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Abstract
This study was carried out to determine sources and health risks of fine particulate (PM2.5) bound polycyclic aromatic 
hydrocarbons (PAHs) and carbonaceous species in the ambient atmosphere of Delhi. Aerosol samples were collected from 
October 2017 to September 2018 in an institutional cum residential area of Delhi. Annual PM2.5 level was found to be 
124.3 ± 107.6 µg/m3 which exceeded the Indian National Ambient Air Quality Standard (NAAQS) by over three times. Six-
teen US EPA priority PAHs’ concentration exhibited a seasonal trend of winter > monsoon > summer with annual mean level 
of 83.6 ± 48.0 ng/m3. Winter and summer (p < 0.05), and monsoon and summer (p < 0.05) values were significantly different. 
Low-molecular-weight (LMW) and high-molecular-weight (HMW) PAHs contributed about 34.4% and 65.6% to Ʃ16PAHs, 
respectively. Annual mean organic carbon (OC) and elemental carbon (EC) levels were 21.5 ± 16.1 µg/m3 and 20.1 ± 20.5 µg/
m3, respectively, with a mean OC/EC ratio of 1.8 ± 2.6. Winter OC and EC values showed significant mean difference from 
summer and monsoon (p < 0.01) with a seasonal trend of winter > summer ≈ monsoon. Molecular diagnostic ratios and prin-
cipal component analysis identified vehicular emission as the leading source of these species followed by biomass and coal 
combustion, industrial emissions, and volatilization of petroleum and its products. Regional and trans-boundary incursion of 
pollutants was also identified with the help of back trajectories and concentration weighted trajectories. Carcinogenic PAHs 
contributed ̴41.4% to the aerosol PAHs load. Incremental cancer risk assessment estimated ̴ 25 additional cancer cases per 
million population due to lifetime inhalation exposure to PAHs at their observed concentration in Delhi.

Keywords  PM2.5 · Polycyclic aromatic hydrocarbons (PAHs) · Carbonaceous species · Source apportionment · Health risk · 
Delhi

1  Introduction

Atmospheric aerosol loading is one of the nine planetary 
boundaries that have been considered crucial to preserve 
Holocene-like habitable state of the Earth (Steffen et al. 
2015). Fine aerosol particles (PM2.5; aerodynamic diam-
eter ≤ 2.5 µm) are a typical indicator of urban air quality 
(Han et al. 2016) and have been linked with human mortality 
(Dockery et al. 1993). In the last 3 decades, PM2.5 concen-
trations have increased by ̴ 25% in the South Asian region 
(Miranda et al. 2019). Delhi, the capital city of India, is iden-
tified as the dirtiest city in the country in terms of air quality 
(Chowdhury and Dey 2016), and a very high concentration 
of PM2.5 plays a key role in the deteriorated air quality (Dey 
et al. 2012). Besides natural sources, PM2.5 has anthropo-
genic sources such as industry and traffic (Karagulian et al. 
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2015). Adverse health effects due to PM2.5 exposure have 
been linked to both, PM2.5 mass and chemical composi-
tion (Forsberg et al. 2005; Saarnio et al. 2008). Chemical 
species like organic and inorganic carbon, major and trace 
elements, ions, and oxides of various elements are known 
to have health effects (Fang et al. 2008). Carbonaceous spe-
cies, a significant component of fine particles, contributes 
about 20–50% of the total PM2.5 mass (Park et al. 2001; 
Rogge et al. 1993). Organic carbon (OC), elemental carbon 
(EC), and semi-volatile polycyclic aromatic hydrocarbons 
(PAHs) are the most studied group of carbonaceous spe-
cies. They have been reported to exist predominantly in the 
PM2.5 range (Burkart et al. 2013). Their concentration var-
ies considerably in space and time and is mainly influenced 
by emission sources and meteorological conditions. These 
compounds are often co-emitted and have primary (biogenic 
and anthropogenic), as well as secondary sources (atmos-
pheric oxidation processes). While EC is emitted directly 
from combustion processes and, therefore, is a primary pol-
lutant, OC has both primary and secondary origins (Jimenez 
et al. 2009; Seinfeld and Pandis 2006). EC is a strong sorb-
ent of persistent organic pollutants (POPs), including PAHs, 
and is widely present in the urban environment (Cornelis-
sen et al. 2005). Semi-volatile compounds such as PAHs 
have two or more benzene rings and exists in both gase-
ous and particulate phase (Finlayson-Pitts and Pitts 2000). 
Combustion-derived PAHs are emitted in the gaseous form 
at high temperatures and are condensed on particles when 
cooled (Marr et al. 2006). Their distribution in the ambient 
atmosphere is related to the distribution of EC due to their 
similar emission sources and high sorption capacities of EC 
(Cornelissen et al. 2006).

Carbonaceous aerosol plays a significant role in global 
climate change through direct and indirect radiative forc-
ing, and adversely affects human health (Dan et al. 2004; 
Fang et al. 2008). Studies have suggested that OC, EC, and 
PAH aggregates in particulate matter have the potential to 
generate reactive oxygen species (ROS) leading to toxic-
ity (Metzger et al. 2004). These species may cause acute 
respiratory responses, including inflammation and asthma 
(Morgenstern et al. 2008), and carcinogenic and non-car-
cinogenic risks to human health. High correlation between 
PM2.5-associated EC and lung cancer in school children has 
been reported in epidemiological studies (Gauderman et al. 
2004). Risk to human health from these compounds are usu-
ally more in urban areas because of increasing vehicular 
traffic and high population density (Caricchia et al. 1999; 
Chang et al. 2006). In Delhi, Sarkar and Khillare (2013) 
and Jyethi et al. (2014a, b) have reported 105.3 ng/m3 and 
103.3 ± 50.4 ng/m3 PM10 bound Σ16PAHs, respectively. 
PM2.5 bound 16 PAHs have been reported to range between 
224.5 ± 95.8 and 277.1 ± 125.9 ng/m3 by Gadi et al. (2019). 
Recently, an emission inventory has estimated 43 kg/day, 

15,489 kg/day, and 3864 kg/day emission of PM2.5 bound 
30 PAHs, OC, and EC, respectively, in Delhi (Pathak et al. 
2020). Annual mean OC and EC levels from the region 
are reported to be 15.7 ± 12.7 µg/m3 and 7.31 ± 6.2 µg/m3, 
respectively (Jain et al. 2020); and 24.7 ± 9.4 µg/m3 and 
11.7 ± 4.7 µg/m3, respectively (Ali et al. 2019).

Several studies on PM10 and PM2.5-associated carbona-
ceous species and PAHs have been reported from Delhi and 
India (Aswini et al. 2019; Bisht et al. 2015; Hazarika et al. 
2017; Kumar et al. 2020a, b; Satsangi et al. 2012; Sharma 
and Mandal 2017; Tobler et al. 2020). It has been noted 
that only a few studies have reported PM2.5 bound OC, EC, 
and PAHs simultaneously (Pant et al. 2015). The present 
study is the first from India reporting OC, EC, and PAHs in 
ambient air of an institutional cum residential area in Delhi. 
The simultaneous characterization of these species in fine 
particles would help to understand their distribution and 
will improve the source resolution of organic air pollutants 
during source apportionment. Furthermore, PAHs’ determi-
nation will help to assess the health risk due to inhalation 
exposure.

