 102

]
 and t ∈ [0, 1].

Figure 4 shows the evolution of agglomerate size obtained 
by both the RBF and SM methods in the free molecular 
regime, with Df  ranging from 2 to 3. Since the SM method 
is difficult to calculate when init GSD = 1.5 , t = 1 , Df = 2 , 
this curve is not listed here.

Figure 4 displays the scale spectrum corresponding to 
Df  values of 3, 2.5, and 2. Their corresponding RMSE are 
2.558e−04, 3.083e−04 and 5.079e−04, respectively. This 
indicates a high level of consistency in the computational 
results between the RBF and SM method in the free 
molecular regime. It suggests that employing the RBF 
method to compute finite regions with Df  ranging from 
2 to 3 maintains high accuracy. The Fig. 4 shows that in 
the free molecular regime, the lower the value of Df  , the 
lower the corresponding density function at the same time. 
It also shows that the influence of Df  on the size evolution 
of agglomerates in the free molecular regime is greater than 
that in the continuum regime.

Figure 5 shows the calculated number concentration M0 
by the RBF method and the SM in the free molecular regime.

Fig. 3   In the continuum regime, the evolution of number concentra-
tion over time is predicted using the RBF method and the sectional 
method

Fig. 4   In the free molecular regime, the evolution of PSD over time 
for various Df  is predicted using both the RBF method and the sec-
tional method
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The comparison shows that the calculation results of this 
method are not significantly different from the SM. Accord-
ing to the Fig. 5, the number concentration in the free molec-
ular regime keeps getting smaller with time. The smaller the 
Df  is, the faster the decay of particle number is. A decrease 
in the Df  value signifies a transformation of the agglomerate 
shape from spherical to platy and filamentous, indicating a 
more open structure of the agglomerates. This makes coagu-
lation more likely to occur between the agglomerates. This 
result is consistent with the results of Yu (2009a).

4.3 � Effect of Initial Geometric Standard Deviation 
Error Generation

Although the RBF method is capable of solving the particle 
number density function at lower computational costs, its 
efficiency is compromised when computing different initial 
GSD. In order to investigate the impact of the initial GSD on 
the calculations using this method, we computed cases with 
different GSD values. Other parameters remained consistent 
with those in Sect. 4.1. To measure the accuracy of the RBF 
method, the SM is used for comparison, and the RMSE after 
100 iterations of the LM algorithm is used as the criterion 
for comparison.

The fundamental concept of the RBF method is to 
approximate the target function through a weighted sum of 
radial basis functions. Therefore, the study of the influence 
of different initial GSD values on the model should be 
conducted with a focus on the part related to the sum of 
weighted basis functions. h(v, t) is defined as the weighted 
sum function of radial basis functions. Its form is as follows:

Figure 6 shows the image of h(v, t) with different initial 
GSD fitted by the RBF method.

According to the assumed normal distribution in Eq. (17), 
as �0 decreases, it implies a narrowing of the shape of the 
normal distribution. However, if we only consider the shape 
of the basis function weighted sum h(v, t) , the variation in 
the shape of h(v, t) as �0 decreases is illustrated in Fig. 6. 
As the value of �0 decreases, the local gradients of the 
calculation results of h(v, t) become larger. The variation in 
h(v, t) leads to a mismatch in the shape of the basis functions, 
consequently impacting the accuracy of the model.

Figure 7 illustrates the RMSE curves obtained using the 
RBF method across various initial GSD within the contin-
uum regime.

It can be seen from Fig. 7 that under the same initial 
conditions, RMSE gradually becomes larger with 
the decrease of �0 . As the initial GSD decreases, the 
computational efficiency of RBF on PBE also decreases. 
This is caused by increasing gradient of the functions being 
fitted. Prior research has shown that approximating steep 
functions using RBF method is more challenging than 
approximating flat functions (Harris et al. 2017; Sarra and 
Bai 2018), the reason is that the radial basis function is 
essentially a local response function, each basis function has 
a strong response in its corresponding center and a certain 
range, and the response is very weak in other regions. When 
the local gradient of the objective function is large, the radial 
basis function of other regions responds weakly to this 
locality. This leads to an insufficient number of local basis 
functions. This will make it difficult for the RBF network to 
capture changes in these gradients. When the gradient of the 
function continues to rise, it may be necessary to increase 
the number of center points or adjust the shape of the basis 
function to ensure the speed and accuracy of the calculation 
(Kuo 2015). Therefore, the RBF method is more suitable for 
the case of large initial GSD.

