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Abstract
This review of the methods used for measurements of stable nitrogen isotopes in gases and aerosol particles also summarizes 
some of the latest research on nitrate, ammonium, nitrogen oxides and ammonia in the atmosphere. The main methods used 
for the determination of N isotopes in nitrate and nitrogen oxides are one that makes use of denitrifying bacteria and a two-
step chemical reduction method (cadmium + hydrazoic acid). A commonly used method for measuring nitrogen isotopes 
in ammonia and ammonium ion is a chemical conversion that uses sodium azide in an acetic acid buffer or hydroxylamine 
hydrochloride. A common characteristic of these methods is that nitrous oxide is the final analysis product, and the isotopes 
are determined by mass spectrometry. The precision of the analyses are typically very high (~ 0.25‰), and the methods 
require a small amount of sample, usually tens of nmols is sufficient. Some improvements to these methods and collection 
methods have been made in recent years, and these advances will facilitate research on nitrogen isotopes in the atmosphere.
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1 Introduction

For decades, China has experienced frequent and all too 
often severe hazy weather, especially in the Beijing-Tian-
jin-Hebei region, the Pearl River Delta, the Yangtze River 
Delta and the areas in and around Chengdu and Chongqing 
(Sun 2016). Light extinction caused by aerosol particles dis-
persed in the atmosphere leads to reductions in atmospheric 
visibility that are characteristic of the most common types 
of hazy weather (He et al. 2013). Moreover, the emission 
sources for aerosols are numerous, and the composition of 
aerosols is complex, and these complicating factors have 

serious implications for the ecological environment, global 
climate, and human health (Chen and Xiao 2009; Shao et al. 
2018; Zhao et al. 2019). As a result, atmospheric aerosols 
have become a hot topic for domestic research in China and 
throughout the world (He et al. 2013; Huang et al. 2014).

Advances in industrial desulfurization technology and the 
strict monitoring of sulfur dioxide  (SO2) in China have led 
to some improvements in air quality. However, increases in 
nitrogen oxide  (NOx) emissions caused by human activities 
(Wen 2015) have led to a gradual increase in nitrate  (NO3

−) 
concentrations. Ammonium  (NH4

+) is mainly produced by 
the conversion of ammonia gas  (NH3) in the troposphere, 
which is the third most abundant nitrogen-containing gas in 
the atmosphere after  N2 and  N2O, and together with  NH4

+, 
it is collectively referred to as NHx  (NH3 + NH4

+) (Seinfeld 
et al. 1998; Walters and Hastings 2018).  NO3

− and  NH4
+ 

are important components of secondary inorganic aerosols 
(SNA), and they participate in various reactions that affect 
the global nitrogen cycle (Behera et al. 2013; Tang et al. 
2006; Walters and Hastings 2018). Recent studies have 
shown that precursors of  NO3

− also can promote the forma-
tion of sulfates and in so doing aggravate atmospheric pollu-
tion (Cheng et al. 2016). Therefore, it is of great importance 
to understand the chemical formation of  NO3

− and  NH4
+ 

and how these substances are removed from the atmosphere.
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Moreover, the sources and mechanisms leading to the 
formation of  NO3

− and  NH4
+ in urban aerosols are not yet 

fully understood, and the rapid increases in concentrations 
of  NO3

− during heavy pollution is also uncertain. Stable 
isotopes have become more widely used in studies of the 
sources, chemical formation and migration process of pollut-
ants in recent years (Zhao et al. 2019), and the determination 
of the N and O isotopic composition of  NO3

− can be used to 
identify sources and investigate conversion processes (Xu 
et al. 2014; Zhao et al. 2019). The application of stable iso-
tope techniques holds promise for tracing the movements of 
atmospheric  NO3

−, and similarly, N isotope measurements 
of  NH4

+ may provide insights into N sources and removal 
processes (Walters and Hastings 2018). Therefore, this 
paper reviews the existing research on N isotope analysis 
of  NO3

− and  NH4
+.