2 � Materials and Methods

2.1 � Study Area and Sampling Site

Delhi, the study area (Fig. 1), is the capital city of India. It is 
located in the Northern part of India (28°-24′-17ʺ E to 28°-
53′-00ʺ E; 76°-50′-24ʺ N to 77°-20′-37ʺ N) with an average 
elevation of 216 m above mean sea level (MSL). The city is 
spread over an area of 1114 km2 (urban) and 369 km2 (rural) 
with a population density of 11,297/km2. The 2011 census 
reported a population of 16.78 million comprising 16.37 
million urban and 0.41 million rural people, respectively. 
The meteorology is mostly influenced by its inland position. 
The Great Himalayas, Thar Desert of Rajasthan, and the hot 
plains of Central India surround Delhi. Continental wind 
prevails in the area and blows for most part of the year. Win-
ters in Delhi record temperature of up to 12–14 °C. Calm 
atmospheric conditions and nighttime temperature inversion 
are common. Summers register monthly mean temperature 
of 32–34 °C during May–June. Frequent dust storms are 
prevalent in summer. The mean annual rainfall is 714 mm. 
The moisture-laden southwestern winds from the Arabian 
Sea are responsible for precipitation in monsoon season.

Jawaharlal Nehru University (JNU) is an institutional cum 
residential area with good vegetation cover. It is spread over 
an area of 4 km2 on the ridge of Aravalli range. Two ecologi-
cally sensitive zones, Aravalli Biodiversity Park and Sanjay 
Van, are situated in the vicinity of the university campus. 
The campus has low vehicular traffic and no industries in 
its 5 km periphery. JNU lies in the southern part of Delhi. 
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The predominant wind direction in Delhi is from the north 
and northwestern direction, thereby possibly transporting the 
emissions from the city and adjoining states to the campus. 
The wind-rose diagram (Fig. 2) shows that the wind flow-
ing from the western direction with moderate wind speed 
(2.1–5.7 m/s) predominates during the sampling period. The 
air sampler was kept on the rooftop of the SES building in 
the university campus at approximately 13 m height. The 
building is located about 1.5 km away from the main road.

2.2 � Sampling Protocol

Weekly sampling of PM2.5 was carried out for a period of 1 
year (October 2017–September 2018). Day rotation method 

was used to get representative data for all weekdays. Sam-
ples were collected by Fine Particulate Sampler (Envirotech, 
APM 550 Mini) on Quartz Microfiber Filter, QMA (What-
man, 47 mm diameter) for 24 h (09:00–08:59 Local time 
next day) at a flow rate of 16.67 lpm. Filters were heated 
before use at 550 °C for 12 h to eliminate organic impuri-
ties, if any. After then, they were desiccated for 48 h over 
silica granules before and after sampling. Filter paper were 
wrapped with aluminum foil and carried in polyethylene 
bags to and from the field, and utmost care was taken to 
reduce handling losses during sampling campaign. PM2.5 
loads were determined gravimetrically, weighing the filters 
twice after proper conditioning, using a microbalance (sen-
sitivity of 0.0001 g, Model AE 163: Mettler, Switzerland). 

Fig. 1   Map showing the sampling site Jawaharlal Nehru University (JNU)
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Fig. 2   Wind rose showing 
the prevailing wind direction 
in Delhi during the sampling 
period (Sept 2017 to Oct 2018)
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Filters were stored in individual filter holders and kept in 
a refrigerator (at − 20 °C) until further chemical analysis.

2.3 � Chemicals and Reagents

A mixture of a standard containing 16 PAHs (16 compounds 
specified in EPA Method 610) was purchased from Supelco 
(Bellefonte, PA, USA). Deuterated internal standard mix-
ture (naphthalene-d8, phenanthrene-d10, acenaphthene-d10, 
perylene-d12, and chrysene-d12) was procured from Restek 
(Bellefonte, PA, USA). All the solvents (toluene, n-hexane, 
and acetonitrile) used in the analysis process were high-per-
formance liquid chromatography (HPLC) grade. They were 
obtained from Merck (India) Ltd. Deionized high-purity 
water (18.2 MΩ cm−1) was used from the Milli-Q system 
(Millipore, USA).

2.4 � Determination of carbonaceous species

The OC and EC fractions were obtained by Interagency Mon-
itoring of Protected Visual Environment (IMPROVE_A) 
Thermal/Optical Reflectance (TOR) temperature protocol 
for carbon analysis using Desert Research Institute (DRI) 
model 2001 Thermal/Optical analyzer. The analyzer system 
allows us to obtain seven fractions (4 OC and 3 EC) as well 
as one pyrolyzed carbon fraction individually, depending on 
the temperature variation of the used protocol. A punch of 
0.5 cm2 area of the sample filter was heated gradually in the 
non-oxidizing helium (He) and oxidizing (98% He/2% O2) 
environment for OC and EC concentrations, respectively. 
The temperature plateaus for thermally derived fraction 
was 140 °C for OC1, 280 °C for OC2, 480 °C for OC3 and 
580 °C for OC4 in a He carrier gas; for EC fraction, 550 °C 
for EC1, 700 °C for EC2, and 800 °C for EC3 in a 98% 
He/2% O2 carrier gas along with pyrolyzed organic carbon 
(PyOC). In this protocol, OC is defined as the sum of all 
four regular organic carbon plus pyrolyzed organic carbon 
fractions (i.e., OC1 + OC2 + OC3 + OC4 + PyOC) and EC is 
defined as ((EC1-PyOC) + EC2 + EC3).

2.5 � PAHs Determination

Analysis of PAHs was carried out based on the protocol 
established and used in the lab (Jyethi et  al. 2014a, b; 
Khillare et al. 2008; Sarkar et al. 2010). The filter papers 
were cut into small pieces and extracted using ultrasonic 
agitation (Sonicator 3000; Misonix Inc., USA). The sonica-
tion process was performed twice with 50 ml of toluene as 
a solvent for 15 min with a frequency of 20 kHz in a water 
bath. Both the extract was subsequently mixed after filtra-
tion and then concentrated to 2 ml by rotary evaporation unit 
(Buchi Rotavapor, Switzerland). This is followed by silica 
gel column clean-up and further concentration up to 2 ml. 

Column clean-up method was used to fractionate the PAHs 
present in the concentrated extract by silica gel (Silica gel, 
high-purity grade, pore size 60 Å, 70–230 mesh, and particle 
size 63–200 µm purchased from Sigma-Aldrich, Switzer-
land). Silica gel slurry was used for column (length 25 cm, 
internal diameter 8 mm) packing. Three grams of silica was 
activated at 180 °C for 24 h, and subsequently deactivated 
with 1% Milli-Q water. A slurry of the deactivated silica was 
prepared with 40 ml of n-hexane and was left overnight for 
degassing. To remove aliphatic hydrocarbons present in the 
sample, 10 ml hexane was eluted before a 50 ml mixture of 
toluene and hexane (in 1:1 ratio) to obtain PAH fractions. 
Eluent containing PAHs fractions was further concentrated, 
and solvent exchanged by acetonitrile. Samples were filtered 
using 0.2 µm nylon syringe filters for chromatographic anal-
ysis. Finally, PAH analysis was carried out using an HPLC 
system (Model 510; Waters, USA) equipped with a tun-
able UV absorbance detector (254 nm) and a C18 column 
(4.6 mm × 250 mm, particle size 5 um; Waters).