To study the influence of the number of basis functions 
on the accuracy of the RBF method, the conditions outlined 
in Sect.  4.1 were chosen as a representative case for 
investigation. The calculated RMSE is as follows:

Figure 8 shows that as the number of basis functions 
increases, the calculation error continues to become smaller, 
and the error does not change significantly after the number 
of basis functions exceeds a certain value. These results indi-
cate that for cases with a small initial GSD, increasing the 
number of basis functions by a certain amount can enhance 
the accuracy of the RBF method (Uddin 2014).

Previous studies have revealed that the shape of basis 
functions significantly influences the computational outcome 
(Bayona et al. 2011; Sarra and Sturgill 2009). In the process 

(20)h(v, t) =
p∑
i=1

q∑
j=1

�ij�i(ln v)�j(t)

Fig. 5   In the free molecular regime, the evolution of number concen-
tration over time is predicted using the RBF method and the sectional 
method
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Fig. 6   The h(v, t) of different initial GSD calculated by the RBF method in the continuum regime

Fig. 7   In the continuum regime, the RMSE is calculated for different 
initial GSD using the RBF method

Fig. 8   The error corresponding to the calculation results of different 
numbers of basis functions
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of solving the PBE using RBF, the standard deviation of 
the basis functions was often determined according to 
Eqs.  (9) and (10). This configuration method generally 
yields satisfactory results in most cases. However, in 
practice, for calculating cases with lower GSD, the strategy 
of adjusting the shape of basis functions often proves 
effective in improving result accuracy. To investigate the 
effect of standard deviation on the initial GSD at low values, 
different standard deviations were used for calculations. 
The parameter settings remained consistent with those in 
Sect. 4.1. The h(v, t) is as follows:

It can be seen from Fig. 9 that when �v = 0.198 , the 
computed results are not smooth due to the small standard 
deviation of the basis functions. For a too-small stand-
ard deviation, the model excessively adapts to the train-
ing samples but fails to capture the overall pattern of the 
data. This manifests as the model meeting the PBE con-
straints only at the training sample points, while struggling 
to generalize well elsewhere. When �v = 0.992 , the basis 

function becomes flat. This makes it difficult for the basis 
function to accurately capture gradient changes (Fornberg 
and Zuev 2007).

Figure 10 shows the RMSE corresponding to various �v:
Figure  10 shows that the influence of the shape of 

the basis function on the efficiency of RBF calculation 
is obvious. To improve the accuracy of estimation for 
steep functions, a smaller standard deviation can be 
selected. Smaller standard deviation allows the basis 
function to better capture gradients and reduce calculation 
errors. However, if the standard deviation is too small, 
it will reduce the complexity of the model, make the 
generalization performance of the trained model worse, 
and overfitting is more likely to occur. Simultaneously, 
if the basis functions are too narrow, it may be necessary 
to employ a greater number of them to cover the data 
adequately, which can increase the computational costs 
of the model (Fasshauer 2007). In cases where the initial 

Fig. 9   The h(v, t) corresponding to the calculation results of basis functions with different standard deviation
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GSD is small, the standard deviation can be appropriately 
reduced to ensure the accuracy of the calculation.

4.4 � Effect of Fractal Dimension on Error Generation

We observed that the choice of Df  values influences the 
computational outcomes of the RBF method. Consequently, 
we computed results for different Df  values to facilitate 
comparison. Given that the impact of Df  varies in the 
continuum regime and free molecular regime on the particle 
number density function, separate computations were 
conducted in these regions. The computational parameters 
remained consistent with those outlined in Sects. 4.1 and 
4.2. The range for Df  was selected from 1.5 to 3.

Figure 11 shows the h(v, t) of the different Df  constructed 
by the RBF method.

Fig. 10   The error corresponding to the calculation results of basis 
functions with different shape

Fig. 11   The calculated h(v, t) of different Df  by the RBF method in the continuum regime
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Based on the computational results in Sect. 4.1, the influ-
ence of Df  in the continuum regime on the particle number 
density function is relatively small. Therefore, as depicted 
in Fig. 11, reducing Df  shapes h(v, t) to become steeper, but 
the magnitude of the change is not significant.

