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Abstract
Air quality deterioration is a big concern all over the world. It affects both humans and animals in a variety of ways. Air 
pollution must be quantified to monitor its negative impacts and stakeholders to proffer mitigation options. On this note, our 
research team has taken measures in Nigeria to monitor and measure  PM2.5, its associated elements, as well as local meteoro-
logical parameters during sampling period. In addition, enrichment, contamination index, and principal component analysis of 
associated elements were studied. For ten months (January–October 2018),  PM2.5 samples were collected at three locations in 
Ondo State, Nigeria with coordinates (the Federal University of Technology, Akure (FUTA)—low-density residential (LDR), 
Oba Ile (high-density residential (HDR), and Museum (IND, High density traffic and commercial area) (January–October). 
The Contamination Factor (CF), Enrichment Factor (EF), and Pollution Load Index (PLI), as well as Principal Component 
Analysis (PCA) of the samples were determined. Average  PM2.5 mass concentrations [101 µg/m3 (FUTA); 120 µg/m3 (Oba 
Ile); and 176 µg/m3 (Museum)] were found to be higher than the WHO (10 µg/m3) and USEPA (15 µg/m3) normal limits. The 
concentrations of the most prominent elements were in the order; K > Na > Ca > P > Al, while the trace elements displayed 
Cu > Fe > Zn > Ni > Cr > Mn > Pb. Oba-Ile had the highest metal enrichment in the order: Ti > Mn > Zn > Cu > Ni > Cr. The 
PCA resolved four factors vis-à-vis vehicular activities, biomass burning, and soil dust as the major  PM2.5 emission sources. 
The findings could be useful in the current drive to develop national air quality guideline for  PM2.5.

Keywords PM2.5 · Trace metals · Air quality index · Enrichment factor · Contamination factor · Pollution load index · 
Principal component analysis · World Health Organization · United State Environmental Protection Agency

1 Introduction

Urban air pollution is typically caused by a complex mix 
of gaseous and particulate air pollutants such as nitrogen 
dioxide  (NO2), sulfur dioxide  (SO2), fine particulate matter 
 (PM2.5), and ground-level ozone (defined as aerodynamic 

diameter particulate matter  (PM2.5) (Abulude et al. 2021). 
Atmospheric particulate matter has been linked to negative 
effects on human health, visibility, and atmosphere, as well 
as habitats and physical property degradation (UNEP/WHO 
1994). The scale of atmospheric aerosols affects human 
health and the climate. As a result, studies of size-segregated 
atmospheric particulate matter particularly fine  (PM2.5) frac-
tions are often required to gain a better understanding of its 
sources as well as aids in proffering abatement options. Dif-
ferent sources (natural and anthropogenic) and atmospheric 
residence periods can exist for  PM2.5 fraction; however, 
 PM2.5 sources are majorly linked to anthropogenic activi-
ties such as industrial, biomass and petroleum components 
combustions, waste incineration, vehicular emissions, and so 
on (Ezeh et al. 2015; Suriano et al. 2015; Penza etal. 2018; 
Suriano 2020).

Continuous exposure to  PM2.5 exposure has a slew of 
negative health implications. In exposed populations, there 
have been increase in morbidity and mortality rates resulting 
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from infections, cardiovascular, chronic pulmonary, and 
neurodegenerative diseases, as well as a decrease in life 
expectancy (Kim et al. 2015).  PM2.5 can be breathed into 
the deepest recesses of the lungs due to its vast surface area, 
small size, and the fact that it contains a significant amount 
of toxic properties. It settles on the alveoli and also makes 
its way into the bloodstream, posing a health risk to humans 
(Zhang et al. 2016). Fe, Co, Ni, Cu, Zn, V, Cr, Mn, As, 
Pb, and Cd can increase reactive oxygen species production 
(ROS) whose excess can overpower the body’s antioxidant 
defense mechanism, leading to oxidative stress, inflamma-
tion, and disease infections (Sameenoi et al. 2012; Charrier 
and Anastasio 2015; Park et al. 2018).