2.6 � Aerosol optical depth (AOD), clustered 
air masses, and concentration weighted 
trajectories

An averaged AOD map of India was generated using 
MODIS-Aqua data from Giovanni (https://​giova​nni.​gsfc.​
nasa.​gov/​giova​nni/) for the time period of 1 year (Septem-
ber 2017–October 2018). The dataset used is combined 
Dark Target and Deep Blue product of level-3 atmospheric 
daily global AOD data (MYD08_D3) with 1° × 1° spatial 
resolution. To identify and trace the trans-boundary and 
regional movement of pollutants, backward wind trajecto-
ries were computed by downloading meteorological dataset 
from NCEP/NCAR data repository (https://​www.​esrl.​noaa.​
gov/) and then processing them through the HYSPLIT trans-
port model (https://​www.​ready.​noaa.​gov/​HYSPL​IT.​php). 
HYSPLIT was run for 120 h at 04:00 UTC to match the 
sampling timing from a starting height of 100 m to calcu-
lated backward wind trajectories. To measure the directional 
gradient of source contribution, concentration weighted tra-
jectories (CWTs) were made for PAH and OC. CWTs were 
made using open source software, TrajStat (http://​www.​
meteo​think​er.​com) and by the following method used by 
(Rawat et al. 2019).

2.7 � Analytical Quality Control

The HPLC system’s performance was regularly checked 
using at least five standards under the range of concentra-
tions encountered in ambient air work. The calibration curve 
was linear in the concentration range with a linear regres-
sion coefficient R2 > 0.99 for a linear least-square fit of data. 
Samples were analyzed in triplicate to ensure precision. The 

https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
https://www.esrl.noaa.gov/
https://www.esrl.noaa.gov/
https://www.ready.noaa.gov/HYSPLIT.php
http://www.meteothinker.com
http://www.meteothinker.com


198	 Aerosol Science and Engineering (2021) 5:193–213

1 3

relative standard deviation of triplicate samples was < 10% 
for PAHs. Field blank (around 10% of the total samples) 
and reagent blank (one for each batch of samples) were 
analyzed to check the analytical bias. The method detection 
limit (MDL), calculated as three times the standard devia-
tion (σ) for 7 replicate samples, varied from 0.05 to 0.13 ng/
m3 for PAHs. The targeted 16 PAHs compounds were not 
detected in the procedural blank; whereas, their recoveries 
in the standard-spiked matrix ranged between 72 to 96%. 
Similarly, OC–EC analysis method was validated using three 
known volumes of 5% nominal CO2 in He, and R2 > 0.99 
was obtained. Standard CH4 in He injected at the end of 
each analysis served as an internal standard. The MDL (3σ) 
was calculated for the concentration of OC and EC (n = 8) 
on the blank filter samples, and was found to be 0.73 µg/m3 
and 0.65 µg/m3, respectively. All reported concentrations of 
PAHs, OC, and EC were corrected for filter and field blanks.

3 � Results and Discussion

3.1 � Variation of PM2.5

The annual mean concentration of PM2.5 observed at JNU 
was 124.3 ± 107.6 (range 12.6–569.7) µg/m3 (Table 1). The 
values exceeded over 3 times the annual National Ambient 
Air Quality Standard (NAAQS; 40 µg/m3) of India (MoEF 
2009) and ̴12 times the annual mean PM2.5 air quality guide-
line (10 µg/m3) set by the World Health Organization (WHO 
2006). The 24 h PM2.5 NAAQS (60 µg/m3) was violated 
on 67.4% of the sampling days during the study period. 
Guttikunda and Goel (2013) reported a similar value over 

a 4-year (2008–2011) study of PM2.5 with a mean annual 
level of 123 ± 87 µg/m3 and identified vehicular exhaust, 
industries, waste burning, and construction activities as the 
sources in New Delhi. Higher mean annual concentration of 
148 ± 51 µg/m3 in Delhi has been estimated using Multian-
gle Imaging SpectroRadiometer (MISR) and GEOS-Chem 
model with vertical distribution constrained by CALIOP 
measurements on a 10-year (2001–2010) average by Chowd-
hury and Dey (2016). Also, an AOD map (Fig. 3) generated 
by the MODIS-Aqua dataset shows AOD values between 
0.8 and 1. It reflects the high aerosol loading over Delhi 
region during the study period and validates the high PM2.5 
concentration determined gravimetrically.

A significant temporal variation (one-way ANOVA, 
F = 18, p  < 0.01) was observed with a seasonal 
mean of 219.3 ± 110.1  µg/m3, 70.3 ± 29.7  µg/m3, and 
65.2 ± 75.1  µg/m3 for winter, summer, and monsoon, 
respectively. Winter and monsoon season of Delhi are 
associated with the highest and lowest particle loadings, 
respectively. Calm atmospheric conditions and low mix-
ing heights in winter increase the surface level accumula-
tion of pollutants in the atmosphere; on the other hand, 
precipitation scavenging lowers the particulate loading in 
monsoon (Seinfeld and Pandis 2006). A high σ value indi-
cates a larger variation in emission sources, especially in 
October during the post-monsoon season. The post-harvest 
biomass burning activities commence from the beginning 
of September and continue till early November in the 
neighboring states of Punjab and Haryana, which increases 
the PM2.5 level in Delhi (Sekhar et al. 2020). Jethva et al. 
(2019) estimated 15-year (2002–2016) averaged PM2.5 
level of 155 µg/m3 with an increasing trend of 6 µg/m3 

Table 1   Temporal variation of 
ambient PM2.5 (in µg/m3) and 
associated PAHs (in ng/m3) at 
sampling site

PAHs with 2-ring consist of Naph; Σ3-ring consists of Acy, Acen, Flu, Phen, and Anth; Σ4-ring consists 
of Flan, Pyr, B[a]A and Chry; Σ5-ring consists of B[b]F, B[k]F, B[a]P, and DB[ah]A; Σ6-ring consists of 
B[ghi]P and IP
Σ7-PAHs denotes the sum of the seven carcinogens and consists of B[a]A, Chry, B[b]F, B[k]F, B[a]P, 
DB[ah]A, and IP
ΣLMW denotes the low-molecular-weight PAHs and consists of 2-ring and 3-ring PAHs; ΣHMW indicates 
the high-molecular-weight PAHs and consists of 4-ring, 5-ring, and 6-ring PAHs
Winter (November–February), Summer (March–June), Monsoon (July–October)

Species Winter Summer Monsoon Annual % of Σ16PAHs

Σ2-ringPAHs 2.9 ± 2.5 3.0 ± 3.0 2.3 ± 1.1 2.8 ± 2.3 3.3
Σ3-ringPAHs 31.9 ± 13.2 15.0 ± 7.9 29.4 ± 13.6 26.6 ± 13.9 31.8
Σ4-ringPAHs 18.9 ± 11.6 9.1 ± 5.2 19.6 ± 11.9 17.2 ± 12.6 20.6
Σ5-ringPAHs 30.8 ± 21.1 14.5 ± 6.9 31.9 ± 21.1 25.7 ± 19.0 30.7
Σ6-ringPAHs 16.3 ± 15.9 8.8 ± 5.0 13.6 ± 10.9 13.4 ± 12.2 16.0
Σ16PAHs 100.5 ± 48.7 54.0 ± 29.0 96.5 ± 51.6 83.6 ± 48.0 100.0
Σ7PAHs 41.8 ± 26.9 19.0 ± 8.1 41.9 ± 27.2 34.6 ± 24.9 41.4
ΣLMW 34.5 ± 13.0 17.4 ± 8.8 31.4 ± 13.5 28.7 ± 14.2 34.4
ΣHMW 66.1 ± 43.0 32.3 ± 15.2 65.1 ± 41.2 54.9 ± 38.5 65.6
PM2.5 219.3 ± 110.1 70.3 ± 29.7 65.2 ± 75.1 124.3 ± 107.6
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per year, leading to a 60% increase in the post-monsoon 
season (October–November) in New Delhi. The authors 
established a strong correlation between increasing fire 
activity and particulate matter pollution over the whole 
Indo-Gangetic Plain (IGP). Furthermore, northwesterly 
wind distributes the carbonaceous aerosol emitted from 
crop residue burning areas over downstream regions of 
IGP (Jethva et al. 2018). The tracers obtained by molecular 
diagnostic ratios (Sect. 3.5.1) also indicate the prevalence 
of biomass burning during the winter season in the study 
area. The summer season, characterized by high wind 
speed and high temperature, leads to particulate dispersion 
rapidly and therefore lower aerosol load in the ambient 
atmosphere compared to winters.