Figure 12 shows the RMSE of the Df  corresponding to 
Fig. 11.

In Sect.  4.3, we observed that an increase in local 
gradients leads to a decrease in the accuracy of the RBF 
method. The choice of Df  values affects the accuracy of RBF 
due to this reason as well. The variation of Df  causes changes 
in the local gradient of h(v, t) in the temporal direction, 
thereby leading to the generation of errors. Figure  12 
illustrates that RMSE increases with the decrease of Df  , 
which means that the effect of the RBF method calculation 
becomes worse. However, since the Df  has a relatively small 
impact on PSD in the continuum regime, the RMSE does not 
change significantly.

Figure 13 shows the h(v, t) of the different Df  constructed 
by the RBF method in the free molecular regime.

From Fig. 13, it can be observed that in the free molecular 
regime, as the value of Df  decreases, the function plot of 
h(v, t) becomes steeper. Since the evolution of agglomerate 
particle size in the free molecular regime is significantly 
influenced by the Df  , the changes in the h(v, t) plot are more 
pronounced compared to the continuum regime.

Figure 14 shows the RMSE of different Df  correspond-
ing to Fig. 13. The RMSE curve at Df  = 1.5 is not listed 
here because the SM is difficult to calculate when the initial 
GSD = 1.5 and Df  = 1.5.

Figure 14 also shows a similar trend to Fig. 12, as the Df  
becomes smaller, the calculation error of the RBF method 
is increasing. This implies that the variations in h(v, t) 

lead to a decrease in accuracy for the RBF method in the 
free molecular regime as well. Simultaneously, due to the 
significant impact of Df  on the particle number density 
function in the free molecular regime, the computational 
accuracy in this region is comparatively lower than in the 
continuum regime.Therefore, the RBF method is more 
suitable for the case of large Df  . Furthermore, special 
attention should be given to adjusting the parameters of 
the basis functions based on the variations in Df  when 
computing in the free molecular regime, ensuring the 
accuracy of the calculation results.

4.5 � Efficiency

Tables 1 and 2 respectively present the computation time 
and accuracy of the RBF method, corresponding to the 
computational scenarios outlined in Sects. 4.1 and 4.2. In 
the iterative process of using the LM algorithm, when the 
value of the Eq. (18) is less than 1e−9 or the LM algorithm 
iterates 100 times, the iteration is stopped early.

By comparing the calculation efficiency in the table, it 
is found that although the calculation accuracy is slightly 
decreased in the process of Df  from 3 to 2, the accuracy and 
speed can still meet the basic requirements, which is still a 
great advantage compared with SM in speed.

5 � Conclusions

The RBF method is initially employed to examine 
the dynamics of fractal-like agglomerates. This study 
explores the method's applicable conditions, advantages, 
and disadvantages. Firstly, it investigates two dynamical 
processes of fractal-like agglomerates. Secondly, it 
explores the impacts of various initial GSD and Df  values 
on the computational efficiency and accuracy of the RBF 
method. From the calculation results of the RBF method for 
different Df  in continuum regime and free molecular regime, 
this method can directly calculate the size distribution of 
agglomerates in a limited area and maintain high accuracy 
and speed.

By comparing different initial GSD calculation examples, 
the RBF method is more suitable for calculating the initial 
GSD with a large value. When the initial GSD continues 
to become smaller, the RBF method needs to increase 
the number of basis functions or adjust the basis function 
standard deviation to ensure the accuracy of the calculation.

By comparing the calculation examples of different Df  in 
the free molecular regime and continuum regime, it is found 
that the RBF method is more suitable for the case where 
the Df  is larger. Whether it is in the continuum regime or 
the free molecular regime, the efficacy of the RBF method 
diminishes as the value of Df  decreases, and the calculation 

Fig. 12   In continuum regime, the RMSE is calculated using the RBF 
method of different Df
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effect in the free molecular regime is more affected by Df  
than in the continuum regime.
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Table 1   Comparison of the continuum regime calculation efficiency

Df RMSE RBF computational 
time

SM 
computational 
time

3.0 9.7982e−05 5.979 s 10 h
2.5 1.0223e−04 5.940 s 10 h
2.0 1.6393e−04 5.355 s 10 h
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