Trace elements are efficient atmospheric air pollution 
tracers (Querol et al. 2007) and are commonly used as input 
in receptor modeling studies to help in the interpretation 
of particular emission sources. The Principal Component 
Factor (PCA), is one of the versatile modeling approaches 
which efficiently uses elemental concentration data and clas-
sifies potential source contributions. The characterization 
and source detection of trace elements in  PM2.5 are criti-
cal in air pollution prevention and control. These methods 
have attracted a lot of attention from researchers in recent 
times, because PMs Study could reveal information regard-
ing emission sources and strength.

To address the problem of air pollution, stakeholders 
would need to have adequate knowledge of air pollution by 
particulate matter and also on policies for abatement options. 
The best tool which is receptor modeling for PMs’ source 
identification and quantification should be applied (Yu et al. 
2013; Roy and Singh 2014; Ndamitso et al. 2016; Feng et al. 
2007). The application of a multivariate technique to iden-
tify and assign sources to pollutants at the receptor loca-
tions irrespective of emission time, strength, and transport 
is known as receptor modeling. In most urban cities in the 
developing nations, there is very little or no published work 
on source apportionment and  PM2.5 and thus this study. 
Therefore, the objectives of this study are to determine  PM2.5 
mass loads, investigate the relationship between  PM2.5 and 
local meteorology, and perform chemical compositions of 
 PM2.5 samples as well as the application of principal com-
ponent analysis technique for source identification and quan-
tification in Akure, South Western Nigeria.

2  Materials and Methods

Akure is the capital of Ondo State, South West and it has a 
population of about 421,100. Geographically, Akure lies on 
t 5°12′0″E, and 7°15′0″N, at a height of 353 m (GeoNames 
Geographical Database 2012). Akure is a fast-growing city 
that serves as a trading hub for cash crops such as cocoa, 
cola nuts, palm oil and kernels, bitter cola citrus fruits, and 
so on.

Three distinct sampling locations (National Museum and 
Monuments, Oba-Ile, and the Federal University of Technol-
ogy—FUTA) were chosen (Table 1 and Fig. 1). These sites 
represents industrial (IND), high-density residential (HDR), 
and low-density residential (LDR) site classes. Samplings 
lasted for at least 8 h (8:00–16:00 h.) for ten (10) months 
(January–October) of 2018. GPS Map 76CSX (Garmin Ltd, 
Taiwan) was used to assess the sampling geographical coor-
dinates. At the Observatory Unit of the Federal University of 
Technology in Akure, Ondo State, Nigeria, wind direction 
and speed, rain, and relative humidity (RH) were also moni-
tored and measured to aid in the explanation of the influence 
of local meteorology on  PM2.5 aerosols.

PM was collected using a Schlumberger Model M250 
“Gent” stacked filter unit sampler (Maenhaut et al. 1993). 
The samples were collected using Whatman nuclepore filters 
that had been pre-weighed and pre-conditioned, at flow rates 
ranging from 16 to 18 L min. Before and after exposure, the 
filters were conditioned for 24 h at about 25 °C and 50% 
constant humidity. The sampler was positioned at a height 
of around 1.7 m, so that air circulation around it was not 
obstructed. To prevent filter clogging and keep the flow rate 
within the sampler’s prescribed limits, the effective sam-
pling time was varied. This ensured accurate size fractiona-
tion and efficient selection. Detailed procedure on the use 
of Gent stacked filter unit sampler for  PM2.5 collection has 
been reported (Ezeh et al. 2012). The exposed filters were 
stored in a desiccator until chemical composition analysis 
using the XRF technique.

The EDXRF analyses of exposed filters were achieved via 
a portable facility (model PX 2CR power supply and ampli-
fier for XR-100CR Si-pin Detector) at Centre for Energy 
Research and Development, Obafemi Awolowo University, 
Ile-Ife Nigeria. Sample irradiation was done by exposing 

Table 1  The sampling locations S/N Location Description of sites

1 Oba Ile (SEDInst) (005 14 29.1 E), (07 16 04.4 N) HDR
2 The Federal University of Technology, FUTA (Science car 

park), (005 08 06.5 E), (07 18 07.6 N)
LDR

3 National Museum, (005 11 40.2 E), (07 15 11.6 N) IND high-density traf-
fic and commercial 
area
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the samples for bombardment by silver (Ag) anode X-ray 
fluorescence spectrometer at a voltage of 25 kV and cur-
rent of 50 µA for 1200 counts in an external chamber setup. 
Characteristic X-ray of the sample was detected by the solid-
state Si-pin detector system and spectrum acquisition was 
done using an Amptek model multi-channel analyzer, while 
elemental analysis was done using the thin target mode of 
the International Atomic Energy Agency (IAEA) Quantita-
tive Analysis of X-ray Iterative Least (Q-Axil) square soft-
ware. Prior to the analysis, certified  Micrometer® thin films 
(Table 2) were irradiated for calibration purposes.