2  Analytical Techniques for Nitrogen 
Isotopes in Nitrate and Nitrogen Oxides

2.1  Nitrogen Isotopes and the Formation 
of Nitrogen Oxides

NO3
− in the atmosphere mainly forms through reactions of 

 NOx and free radicals. It is generally agreed that during the 
daytime, the formation of  NO3

− is mainly driven by gas-
phase reactions between  NO2 and OH radicals  (NO2 + OH) 
(Fig. 1) (Seinfeld and Pandis 2016; Tang et al. 2006). At 
night,  HNO3 mainly forms through reactions of  N2O5 in the 
liquid phase  (N2O5 + H2O) (Fig. 2) (Jia et al. 2006). The 
factors that affect the formation of  NO3

− include not only 
temperature but also relative humidity (RH) and solar radia-
tion intensity (Elliott et al. 2009). In addition,  N2O5 at night 
also forms through multi-step reactions of  NOx involving  O3. 
The main sources for gaseous  NOx include emissions from 
soil microbes, biomass burning, thermal power plants and 
motor vehicle exhaust (Bao et al. 2015; Wang et al. 2014).

Previous studies have shown that the normalized ratios of 
14N to 15N isotopes (δ15N) of  NOx to its oxidation product, 
 NO3

−, can be used as a type of "fingerprint" to evaluate the 
contributions of  NOx from various sources to atmospheric 
nitrogen deposition (Elliott et al. 2007). The N isotope ratios 
for  NOx vary among sources, and therefore, the stable N 
isotope ratio for  NO3

− (δ15N-NO3
−) can be used to trace 

its main sources. In addition, 15N fractionation occurs dur-
ing the oxidation of  NOx to  NO3

− (Walters and Michalski 
2016), and therefore, N isotopes also can provide insights 
into  NO3

− formation (Walters and Michalski 2016; Zhang 
and Gao 2012; Zheng 2000). A limitation in the application 
of N isotope for source assessments is that the δ15N val-
ues for  NOx from different sources can overlap to a degree, 
and the fractionation that occurs when  NOx is converted to 
 NO3

− can be another confounding effect. To maximize the 
usefulness of isotopic information, both N and O isotopes 
are often measured together in the stable isotope analysis of 
 NO3

− (Qin et al. 2019). This approach makes use of the fact 
that the oxygen isotope composition of  O3 and OH radicals 
are different (δ18O-O3: + 90 to + 120‰ versus δ18O-OH: 
− 89 to − 56‰) (Johnston and Thiemens 1997; Michal-
ski et al. 2012). Indeed, δ18O-NO3

− can provide additional 
insights into the formation of  NO3

− because data for both O 
and N isotopes can compensate for the limitations in relying 
on  NO3

− nitrogen isotopes alone (Altieri et al. 2013; Wankel 
et al. 2009). Therefore, the use of isotope techniques can 
effectively investigate the sources for  NO3

− and the oxida-
tion pathways for  NOx.

2.2  Methods for Measuring Nitrogen Isotopes 
in Nitrate

Quartz fiber filters are commonly used to collect aerosol 
 NO3

− particles, and then, ultrapure water is used to extract 
 NO3

− for subsequent analysis. The solution is then used 
for the N and O isotope determination of  NO3

− (Zhao 
et al. 2019). At present, the methods for determining the 
N isotopes in  NO3

− involve distillation, diffusion, graphite 
combustion, ion exchange resins, denitrifying bacteria, and 
chemical reduction (Qin et al. 2019; Zhao et al. 2019).

Fig. 1  Oxidation of  NOx to  NO3
− during the day (Seinfeld and Pandis 

2016; Tang et al. 2006)

Fig. 2  Oxidation of  NOx to  NO3
− at night (Jia et al. 2006)
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The operating principles for the distillation and diffu-
sion methods are straightforward; that is,  NO3

− is reduced 
to  NH4

+ for the instrumental analysis. However, these two 
methods require relatively large sample sizes, and isotope 
fractionation is likely to occur during the procedures, result-
ing in large uncertainties in the results. More important, 
these techniques cannot be used to determine nitrogen and 
oxygen isotopes simultaneously, so their applications are 
limited (Liu et al. 2017; Xiao and Liu 2001b; Zhao et al. 
2019). For the graphite combustion procedure, which has 
been improved several times, the  NO3