3.2 � Levels of OC and EC

As illustrated in Table 2, annual mean of OC and EC 
levels were found to be 21.5 ± 16.1 (range 5.4–86.3) 
µg/m3 and 20.1 ± 20.5 (range 1.6–96.2) µg/m3, respec-
tively, at the sampling site. Seasonal mean OC level was 
33.4 ± 19.9 µg/m3, 15.8 ± 5.7 µg/m3, and 14.4 ± 11.5 µg/
m3 in winter, summer, and monsoon, respectively. Mean 
seasonal EC level was 37.0 ± 24.3 µg/m3, 10.8 ± 7.6 µg/m3, 
and 11.1 ± 12.5 µg/m3 during winter, summer, and mon-
soon, respectively. Winter OC values show a significant 
mean difference with summer and monsoon (p = 0.009 
and p = 0.005, respectively) at 99% CI (one-way ANOVA, 
multiple comparisons). Winter EC values also show a 

Fig. 3   Averaged AOD map of India (MODIS-Aqua) from Sept 2017 to Oct 2018, showing high aerosol loads over the Indo-Gangetic Plain (IGP)
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significant difference in the summer and monsoon mean 
values (p < 0.01). The mean difference between summer 
and monsoon was statistically non-significant (p > 0.01) 
for both OC and EC. OC and EC contribute about 17.3% 
and 16.2% to the total annual mean concentration of 
PM2.5 during the study period. In comparison of the pre-
sent study, a higher OC but lower EC concentrations with 
44 ± 19.65 µg/m3 and 19.33 ± 8 µg/m3, respectively, were 
recorded in winter (December–February 2012) at the same 
sampling site (Kumar et al. 2018), whereas similar values 
have been reported by other authors in Delhi (Jain et al. 
2017; Srivastava et al. 2014). Other studies from various 
cities in the IGP reported a higher OC and lower EC with 
respect to this study (Izhar et al. 2020; Ram et al. 2016; 
Ram and Sarin 2012). Generally, OC is emitted from pri-
mary sources as well as from gas-to particle conversion 
and/or condensation, but the origin of EC is only primary. 
Being chemically resistant and of primary origin, EC was 
used to estimate the primary and secondary OC in car-
bonaceous aerosols. The following equations have been 
used to calculate primary and secondary OC concentra-
tions (Turpin and Huntzicker 1995):

where OCpri is primary OC (POC); (OC/EC) min is the 
minimum ratio of primary OC/EC; OCsec is secondary OC 
(SOC), and OCtotal is total OC. The lowest primary OC/EC 

OCpri = EC × (OC∕EC)min,

OCsec = OCtotal− EC × (OC∕EC)min,

ratio of each season was taken to calculate the seasonal pri-
mary organic carbon.

The calculated mean annual primary and secondary OC 
were 14.2 ± 12.8 µg/m3 and 7.4 ± 7.4 µg/m3. Moreover, the 
total carbonaceous matter (TCM) was also calculated as 
follows:

where OM = OC × 1.6 and EM = EC × 1.1.
The multiplication factors 1.6 and 1.1 have been exten-

sively used for urban atmospheric aerosols (Cao et  al. 
2003; Gu et al. 2010). The average TCM was found to be 
56.6 ± 47.4 (range 11.7–222.7) µg/m3 and contributed about 
45.5% of the total PM2.5 concentration. The seasonal distri-
bution of fractions of OC, EC, and one pyrolyzed organic 
carbon fraction have represented in Fig. 4. Out of four por-
tions of organic carbon (i.e., OC1, OC2, OC3, and OC4), 
OC2 predominates in all seasons. Very low concentration 
of OC1 found might be due to its volatile nature. OC1 and 
OC2 are tracers of biomass burning and coal combustion, 
respectively (Cao et al. 2005; Chow et al. 2004). OC3 and 
OC4 fractions are associated with high-molecular-weight 
organic species having lower volatility linked with second-
ary formation pathways (Aswini et al. 2019). Elevated OC3 
and OC4 values compared to winter, and corresponding 
seasonal OC-to-EC ratio suggest their secondary formation 
in summer and monsoon. EC1 (PyOC corrected) domi-
nates EC fractions (i.e., EC1, EC2, and EC3) in all seasons. 
Char-EC (EC1-PyOC) is significantly higher than soot-EC 
(EC2 + EC3). Char-EC is linked with biomass burning and 
coal combustion, whereas soot-EC is linked with vehicular 
emission. Elevated EC1 level in winter might be due to bio-
mass burning for heating purposes.

3.3 � Seasonal Variation of PAHs

The annual and seasonal mean concentration of ring wise 
PAHs is given in Table 1. The annual mean Σ16PAHs was 
found to be 83.6 ± 48.0 (range 14.5–200.2) ng/m3. The val-
ues have been compared with other studies reported by vari-
ous authors from India and other countries (Table 3). It is 
observed that the calculated PAHs’ level is several times 
higher than the values reported from European cities like 
Oporto, Florence, and Athens (Alves et al. 2017); Atlanta, 
USA (Li et al. 2009); and Taiwan (Chen et al. 2016). Within 
Indian cities, Jamshedpur (Kumar et al. 2020a, b) and Kan-
pur (Singh and Gupta 2016) exhibited higher PAH levels. 
Globally, total PAH (TPAH) emission estimate was found to 
be 499 Gg in 2008 (Shen et al. 2013). The Asian countries 
contributed about 53.5% to the global TPAH emission, with 
the highest emission from China (106 Gg) and India (67Gg) 
during 2007.