2.1  Calculation

Principal component analysis (PCA) defined by James 
et al. (2015) was used to classify the sources of the pollutants 

(1)

Concentration (μg−3)

=
Instrument reading (cm2) × 1000

Filter area (cm2) × Volume of air sucked (m3)
.

(PM, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Se, 
Zn, and Pb) (2015).

To identify the sources of  PM2.5 at the study areas, principal 
component analysis (PCA) with varimax rotation of the compo-
nents was achieved using Minitab software. Varimax rotation was 
done to get a clearer pattern of the components without changing 
their relative positions. Detailed methodology for performing PCA 
can be found in Jolliffe et al. (2016) and De La Cruz et al. (2019).

The enrichment factor (EF) of the element of interest is 
the ratio of the element’s concentration to a reference value 

Fig. 1  Akure study areas ( Source: Field Work 2018)

Table 2  Results of comparison of observed experimental values with 
IAEA certified standard reference values thin films

Element Certified values (µg  cm−2) Experimental 
values (µg 
 cm−2)

Ca 47.4 46.5
Fe 46.3 46.1
Pb 52.8 51.3
In 50.2 49.9
Ru 46.1 46.0
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(Gonzalez-Macias et al. 2006; Pandey et al. 2015). Fe was 
often chosen as reference factor, because it is assumed to have 
only source of crustal material. The enrichment factor (EF) is a 
tool for assessing whether the source of elements is from crust 
or human activity (Bhuiyan et al. 2010; Gowd et al. 2010). 
This factor was used to measure EF:

where Ci denotes the concentration of trace elements in the 
sample, Cref denotes the concentration of the reference ele-
ment in the sample, Bi denotes the background value of an 
element of interest, and Bref denotes the background value 
of the reference element in the study field. The results were 
categorized into seven classes based on the value of EF: If 
EF < 1 no enrichment, < 3 minor enrichment, 3–5 moderate 
enrichment, 5–10 moderate-to-severe enrichment, 10–25 
severe enrichment, 26–50 very severe enrichment, and  > 50 
extremely severe enrichment.

Contamination factor (CF) as defined by Dantu (2009) and 
Bhuiyan et al. (2010) CFs of the elements of interest was used to 
calculate the overall contamination of samples by the elements 
(2010). These figures were calculated by dividing the concen-
tration of the element of interest in the sample by the element’s 
background concentration (Hakanson 1980)

Ci is the element i’s concentration and Bi is the element’s 
geochemical background value. The pollution values are 
0 = none, 1 = none-to-mild, 2 = moderate, 3 = moderate-to-
heavy, 4 = strongly contaminated, 5 = strong-to-very strong, 
and 6 = very strong in increasing order of contamination (Varol 
2011).

The pollution load index (PLI) was created after Tomlinson 
et al. (1980) used Eq. (3) to compare pollution levels at different 
sites or at the same site over time. The estimation of the concen-
tration factor obtained by dividing the measured concentration 
of an element with the background concentration of the same 
element in shale is used to calculate the PLI (Turekian and Wede-
pohl 1961)

2.2  Calculation of Air Quality Index

An index for any given pollutant is its concentration 
expressed as a percentage of the relevant standard (Abu-
lude 2016), or

(2)EF =
(C

i
∕Cref) sample

(B
i
∕Bref) Background

,

(3)CF = C
i
∕B

i
,

(4)PLI = n

√

CF1 × CF2 × CF3 ×…CFn.

(5)AirQuality Index =
Pollutant concentration

Pollutant standard level
× 100.

One-way analysis of variance (ANOVA) with Duncan 
Multiple Range test at 95% confidence or p 0.05 was used 
to analyze the results. The correlation coefficients were 
determined based on the results. Minitab 16 Statistical 
Software was used to compute basic descriptions and PCA. 
Microsoft Excel was used to calculate the enrichment fac-
tor, contamination factor, and wind rose.