− sample and granu-
lar graphite are first placed in a glass/graphite carbon reac-
tion tube, and then they are converted into  N2 and CO at a 
high pyrolysis temperature of 1400 °C. After purification, N 
and O isotopes can be simultaneously determined by mass 
spectrometry, and this method been automated (Kornexl 
et al. 1999; Qin et al. 2019). The ion exchange method uses 
an anion resin to adsorb and concentrate  NO3

− from aque-
ous solution, and HCl is then used to remove the adsorbed 
 NO3

−. After a series of purification steps, N and O isotopes 
can be determined by mass spectrometry (Qin et al. 2019; 
Silva et al. 2000). However, the pretreatment steps for the 
ion exchange method are cumbersome, require large sample 
quantities, and the cost of pretreatment is high because of the 
consumables used; therefore, this method is not often used 
(Liu et al. 2017; Xiao and Liu 2001b).

More recently, denitrifying bacteria and chemical reduc-
tion methods have developed for isotopic  NO3

− analyses 
with  N2O as the final product. These methods are not sensi-
tive to atmospheric background, and they can be used for 
small samples (usually 10–60 nmol) (Casciotti et al. 2002; 
Mcilvin and Altabet 2005; Sigman et al. 2001). The molecu-
lar structure of  N2O is such that the δ15N value for this com-
pound is the average of the δ15N for the two nitrogen atoms 
(Wang et al. 2015) as follows:

The denitrifying bacteria method uses obligate denitrifying 
bacteria lacking  N2O reductase to reduce all  NO3

− to  N2O in 
the sample solution. Nitrogen and oxygen isotopes are then 
determined using a mass spectrometer (Casciotti et al. 2002; 
Sigman et al. 2001; Yang et al. 2014; Zhang et al. 2010). The 
denitrifying bacteria method is suitable for different types of 
samples, and it can be used to measure very low concentration 
(10–20 nmol N) samples (Liu et al. 2017; Sigman et al. 2001). 
Meanwhile, the precision of the final analytical results is very 
high (around 0.2‰) (Sigman et al. 2001). The drawbacks for 
the method are complex biological responses, poor universal-
ity, degradation of bacteria characteristics, and high mainte-
nance costs, and therefore, it is not so commonly used (Wang 
et al. 2015; Zhao et al. 2019). A chemical reduction method 

(1)�
15N(N2O) =

�
15N(15N–N–O) + �

15N(N−15N−O)

2
.

has been developed by Mcilvin and Altabet (2005), and it 
is based on two reduction steps. The first step is to reduce 
 NO3

− to  NO2
− over cadmium (Cd), and the second step is 

to use the sodium azide  (NaN3) prepared in an acidic buffer 
(commonly an acetic acid buffer) to quantitatively reduce 
 NO2

− to  N2O. After that, the ratios of N and O isotopes can be 
determined by isotope ratio mass spectrometry. The specific 
reaction equation is as follows (Wang et al. 2015):

The first step of the reduction method occurs in a weakly 
alkaline environment, and Cd is used to reduce  NO3

− in the 
solution to  NO2

−:

The second step of the reduction method is in a sodium 
azide-acetic acid buffer system, where  N3

− is used to reduce 
 NO2

− to  N2O gas:

The chemical reduction method has a wide range of appli-
cations and is operationally simple, highly sensitive, and rela-
tively inexpensive, and it is now commonly used in China (Liu 
et al. 2017; Tu et al. 2016; Wang et al. 2015). However, a 
shortcoming of this method is that the azide reagent is toxic, 
requiring careful operation in a fume hood and appropriate 
safety measures in cleaning operations (Liu et al. 2017; Mcil-
vin and Altabet 2005).

2.3  Nitrogen Isotope Determination Methods 
for Nitrogen Oxides

The methods for determining N isotopes in  NOx are similar to 
those used for  NO3

−. The biggest difference between them is in 
the methods used for collection and pretreatment. For the col-
lection of  NOx, a gas absorption bottle is typically used (Felix 
et al. 2012; Wang et al. 2015). After the end of sampling, the 
sealed gas absorption bottle, which contains a fixed volume of 
an absorption liquid, is shaken to oxidize the  NOx to  NO3

−, the 
later of which becomes dissolved in the absorbing liquid. The 
bottle is left for a sufficient amount of time to ensure that all 
 NOx is converted to  NO3

−. The reaction equation for the oxida-
tion of  NOx to  NO3

− by  H2O2 is as follows (Wang et al. 2015):

The methods used for the determination of  NOx nitro-
gen isotopes are the same as those previously described for 
 NO3

− nitrogen isotopes in Sect. 2.2.