TCM = Organic matter (OM) + Elemental matter (EM),

Table 2   Annual and seasonal mean level of carbonaceous species (in 
µg/m3) with their associated components and ratio in PM2.5 in Delhi

a Primary organic carbon (POC) = (OC/EC)min × EC
b Secondary organic carbon (SOC) = (OC)total − (POC)
c Organic matter (OM) = 1.6 × OC
d Elemental matter (EM) = 1.1 × EC
e Char-EC = EC1 − PyOC
f Soot-EC = EC2 + EC3

Species Winter Summer Monsoon Annual

OC 33.4 ± 19.9 15.8 ± 5.7 14.4 ± 11.5 21.5 ± 16.1
EC 37.0 ± 24.3 10.8 ± 7.6 11.1 ± 12.5 20.1 ± 20.5
TC 70.4 ± 43.0 26.6 ± 11.6 25.5 ± 23.9 41.6 ± 35.9
OC/EC 0.9 ± 0.1 3.0 ± 4.4 1.7 ± 0.5 1.8 ± 2.6
TC/EC 1.9 ± 0.1 4.0 ± 4.4 2.7 ± 0.5 2.8 ± 2.6
POCa 22.0 ± 14.5 8.9 ± 6.3 11.0 ± 12.4 14.2 ± 12.8
SOCb 11.4 ± 9.7 6.9 ± 6.1 3.5 ± 1.6 7.4 ± 7.4
OMc 53.4 ± 31.8 25.3 ± 9.2 23.1 ± 18.3 34.5 ± 25.8
EMd 40.7 ± 26.8 11.9 ± 8.4 12.2 ± 13.7 22.1 ± 22.6
TCM 94.1 ± 56.9 37.2 ± 15.2 35.3 ± 32.0 56.6 ± 47.4
Char-ECe 36.6 ± 24.2 10.5 ± 7.6 10.6 ± 12.5 19.7 ± 20.5
Soot-ECf 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.4 ± 0.1
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PAHs show a seasonal variation of 100.5 ± 48.7 ng/m3, 
54.0 ± 29.0 ng/m3, and 96.5 ± 51.6 ng/m3 in winter, sum-
mer, and monsoon, respectively. The seasonal difference was 
assessed using one-way analysis of variance (ANOVA) with 
multiple comparisons at 95% confidence interval (CI). Win-
ter and monsoon PAH mean values show significant differ-
ence with summer (p = 0.01 and 0.04, respectively), but the 
difference was not significant between winter and monsoon 
levels (p = 0.4). Statistical analysis revealed that the concen-
tration of PAHs was significantly higher during the winter 
as compared to summer. Flan/(Flan + Pyr) value (Table 4) 
indicates biomass, coal, and wood-burning for heating pur-
poses as the predominant source in winter. Additionally, in 
winters, low atmospheric temperature reduces the photode-
composition of PAHs, while lower mixing height results in 
accumulation near the Earth’s surface (Saarnio et al. 2008; 
Sarkar and Khillare 2013). Increased photolytic dissociation 
due to high solar radiation reduces the PAH concentration 
in summer, which is further dispersed rapidly by relatively 
higher wind speed (Liu et al. 2016). The seasonal mean val-
ues in monsoon were comparable with winter due to the 

elevated monthly average of October (149.6 ± 49.6 ng/m3) 
than the remaining 3 months (July–September; average: 
70.0 ± 26.7 ng/m3).

Similarly, seasonal mean of all rings PAH was found to 
be comparatively higher in winter and monsoon than in sum-
mer except 2-ring PAHs. Annually, 2-ring, 3-ring, 4-ring, 
5-ring, and 6-ring compounds contribute around 3.3%, 
31.8%, 20.6%, 30.7%, and 16.0% to total PAHs, respectively. 
3-ring PAHs are found to predominant in all seasons except 
in monsoon, whereas 2-ring was the least abundant species. 
ΣLMW (2-, and 3-ring species) and ΣHMW (4-, 5-, 6-ring 
species) contribute about 34.4% (28.7 ± 14.2 ng/m3) and 
65.6% (54.7 ± 38.5 ng/m3) to total PAHs. LMW PAHs are 
generally associated with gaseous phase, while HMW are 
associated with particulate phase (Finlayson-Pitts and Pitts 
2000). Since HMW PAHs comprise of probable and possible 
carcinogens, high HMW levels may adversely affect human 
health in the study area. Emission of HMW PAHs have been 
reported to be reduced by advancement in engine technolo-
gies such as selective catalytic converter (SCC) coupled with 
diesel particulate filter (Twigg 2007).

Fig. 4   Percent contribution of 
organic and elemental fractions 
to the total carbon content in 
PM2.5
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Individually, Acen was the predominant species with 
an annual mean of 17.2 ± 9.3 ng/m3 followed by DB[ah]
A (14.2 ± 12.1  ng/m3), B[ghi]P (8.8 ± 7.9  ng/m3), Pyr 
(6.7 ± 5.8 ng/m3), and others. High concentration of Acen 
could be due to the leakage and volatilization of petroleum 
and petrochemicals in the surrounding area (Wei et al. 2019). 
Concentrations of Pyr, DB[ah]A, B[ghi]P, B[a]P, and IP, 
which are tracers of gasoline and diesel combustion (Fang 
et al. 2004; Guo et al. 2003; Khalili et al. 1995; Motelay-
Massei et al. 2005), were high throughout the year, which 
indicates vehicular emissions as a major contributing source 
of PAHs in Delhi. Anth was found to be the least dominant 
species (1.3 ± 1.0 ng/m3) during the whole study period with 
a non-significant seasonal variation (p < 0.01). Yadav et al. 
(2020) have also reported lowest abundance of Anth among 
12 PAH species analyzed in Delhi. Anth emissions in the 
gaseous phase from various diesel and gasoline engines 

(1980–85; US EPA Federal Test Procedure (FTP) cycle 
only) of heavy-duty diesel engine, light-duty diesel engine, 
and light-duty gasoline engine with and without catalytic 
convertor were 5600, 1313, 2000, and 38 µg/km, respec-
tively. The emission values of particulate-phase Anth for 
engines mentioned above were 274, 66, 100, and 2 µg/km, 
respectively (Monographs et al. 1989; IARC 2012).

Interestingly, the previous studies done at the same sam-
pling site (i.e., JNU) provide information about the influ-
ence of vehicular exhaust on the ambient PAHs level in 
the area. Khillare et al. (2008) reported an annual mean of 
66.41 ± 35.7 ng/m3 and 21.08 ± 9.6 ng/m3 before the intro-
duction of compressed natural gas (CNG)-driven public 
transport system in 1998 and post-CNG in 2004 (after 3 years 
of introduction of CNG in 2001) in Delhi, respectively, for 
Σ11PAHs. Furthermore, Sarkar and Khillare (2011) reported 
74.7 ± 50.7 ng/m3 for 16 priority PAHs at the same site. The 

Table 3   Comparison of 
ambient PAH level (in ng/m3) 
of the present study with values 
reported in the literature from 
India and the world

N number
a An average of winter (December – February) and summer (March–May) values of urban site
b Sampling in the winter season (Nov 2005–Feb 2006)
c Average of 9 sites (Feb 2013–June 2014)
d Sampling in 24 days fog period (15 Dec 2013–16Feb 2014)
e Range of 16 PAHs in a different season (spring, summer, autumn, and winter)
f Sampling (13 days) in Nov 2013 at seven various functional sites
g Sampling in the urban site (FM)
h Winter
i Summer

Location Site type PM type N of PAHs Values (ng/m3) References

Delhi, India Residential PM2.5 16 83.6 ± 48.0 Present study
Jamshedpur, India Urban PM2.5 16 95.1a Kumar et al. (2020a, b)
Agra, India Residential PM10 17 34.65b Masih et al. (2010)
Nagpur, India Urban PM2.5 13 458 ± 246c Etchie et al. (2018)
Kanpur, India Residential PM1 16 529.17d Singh and Gupta (2016)
Taiyuan, China Industrial PM2.5 16 10.36–215.93e Zhang et al. (2016)
Beijing, China urban PM2.5 14 250.21 ± 128.01f Gao et al. (2016)
Huaniao Island, China Island PM2.5 16 5.24 ± 5.81 Wang et al. (2014)
Oporto, Portugal Traffic PM2.5 27 16.3h–5.60i Alves et al. (2017)
Florence, Italy Urban 7.75h–3.02i