3  Results and Discussion

The average concentrations of  PM2.5 measured at the study 
site classes are presented in Fig. 2. During the sampling peri-
ods, mean concentrations of  PM2.5 ranged from 101 μg/m3 
(LDR) to 176 μg/m3 (HDR), while the overall mean stood 
at 120 μg/m3. Compared with the results obtained elsewhere 
in some sub-Sahara mega-cities in Nigeria, the concentra-
tions obtained in this study were lower than range of values 
reported for IND and HDR sites in Lagos (Ezeh et al. 2017). 
150–606 μg/m3 (industrial) and 110–460 μg/m3 (high-den-
sity residential) reported by Ezeh et al. (2019) However, 
mean concentration of  PM2.5 obtained in this study were 
higher than mean values recorded in China. Acciai et al. 
(2017) and Huang et al. (2018) equally, higher than values 
(Gunchin et al. 2019), measured in Ulaanbaatar Mongolia, 
by 10%, Košetice Czech (Pokorná et al. 2018), by 10%, Ter-
viso Italy (Squizzato et al. 2017), and by 15% and Athens 
Greece (Grivas et al. 2018) by 20%). Compared to  PM2.5 
guidelines of the WHO and USEPA (Fig. 2), the results 
obtained in this study were more than three times of both 
reference values. This scenario is worrisome and could be 
dangerous for the inhabitants of the study areas.

Considering the US EPA’s Air Quality Index (AQI) for 
reporting air quality (AirNow.gov 2018) deterioration by 
 PM2.5; Scale 0–50 is defined as a Good, 51–100 is Moder-
ate, 101–150 is Unhealthy for sensitive groups, 151–200 
indicated Unhealthy, 201–300 denoted Very Unhealthily, 
and 301 and above is classified as Hazardous. In this study, 
average  PM2.5 concentrations obtained at LDR and Oba Ile 
(IND) areas were categorized as Unhealthy for sensitive 
groups, while AQI for HDR receptor site is categorized as 
Unhealthy (Table 3). This index implies that members of 
sensitive groups may experience health effects.

In Table 4, parameters with strong positive correlation 
are bolded. Although, there was a mild positive associa-
tion between  PM2.5 mass concentrations and temperature 
(Table 4). This means that  PM2.5 concentration is a function 
of the ambient temperature. At the HDR, LDR, and IND 
sampling sites, wind speed (WS) has a significant positive 
association with  PM2.5 (r = 0.87, r = 0.61, and r = 0.35), with 
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the HDR having the strongest connection. The HDR, LDR, 
and IND had r values of 0.59, 0.62, and 0.71 for ambient 
temperature and  PM2.5 values, respectively. With r values 
of 0.05 (FUTA), 0.28 (Museum), and 0.31 (FUTA), relative 
humidity (RH) had a weak relationship with  PM2.5 mass 
concentration at IND. It was also discovered that the mete-
orological parameters had relationships that effects  PM2.5 
mass concentration. Rain (r = 0.67) was found to be related 
to wind speed. Wind also had positive (r = 0.50) relation-
ship with humidity. These positive correlations suggest that 

local emission could account for air quality deterioration in 
Akure by  PM2.5.

The summaries of wind directions in percentages and 
directions as the wind rose are shown in Fig. 3. Each month, 
the wind directions are denoted by the letters ‘N’ (north) 
to ‘NNW (north–north–west).’ The percentages represents 
the number of times each wind direction occurred during 
the sampling period. The wind blew majorly from the east 
in January, while in the following months, its directions 
were predominantly; ESE (February), SW (March), WSW 
(April), WSW (May), S (June), SSW (July), SW (August), 

Fig. 2  Particulate matter con-
centration
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Table 3  Air quality index of the 
selected sampling locations

Air Quality 
Index

Sample 
Locations Good Moderate

Unhealthy for 
sensitive 
groups Unhealthy

Very 
Unhealthy

Hazardous 
301 and 
above

0 to 50 51 to 100 101 to 150 151 to 200 201 to 300
LDR - - 102.00±30.00 - - -
HDR - - - 169.00±40.00 - -
IND - - 120.10±30.00 - - -

Source: AirNow.gov (Accessed 2018).