(2)NO−
3
+ Cd + H2O → NO−

2
+ Cd2+ + 2OH−.

(3)NO−
2
+ H+

→ HNO2,

(4)HNO2 + H2O → H2NO
+
2
+ OH−,

(5)H2NO
+
2
+ N−

3

slow
→ N3NO + H2O

fast
→ N2O + N2.

(6)NO2 + NO + 3H2O2

H+

→ 2NO−
3
+ 3H2O.
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2.4  Recent Research Progress

Tu et al. (2016) improved the chemical reduction methods 
(cadmium + hydrazoic acid) that were developed for deter-
mining N and O isotopes in  NO3

−. First, the sponge cad-
mium or activated cadmium was replaced with cadmium 
powder for the  NO3

− reduction step, and the reaction was 
carried out under ultrasound. Second, the amount of sodium 
azide in the acetic acid buffer was decreased to only 1% 
of the original method for the second reduction step; that 
reduced the amount of toxic reagents used. Third, sodium 
acetate was added to the buffer along with the sodium azide 
because that improved the performance of the buffer and 
decreased the oxygen isotope exchange with water during 
the  NO2

− reduction process (Liu et al. 2017).
The types of cadmium powders used for the chemical 

reduction methods can affect the reaction systems and kinet-
ics, pH, etc. (Tu et al. 2016; Wang et al. 2015). Zhao et al. 
(2019) studied the two-step chemical reduction methods 
under different conditions and optimized the scheme for 
accurate determination of N and O isotopes in  NO3

− aero-
sols. Their studies showed that when the concentration of 
 Cl− in the solution was ≥ 5 mol/L and pH 8, the cadmium 
powder was activated by HCl and that favored the reduction 
of  NO3

− to  NO2
−. And then,  NO2

− was reduced to  N2O with 
the sodium azide in an acetic acid buffer at a pH of 4.5–4.6, 
and isotopic determinations were performed with an isotope 
ratio mass spectrometer. The measurement accuracy for N 
isotopes determined by this method is ± 0.08%, and the cor-
responding accuracy for O isotopes is ± 0.24%.

3  Nitrogen isotope Analytical Techniques 
for Ammonium and Ammonia

3.1  Formation Mechanisms for Ammonium 
and Tracing the Reactions with Nitrogen 
Isotopes

Ammonium  (NH4
+) ions are formed by the reaction of 

gaseous  NH3 with acids in the atmosphere, mainly  H2SO4 
and  HNO3. Reaction products include ammonium hydro-
gen sulfate  (NH4HSO4), ammonium sulfate ((NH4)2SO4), 
and ammonium nitrate  (NH4NO3), all of which are impor-
tant aerosol particle components that can degrade atmos-
pheric visibility (Liu 2017).  H2SO4 and  HNO3 are most 
often formed through the oxidation of  SO2 and  NO2 in the 
atmosphere by OH radicals,  O3,  H2O2, etc., and they further 
react with  NH3 to form  NH4HSO4,  (NH4)2SO4 and  NH4NO3 
(Kong et al. 2014; Wang et al. 2012). The specific reaction 
equations are as follows (Seinfeld and Pandis 2016; Wang 
et al. 2009):

1. Formation of  H2SO4:

2. Formation of  HNO3:

3. Formation of  NH4
+:

H2SO4 has a lower saturation vapor pressure than 
 HNO3, and therefore,  H2SO4 will preferentially react with 
 NH3 to form  NH4HSO4 and  (NH4)2SO4 (Baek and Aneja 
2004; Liu 2017). That is, when the concentration of  NH3 
is low, it will preferentially react with  H2SO4 to form 
 NH4HSO4 and  (NH4)2SO4, but when  NH3 is in abundance, 
the excess  NH3 will react with  HNO3 to form  NH4NO3. 
The main factors affecting the formation of  NH4

+ are the 
concentrations of  NH3,  SO2,  NOx and other precursors, 
temperature, relative humidity (RH), solar light intensity 
and weather conditions (Hu 2015; Liu 2017). In particular, 
the main factors affecting the reversible reaction between 
 NH3 and  HNO3 that forms  NH4NO3, are the concentration 
of  NH3, and temperature (Hueglin et al. 2005). In addition, 
 NH3 is the main precursor of  NH4

+, and it can be oxidized 
by OH radicals to form  NOx, which in turn is involved 
in the formation of  NO3

− in a related nitrogen cycle (as 
shown in Fig. 1) (Seinfeld and Pandis 2016; Tang et al. 
2006).