Athens, Greece Suburban 3.44h–0.65i

Changhua County, Taiwan Rural PM2.5 22 3.04 ± 1.40 Chen et al. (2016)
Atlanta, USA Urban PM2.5 28 1.92g Li et al. (2009)

Table 4   Correlation between 
PM2.5, OC, EC, and PAH at 
99% CI in winter, summer and 
monsoon

Species Winter Summer Monsoon

PM2.5 PAHs OC EC PM2.5 PAHs OC EC PM2.5 PAHs OC EC

PM2.5 1.00 1.00 1.00
PAHs 0.09 1.00 − 0.42 1.00 0.78 1.00
OC 0.95 − 0.10 1.00 0.30 − 0.22 1.00 0.97 0.79 1.00
EC 0.96 − 0.09 0.98 1.00 0.08 − 0.03 0.50 1.00 0.98 0.80 0.99 1.00
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authors suggested unprecedented growth in vehicular popula-
tion for such a high increase (~ 174%) in PAH concentration in 
Delhi. Despite the introduction of the metro train and a large 
fleet of CNG buses, the number of vehicles increased from 3.9 
million in 2000 to 11.39 million in 2018 (Economic Survey of 
Delhi 2019–2020). The annual mean level of 16 PAH reported 
in the present study was found to be nearly 89.4% higher than 
the 2008–2009 level. It is widely reported that automobile 
exhaust is a major source of PAHs in the ambient air of Delhi 
(Jyethi et al. 2014b; Sarkar et al. 2010; Yadav et al. 2020).

3.4 � Correlation Between PM2.5, PAH, OC, and EC

A seasonal correlation plot of PM2.5, PAH, OC, and EC is 
presented in Fig. 5. The corresponding correlation coefficient 
(Table 4) was calculated at 99% CI. PAH was found to be posi-
tively correlated with PM2.5 in monsoon (r = 0.78, p < 0.01) 
and negatively correlated in summer (r = − 0.42). A very poor 
correlation was observed in winter (r = 0.10). Lower PAH lev-
els in summer could be attributed to high photodissociation 
and evaporative losses due to intense solar radiation, preva-
lent dust storms, and lesser use of coal, wood, and biomass 
for heating purposes (Liu et al. 2016; Saarnio et al. 2008). 
Although winter and monsoon PAH levels were comparable, 
they show different correlations. It is evident that the sources 
of PAHs in the study area are local. Winter time in Delhi is 
characterized by very high PM2.5 concentration due to aerosol 
from neighboring crop residue and biomass burning regions 
(Jethva et al. 2018; Sekhar et al. 2020; Yadav et al. 2020). It 
may be a possible reason for their weak correlation in winter. 
Future studies will focus more on the subject. OC and EC are 
strongly associated with PM2.5 during winter (OC, r = 0.95; 
EC, r = 0.96) and monsoon (OC, r = 0.97; EC, r = 98). This 
suggests their co-emission and contribution to fine atmos-
pheric particles that are further supported by strong correla-
tion in both the seasons. A poor correlation of OC and EC 
with PM2.5 was observed in summer. EC mostly comes from 
primary sources, whereas OC comes from both primary as 
well secondary sources. A robust correlation between OC and 
EC indicates their common (Ram and Sarin 2010) and primary 
emission sources (Genga et al. 2017), while poor correlation 
and high OC/EC (3.0 ± 4.4) ratio suggest secondary organic 
carbon formation in summer. Furthermore, a significant linear 
relationship between OC and EC suggests similar emission 
sources throughout year.

3.5 � Source Apportionment of Atmospheric PAHs, 
OC, and EC

3.5.1 � Molecular Diagnostic Ratios

Molecular diagnostic ratios are used to identify emission 
sources of PAH. These ratios are used for PAHs analyzed 

in various environmental media: air, water, soil, sediment, 
and biota (Tobiszewski and Namieśnik 2012). Determi-
nation of diagnostic ratios in both particulates as well in 
the gaseous phase is necessary for a better understanding 
of possible emission sources. PAH could be partitioned or 
repartitioned between gas and particles in the atmosphere 
(Tasdemir and Esen 2007). Furthermore, studies show these 
ratios change during phase transition and environmental 
degradation, whereas it remains unaffected for particle-size 
distribution. Season-wise-observed PAH molecular diagnos-
tic ratios of the present study and their corresponding source 
signature obtained from available literature are provided 
in Table 5. Anth/(Anth + Phe) and ΣLMW/ΣHMW ratio 
indicated pyrogenic emission sources at the site. In winter, 
Flan/(Flan + Pyr) suggested grass, wood, and coal combus-
tion. B[a]A/(B[a]A + Chry) and IP/(IP + B[ghi]P) indicate 
vehicular emission and petrol combustion in all seasons, 
respectively. B[a]P/B[ghi]P showed that the sampling site 
was also affected by non-traffic emission sources in sum-
mer and monsoon. B[b]F/B[k]F and B[a]A/Chry indicates 
wood and coal/coke combustion in the vicinity. Overall, the 
study area was mostly affected by pyrogenic sources like 
fossil fuels (coal and petroleum) combustion, and wood and 
biomass burning. Tracers of petrol emission predominated 
during the study period. They suggested that gasoline-driven 
vehicles influenced the area.

The ratio of OC to EC is used to determine the emission 
and characteristics of carbonaceous aerosols. Lower OC-
to-EC ratio suggests primary emission sources. However, a 
higher OC-to-EC ratio is indicative of secondary formation 
of OC. OC-to-EC ratio (> 2.0) obtained in various studies 
indicate secondary organic aerosol formation (Fang et al. 
2008; Satsangi et al. 2012). In this study, the annual mean 
OC/EC ratio was found to be 1.8 ± 2.6 (range 0.6–16.3) with 
seasonal variation of 0.9 ± 0.1, 3.0 ± 4.4, and 1.7 ± 0.5 in 
winter, summer, and monsoon, respectively. The average 
OC-to-EC ratio in PM2.5 is reported to be between 0.5 and 
5.4 with an overall average of 2.5 by Fang et al. (2008) for 
Asian cities. Lower OC/EC ratio indicates vehicular emis-
sion (Saarikoski et al. 2008; Zhu et al. 2010), and a ratio < 1 
demonstrates the influence of fresh motor vehicle exhaust 
(Fang et al. 2008). Seasonal variability in OC/EC ratios 
exhibit secondary aerosol formation (Castro et al. 1999; 
Chang and Lee 2007). Furthermore, the minimum summer-
time primary (OC/EC)pri value (0.8) than the measured OC/
EC (3.0) indicates secondary OC formation in the summer 
season (due to higher photochemical activity) (Dan et al. 
2004).

3.5.2 � Principal Component Analysis (PCA)

PCA was carried out using IBM SPSS to identify and quan-
tify the probable sources of PAH and carbonaceous species 
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at the receptor site. Varimax rotation with Kaiser Normali-
zation was used as a rotation method. Components having 
eigenvalues > 1 were chosen as possible source factors. 
Factor score ≥ 0.3 are shown in Table 6 and a factor load-
ing ≥ 0.5 was selected.