Table 4  The Pearson correlation 
(r) matrix of the PM and local 
meteorological data

FUTA Museum Oba-Ile Rain Temperature Wind Humidity

FUTA 1
Museum 0.38 1
Oba Ile 0.20 0.00 1
Rain (mm) 0.30 0.89 0.78 1
Temperature (°C) 0.60 0.66 0.72 0.45 1
Wind (m/s) 0.35 0.84 0.60 0.65 0.171 1
Humidity (%) 0.05 0.28 0.31 0.37 0.17 0.60 1
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Fig. 3  Wind direction (July–October 2018)
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SW (September), and SW (October) (SW). These confirms 
that the wind direction during sampling were predominantly 
from the SW and WSW. Table 5 provides average local 
meteorology data measure during sampling period 3.71 mm, 
(Rainfall) 26.10 °C, (Temperature) 5.84 m/s (Wind speed), 
and 77.34% (Humidity). The variance ranged from 1.27 
(rain) to 11.54 (humidity). Interestingly, rain had positive 
values, while others had negatives, according to the skew-
ness results. Negative values were skewed to the left, while 
positive values were skewed to the right, implying that if 
the distribution of data is skewed to the left, the mean is 
less than the median, which is frequently less than the mode. 
If the data distribution is skewed to the right, the mode is 
frequently less than the median, which is less than the mean 
In addition, the monthly mean wind speed ranged from 4.00 
to 7.63 m/s, while that of temperature and humidity ranged 
from 19.75 to 31.23 °C and 21 to 94.38% respectively. Rain-
fall ranged from 0 (dry season) to 3.5 mm (wet season).

The concentrations of major and trace elements in the 
 PM2.5 were calculated and are presented in Table 6. In 
addition, the results were compared to values reported for 
other cities in Nigeria and beyond. The overall summation 
of the elemental concentrations (Fig. 4) varied throughout 
the study sites, with the highest observed at the HDR site, 
followed by IND and LDR, respectively. The heavy human 
and vehicular traffic at the HDR location could led to the 
high concentrations of major and trace elements found there. 
Main and trace elements were classified into two groups 
based on their temporal and spatial variation; group 1 con-
sists of Na, Mg, Al, K, Ca, Ti, V, P, Cr, Mn, Ni, Zn, and Fe, 
while group 2 consists of S, K, and Cu. Copper was found 
in high concentrations in the IND and HDR regions, while 
S and K were found in high concentrations in all the sites. 
The mean concentration of V (15–28 ng  m−3), Mn (13–25 ng 
 m−3), Ni (15–28 ng  m−3), and Pb (ND) were all within the 
limits set by the World Health Organization (WHO; 1000, 
150, 25, and 500 ng  m−3 for V, Mn, Ni, and Pb, respectively), 
the European Air Quality Directive (EU Directive 2007/107/
EC; 20 and 500 ng  m−3 for Ni and Pb, respectively), and the 
National Ambient Air Quality Standard (NAAQS) of China 
(500 ng  m3 for Pb) (Liu et al. 2020).

The enrichment factor, or EF, is a tool for assessing the 
chemical structure of airborne particulate matter. It explains 
the relationship between the concentrations of an element 
(X) in the air and the concentration of a crustal element 
(such as Al, Ti, or Fe) in the typical continental crust (Hoff-
mann et al. 1972; Wedepohl 1971; Zoller et al.1983). The 
crustal composition (Taylor 1964) and Fe as the normalizing 
factor were used to measure EFs for each element. Since Fe 
is a crustal variable with less anthropogenic impact, it is a 
good option for a normalizing agent. Elements with an EF 
close to unity have strong natural source, while those with 
a high EF may be anthropogenic aerosols. In Fig. 5, the 
enrichment factor for  PM2.5 associated elements is shown 
and most elements were not enriched, since their EF values 
were less than five. For instance, respective EF values were 
0.67–1.02 (Na), 0.08–0.14 (Al), 3.05–3.39 (S), 1.6–3.52 (K), 
1 (Fe), 1.33–2.69 (Cr), and 1.23–2.69 (V) while Se and Pb 
had zero enrichment factors. Low enrichment factors could 
indicate that the pollutants could be from natural source, 
especially sea spray and soil dust components.

The pollution load index (PLI), which had values rang-
ing from 0.1 to 1.2, was also used to categorize ecological 
risk. The mean PLI value (0.1) in this analysis was much 
smaller than the threshold (1) and suggested that there were 
no baseline contaminants or loads similar to background lev-
els (Tomlinson et al. 1980). Because of the low PLI values, 
no drastic abatement measures are needed at the study areas; 
however, continued air quality deterioration by  PM2.5. The 
findings showed that ecological risk assessment approaches 
can be used as decision-support mechanisms or instruments 
for determining the priority of air quality assessment studies.

Across the sites, Contamination Factor (CF) value for V, 
Cr, Mn, Fe, Ni, Cu, Zn, and Mn ranged from 0.11to 0.21, 
0.12 to 0.28, 0.26 to −0.5, 1, 0.2 to 0.37, 3.82 to 3.96, and 
0.39 to 0.5, respectively. Other less significant CF val-
ues include Na (0.001), Mg (0.001), Al (0–8.61E−05), P 
(0.01–0.017), S (0.28–0.32), K (0.003–0.004), Ca (0.001), 
and Ti (0.001). (0.003–0.08). Of all the heavy met-
als, Cu had the highest value at IND and HDR locations, 
while Cr had the lowest value (0.12) at LDR. Figure  4 

Table 5  Average weather data 
in the study periods

Rain (mm) Temperature (°C) Wind speed (m/s) Humidity (%)

Mean 3.71 26.10 5.84 77.34
SE mean 2.62 1.27 0.35 6.81
Std Dev 1.27 4.01 1.12 11.54
Coef var 223.02 15.36 19.13 27.85
Minimum 0.00 19.75 4.00 21.25
Maximum 27.10 31.23 7.63 94.38
Skewness 3.08 −0.25 −0.22 −2.28
Kurtosis 9.63 −1.50 −0.44 5.93
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depicts the average CF values for each metal in the order: 
Cu > Zn > Mn > Ni > Cr. There are six categories of CF: 1–2 
denotes depletion to minimal enrichment, 2–5 means mod-
erate enrichment, 5–20 depicts significant enrichment, and 
20–40 represents extremely high enrichment, while > 40 
denotes extremely high enrichment (Sutherland 2000). The 

results obtained in this study suggests that the CF is some-
where between minimal and moderate enrichment category 
which implies that the samples from the locations are not 
contaminated.

For source apportionment and identification, PCA 
resolved five distinct factors with their corresponding 
components (Table 7). Factors 1, 2, 3, 4, and 5 had 65.5, 
65.3, 32.7, 23.2, and 11.5% average variation, respec-
tively. Factor 1 revealed significant loading for Mg, P, 
Ca, Cr, Fe, Ni, and Zn, indicating input from the burning 
of automotive fuels, wastes, and tobacco smoke in and 
around the museum district, due to the high volume of 
vehicular traffic and waste generation generated by the 
market within the area. Without a doubt, there are a lot 
of smokers in the city, and a lot of people trade their hob-
bies. This aggravates the danger to the environment. Suf-
focation and worsening of asthma and chronic bronchitis, 
as well as respiratory inflammation, eye and mouth pain, 
and premature death, are all possible health effects. P, Fe, 
Cu, and K, as well as their sources, which were mostly 
parented rock material, dust, soil, and fertilizer, were all 

Table 6  Elemental concentrations compared with other countries

ND not detected
a Rushdi et al. (2013) (Saudi Arabia)
b Ezeh et al. (2019) (Nigeria)
c Jandacka and Durcanska (2019) (Czech Republic)
d Acciai et al. (2017) (China)
e Huang et al. (2018) (Taiwan)
f Chang et al. (2018) (China)

Element Typical 
crustal 
rock*

This study (ng/m3)

FUTA Oba Ile Museum Saudi  Arabiaa Nigeriab Czech  Republicc Chinad Taiwane Chinaf