Five principal components (PCs) were identified, which 
explained 79.7% variance in the data set. First component 

(PC1), explained 26.6% variance followed by PC2, PC3, 
PC4, and PC5 with 16.7%, 15.1%, 11.6%, and 9.7%, respec-
tively. PC1 is loaded with Phen, Pyr, B[a]A, B[k]F, B[a]
P, DB[ah]A, B[ghi]P, and IP. High-molecular-weight PAH 
such as B[a]A, B[a]P, DB[ah]A, B[ghi]P, and IP were the 
major PAHs in vehicular exhaust, and are identified as 
tracers of gasoline emission (Fang et al. 2004; Guo et al. 

Fig. 5   Correlation plots between the annual mean of PM2.5, PAH, OC, and EC
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2003; Ho et al. 2009; Motelay-Massei et al. 2007). Phen 
and B[k]F with Pyr are considered as a source marker for 
diesel emission (Friedlander and Duval 1982; Khalili et al. 
1995). Therefore, the first factor represents vehicular emis-
sion sources. PC2 was loaded with Naph, Flu, Flan, DB[ah]
A, B[ghi]P, and IP. Naph, Flu, and HMW PAHs like Flan, 
DB[ah]A, B[ghi]P, and IP are the indicators of fossil fuel, 
wood, and biomass burning (Freeman and Cattell 1990; 
Khalili et al. 1995; Y. Liu et al. 2009; Riccardi et al. 2013). 
PC3 was loaded with Anth, Chry, and B[b]F. B[b]F indicates 
diesel and wood-burning (Freeman and Cattell 1990). Anth 
and Chry are identified as the indicator of industrial oil and 
coke oven emission (Aydin et al. 2014; Kulkarni and Ven-
kataraman 2000). Coke is widely used as a fuel and reduc-
ing agent in smelting iron ore in blast furnaces. Diesel gen-
erators are extensively used in industrial areas. Naraina and 
Mayapuri industrial area in north-north-west and Okhla in 
east direction are located at a distance of around 10 km from 
the sampling site. These industrial areas are characterized 
by the presence of units involved in machinery, automobile 
parts, recycling of scrap metals, industrial gas, etc. PC4 is 
loaded with OC and EC. OC and EC indicate emission from 
coal combustion, biomass burning, road dust, and vehicular 

exhaust (Cao et al. 2005; Han et al. 2010). OC is also derived 
from plant spores and pollens, vegetable debris, and tire rub-
ber (Dan et al. 2004). Biomass and crop residue burning are 
the primary sources of OC and EC in the IGP region (Ram 
et al. 2010; Villalobos et al. 2015). PC5 was loaded with Acy 
and Acen. LMW PAHs consisting of 2- and 3-ring PAHs 
like Naph, Acy, Acen, and Flu are derived from oil spills, 
crude and fuel oil, unintended leaks of petroleum carrying 
pipelines, domestic and industrial waste and from effluents 
of vehicle servicing and washing effluents (Liu et al. 2009; 
Marr et al. 1999; Qamar et al. 2017; Riccardi et al. 2013). 
Therefore, PC5 can be interpreted as emission and spillage 
of petroleum and, therefore, petrogenic sources.

Overall the factors identified by PCA indicate vehicular 
exhaust, coal and biomass burning, road dust, and emission 
from the nearby industries and volatilization of low vapor 
pressure compounds as the major sources of PAHs, OC, and 
EC in Delhi.

3.5.3 � Aerosol Transport Pathways and Source Sectors

Air mass backward trajectories (Fig. 6) and CWT (Fig. 7) 
show that pollutant transported from regional and long-range 

Table 5   Molecular diagnostic ratio of PAHs observed at the sampling site along with corresponding source signatures obtained from existing 
literature

PAH ratio Values Source References Present study (Mean ± 1σ)

Winter Summer Monsoon

Flu/(Flu + Pyr) < 0.5 Petrol emission Ravindra et al. (2008) 0.45 ± 0.22 0.41 ± 0.11 0.41 ± 0.13
> 0.5 Diesel emission

Anth/(Anth + Phe) < 0.1 Petrogenic Pies et al. (2008) 0.38 ± 0.19 0.42 ± 0.23 0.36 ± 0.13
> 0.1 Pyrogenic

Flan/(Flan + Pyr) < 0.4 Petrogenic De La Torre-Roche et al. (2009) 0.55 ± 0.21 0.46 ± 0.12 0.45 ± 0.15
0.4–0.5 Fossil fuel combustion
> 0.5 Grass, wood, coal combustion

B[a]A/(B[a]A + Chry) 0.2–0.35 Coal combustion Akyüz and Çabuk (2010) 0.69 ± 0.15 0.68 ± 0.14 0.64 ± 0.17
> 0.35 Vehicular emission

IP/(IP + B[ghi]P < 0.2 Petrogenic Yunker et al. (2002) 0.41 ± 0.19 0.34 ± 0.11 0.34 ± 0.08
0.2–0.5 Petroleum combustion
> 0.5 Grass, wood and coal combustion

B[b]F/B[k]F 0.92 Wood Dickhut et al. (2000) 0.75 ± 0.53 0.52 ± 0.33 0.83 ± 0.72
1.26 Vehicle
2.69 Smelters

B[a]P/B[ghi]P < 0.6 Non-traffic emission (Katsoyiannis et al. 2007) 0.68 ± 0.43 0.33 ± 0.18 0.57 ± 0.28
> 0.6 Traffic emission

B[a]A/Chry 0.53 Vehicles (Dickhut et al. 2000) 2.76 ± 2.82 2.26 ± 1.34 2.36 ± 1.48
0.6 Smelters
0.79 Wood
1.11 Coal/cock

ΣLMW/ΣHMW < 1 Pyrogenic (Zhang et al. 2008) 0.77 ± 0.57 0.58 ± 0.28 0.54 ± 0.15
> 1 Petrogenic
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trans-boundary sources significantly contributed to air 
pollution in Delhi along with local urban emissions. The 
regional air masses come to Delhi from N and NNE direc-
tion from a distance of around 200–500 km during winter. 
These regional trajectories originated from the neighboring 
states of Punjab, Haryana, Uttar Pradesh, and Uttarakhand. 
The pre-monsoon (April–May) and post-monsoon (Octo-
ber–November) biomass burning in north-west India (i.e., 
neighboring states of Delhi) can be linked to high PM2.5 
readings in New Delhi (Jethva et al. 2019). The post-mon-
soon Delhi air shed is characterized by high fire intensity 
than pre-monsoon (Liu et al. 2018). In summer, air masses 
mostly originate from eastern part of India and crosses hot 
plains before reaching to Delhi. During winter, air masses 
mostly originated from Iran in the NW of Delhi passing 
through Afghanistan, Pakistan, and parts of Punjab, Hary-
ana, and Uttar Pradesh before reaching Delhi. These areas 
are characterized by high biomass burning activities during 
post-monsoon and winter season, and contains oil refiner-
ies, thermal power plants, and major industrial areas (Naja 
et al. 2014).

CWTs’ analysis was done to demarcate the possible 
source sectors which could be contributing to the observed 
particulate bound PAHs and OC levels at the receptor site 
during the sampling period. The variations in probability 
grids are shown by different colors. Grid cells of PAHs and 
OC show a good agreement in all seasons and are reflec-
tive of movement of clustered trajectories. It is evident from 
the CWTs that the potential source areas are the densely 
populated regions of north-west India, and the eastern part 
during summer time. Pollutants transported from the parts 
of Middle-East Asia, Pakistan, Afghanistan, and Tajikistan 
through trans-boundary movement further add to Delhi air 
pollution. In summer and monsoon,, the incursion of aerosol 
even comes from the Indian Ocean near Somalia. Jain et al. 
(2017) have reported that sea salt contributes around 16% to 
the chemical composition of PM2.5 in Delhi.