Na 28,300 20 (2) 17 (2) 27 (2) ND-700 22–2087 – – 1708.06 –1772.9 –
Mg 20,900 11 (3) 14 (2) 17 (3) ND-2479 39–1518 12.4–299 – 42.80–46.32 –
Al 81,300 6 (3) 7 (2) 11 (3) ND-3572 300–21,511 10.2–392 – 23.22–39.19 –
P 1050 11 (5) 14 (5) 18 (4) ND-61.3 89–1457 – – –
S 260 72 (3) 73 (2) 83 (4) ND-2608.3 2–264 – – –
K 25,900 82 (5) 88 (5) 76 (4) ND-47.5 54–3250 – 489.51–20,311.00 – 390
Ca 36,300 17 (2) 24 (2) 18 (2) ND-783.5 159–796 50.1479 136.22–11,187.00 – 190
Ti 4400 14 (2) 26 (3) 35 (4) – 22–2042 0.8–0.98
V 135 15 (5) 27 (5) 28 (5) – 133 0.00–58.63 1.35–1.73 26
Cr 100 12 (2) 28 (2) 24 (3) – 125 4.2 ×  10−1–10.4 0.29–103.51 0.55–0.87 4.5
Mn 50 13 (2) 17 (2) 25 (3) ND-3.2 2–249 9.17–293.69 3.90–4.96 32
Fe 50,000 45 (5) 52 (5) 47 (4) ND-79.7 194–15,903 50.1–456 247.71–7,685.00 66.08–69.6 410
Ni 75 15 (1) 22 (2) 28 (3) ND-25.9 114 0.13–30.09 0.78–0.9 6
Cu 55 210 (8) 218 (8) 218 (8) ND-0.4 125 2.2–15.6 3.88–191,63 3.92–5.17 12
Zn 70 27 (4) 31 (5) 35 (5) ND-2.2 7–431 – 54.13–3,867.00 6.00–24.66 120
Se 0.05 ND ND ND – – – 1.03–44.11 – 2.6
Pb 13 ND ND ND – 169 – 25.06–598.02 –
Total 570 658 690 – – – – – –
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Fig. 4  Total concentration of elements at the different sites (January–
October)
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present in VF2. However, these metals are also used in 
liming processes, which can result in respiratory problems, 
metallic dust poisoning, pulmonary fibrosis, lung cancer, 
dizziness, headaches, bronchitis, stomachaches, diarrhea, 
vomiting, loss of appetite, kidney and liver damage, and 
death (Wei et al. 2010). Cu, Ti, and Na loadings were high-
est in VF3, suggesting biomass combustion, diesel and 
residual oils, tobacco smoke, and steel non-ferrous alloys 
manufacturing. In the tannery industry, manganese is used 
in the form of salts  [MnCO3 and Mn  (SO4)2] (Tariq et al. 
2006). Ca sources from the PM were illustrated by VF4. 
Plants and animals, as well as the skeletons of animals, 

teeth, egg shells, coral, and many soils, are major sources 
of Ca in current PM. Calcium chloride is present in some 
water, especially seawater, at a concentration of 0.15%. 
Calcium does not occur in nature on its own. Calcium 
is mainly present in the form of limestone, gypsum, and 
other minerals. Significant loadings for S were found in 
VF5, indicating sources related to anthropogenic activi-
ties, specifically tire vulcanization. Many vulcanizers work 
along the streets in these neighborhoods, especially in the 
Oba Ile and Museum areas. Zinc is a vital trace element 
in living organisms, but it is insoluble and extremely rare 
in nature (Alloway 1990).

Fig. 5  Plots showing the Pollu-
tion Load Index, Contamination 
Factor, and Enrichment Factor 
of element concentrations in 
 PM2.5 at different sites
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4  Conclusion

The  PM2.5 levels found in this study were higher than 
those recorded by the WHO, the World Health Organiza-
tion, and the US Environmental Protection Agency, and 
some countries in Asia, Europe, and the United States. 
The PM is dangerous for sensitive groups, according to 
the AQI of the places. PM2.5’s effect on trace and heavy 
element enrichment, source apportionment, and pollution 
load index was also investigated. In contrast to previous 
research on PM performed elsewhere, measured concen-
trations of macronutrients and heavy metals were higher 
or lower. Cr, Ni, Cu, Mn, and Zn were added to the PM. 
Pollution was minimal in the elements. Anthropogenic and 
non-anthropogenic origins of PM were identified through 
multivariate analysis. Metals in the air can be apportioned 
at the source, which can aid decision-makers in developing 
management strategies to minimize pollution. The climate 
should be continually and properly controlled in the loca-
tions under study.
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