3.6 � Health Risk

3.6.1 � Carcinogenic PAHs (Σ7PAHs) and Benz[a] Pyrene 
Equivalent (B[a]Peq)

The seven PAHs (B[a]A, Chry, B[b]F, B[k]F, B[a]P, DB[ah]
A, and I[cd]P) classified as carcinogenic (group 1), and 
probable and possible carcinogen (group 2A and 2B) by 
US EPA (2002) and International Agency for Research on 
Cancer (IARC 2012). Σ7PAHs contributed about 41.6%, 
35.2%, and 43.4% to Σ16PAHs in winter, summer, and mon-
soon, respectively. Annual mean value of 34.6 ± 24.9 (range 
3.5–104.7) ng/m3 of Σ7PAHs contributed 41.4% to the sum 
of 16 PAHs. US EPA categorizes B[a]P as the most carcino-
genic PAHs. The calculated annual mean concentration of 
B[a]P was 4.1 ± 3.9 (range 0.2–17.1) ng/m3 at the sampling 
site, which is more than four times the annual B[a]P NAAQS 
in India (1 ng/m3) (MoEF 2009). Total carcinogenicity of the 
analyzed PAHs was calculated as Benz[a]Pyrene equivalent 
(B[a]Peq):

where Ci is the concentration of an individual PAH in the 
ambient atmosphere, and TEFi is the toxic equivalency fac-
tor of the corresponding compound. TEF values given by 
Nisbet and LaGoy (1992) have been used to calculate B[a]
P equivalent concentration for each PAH.

B[a]Peq annual mean concentration of Σ16PAHs was 
found 20.0 ng/m3 at the sampling site, which implies poten-
tially high exposure to the population living in the area. The 
B[a]Peq values for DB[ah]A and B[a]P were found to be the 
highest (14.2 ng/m3 and 4.1 ng/m3, respectively). DB[ah]
A contributes about 71.0% to total B[a]Peq. This significant 
contribution of DB[ah]A is due to its higher ambient con-
centration and high toxic equivalency factor value.

(1)Total B[a]Peq = Σi

(

Ci × TEFi
)

,

Table 6   Components and scores of principal component analysis of 
PAH and carbonaceous species at the study site

Only factor loading ≥ 0.3 are shown. Loadings ≥ 0.5 are in bold
Extraction method: principal component analysis
Rotation method: varimax with Kaiser normalization
Rotation covered in 9 iterations

Species Principal components

PC1 PC2 PC3 PC4 PC5

Naph 0.60 0.46
Acy 0.47 0.53
Acen 0.90
Flu 0.33 0.66 0.40
Phen 0.77 0.30
Anth 0.34 0.79
Flan 0.47 0.66 0.31 0.35
Pyr 0.78
B[a]A 0.79 0.33
Chry 0.87
B[b]F 0.92
B[k]F 0.86
B[a]P 0.78 0.34
DB[ah]A 0.61 0.57 0.35
B[ghi]P 0.58 0.65
IP 0.51 0.61
OC 0.39 0.74
EC 0.93
Eigenvalues 4.79 3.0 2.71 2.09 1.75
% of variance 26.63 16.67 15.10 11.63 9.71
Cumulative % 26.63 43.31 58.41 70.03 79.74
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Fig. 6   Seasonal 120 h air mass 
back trajectory of sampling 
days calculated using HYSPLIT 
transport and dispersion model
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3.6.2 � Incremental Lifetime Cancer Risk (ILCR) Assessment

To assess health risk associated with inhalation of airborne 
PAHs, ILCR value is calculated for the exposed population. 
For the ILCR assessment, annual mean B[a]Peq level is used 
as a surrogate for the total carcinogenicity of Σ16PAHs.

Equation (2) given by Yu et al. (2008) is used:

(2)ILCR = Σi

(

ECi × IURi

)

,

where ECi is the ambient concentration of chemical i (in 
µg/m3), and IURi is the incremental unit cancer risk. IURi 
is defined as the risk of cancer from a lifetime (70 years) 
inhalation of a unit mass of chemical i (in µg/m3). An inha-
lation unit risk of 8.7E−02 (in µg/m3) for B[a]P has been 
suggested by WHO (2000). ILCR values between 1.00E−6 
and 1.00E−4 indicate potential risk, whereas values greater 
than 1.00E−4 indicate high potential health risk. In this 
study, the estimated ILCR value for inhalation exposure to 

Fig. 7   Seasonal CWT plots of PAHs and OC
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the inhabitant population was found to be 1.74E−03, higher 
than the high potential risk threshold limit. Furthermore, 
Eq. (3) proposed by Pengchai et al. (2009) is used to estimate 
the excess number of cancer cases due to lifetime inhalation 
exposure to observed B[a]Peq concentration in the exposed 
population.

It was found that if the observed concentration of B[a]Peq 
is inhaled by the Delhi population for a lifetime and then for 
a unit cancer risk of 8.7E−05, ~ 25 cancer cases per million 
population may occur.

4 � Conclusions

This study was conducted in an institutional cum residential 
area of Delhi for 1 year. We analyzed 16 US EPA prior-
ity PAHs, OC, and EC. Temporal distribution in the ambi-
ent atmosphere, sources, and associated health risk were 
assessed. The conclusions of this study are as follows:

•	 PM2.5 concentration ranges from 12.6 to 569.7  µg/
m3 in Delhi with an annual mean concentration of 
124.3 ± 107.6 µg/m3 which exceeded the NAAQS (40 µg/
m3) and WHO (10 µg/m3) standard by a factor of 3 and 
12, respectively. Winter exhibited the highest concentra-
tion (219.3 ± 110.1 µg/m3) and coal, wood, and biomass 
burning are identified as leading sources.

•	 OC and EC concentration ranged from 5.4 to 86.3 µg/m3 
and 1.6–96.2 µg/m3, respectively. An annual OC/EC ratio 
of 1.8 ± 2.6 with an elevated summer value of 3.0 ± 4.4 
was obtained which indicates secondary organic forma-
tion in summer.

•	 Σ16PAHs concentration ranged from 14.5 ng/m3 in sum-
mer to 200.2 ng/m3 in winter with an annual mean of 
83.6 ± 48.0 ng/m3 which was significantly higher than 
the values reported from similar sites in European cities.

•	 Source apportionment tools identified vehicular emis-
sion, biomass burning, industrial emission, and vola-
tilization of petroleum products as significant sources of 
PAHs. Backward wind trajectories identified regional and 
trans-boundary movement of air pollutants from neigh-
boring states and parts of Pakistan, Afghanistan, and 
Middle-East Asia as key source regions that substantially 
add air pollutants in Delhi along with its local emission 
throughout the year.

(3)

Annual number of cancer cases (persons per million)

= Unit risk × sum B[a]Peq

× Population (million)∕ Life expectancy.

•	 ILCR estimated ̴25 additional cancer cases per million 
population that may occur due to lifetime inhalation 
exposure of PAHs at the observed concentration in Delhi.

•	 Strengthening public transport system like introduction 
of more CNG buses, expansion of the metro line, removal 
of BS-IV and outdated technology engines from the road, 
and prevention of crop residue burning in neighboring 
states might lead to the mitigation of air pollution in 
Delhi.
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