(7)SO2 + OH ⋅ +M → HOSO2 ⋅ +M,

(8)HOSO2 ⋅ +O2 → HO2 ⋅ +SO3,

(9)
SO3 +M + H2O → H2SO4 +M,

Or:

(10)SO2 + H2O ⇔ H2SO3,

(11)3H2SO3 + O3 → 3H2SO4,

(12)H2SO3 + H2O2 → H2SO4 + H2O.

(13)
{

NO2 + OH ⋅ +M → HNO3 +M(day time)

N2O5 + H2O → HNO3 (night time)
.

(14)NH3 + H2SO4 → NH4HSO4,

(15)NH3 + SO3 + H2O → NH4HSO4,

(16)NH3 + NH4HSO4 →

(

NH4

)

2
SO4,

(17)2NH3 + H2SO4 →

(

NH4

)

2
SO4,

(18)NH3 + HNO3 → NH4NO3.
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The source of  NH3 in different regions is generally dif-
ferent. In agricultural areas,  NH3 is mainly derived from 
animal husbandry and the use of fertilizers (Zbieranowski 
and Aherne 2013). In urban areas,  NH3 has many sources, 
including industrial sources, vehicle exhaust, external area 
transmission, solid waste, sewage, and human feces (Den-
tener and Crutzen 1994; Dong et al. 2010; Gu et al. 2012). In 
the suburbs,  NH3 is mainly derived from natural emissions 
such as microbial activities and animal wastes (Sutton et al. 
2009). The nitrogen isotope composition of  NH3 (δ15N-NH3) 
emitted from different emission sources is generally differ-
ent (Fig. 3), and the nitrogen isotope composition of  NH4

+ 
(δ15N-NH4

+) produced is also different. Therefore, the nitro-
gen isotope composition of  NH4

+ in atmospheric aerosols 
can effectively trace its source and formation and transfor-
mation processes (Felix et al. 2013).

Previous studies have used a wide variety of collection 
techniques for measuring the nitrogen isotope composition 
of  NH3 emission sources (δ15N-NH3), and it has been found 
that there can be large variations in δ15N from a single  NH3 
emission source. There also can be considerable overlap in 
the δ15N values for different  NH3 emission sources (Chang 
et al. 2016; Felix et al. 2013; Freyer 1978; Heaton 1987; 
Hristov et al. 2009; Savard et al. 2017; Smirnoff et al. 2012; 
Walters and Hastings 2018). This suggests that there needs 
to be better information on nitrogen isotopes for that major 
 NH3 sources, and the development of a representative data-
base will require extensive field sampling with many actual 
measurements (Zong et al. 2017). Another complicating 
factor is that some processes involving  NH3 can cause iso-
tope fraction: one example of this is the evaporation of  NH3 
which can lead to increases in δ15N in the sample.

In addition, when  NH3 is converted to  NH4
+, equilibrium 

fractionation of the N isotopes occurs (Freyer 1978; Savard 
et al. 2017), and that affects the isotopic composition of 
 NH4

+ and  NH3. The specific reaction equation is as follows 
(Urey 1947):

The equilibrium constant (K) or isotope fractionation 
coefficient (α) for the above formula is 1.034 ± 0.002 at 
298.1 K (Urey 1947), and therefore

This shows that conversions between  NH3 and  NH4
+ 

should favor the partitioning of 15N into  NH4
+, and the net 

result would be higher δ15N values for  NH4
+ compared with 

 NH3 (Urey 1947). Therefore, the determination of δ15N for 
 NHx provides information on the heterogeneous conversion 
of  NH3 into new particles, and that has implications for the 
relative importance of kinetics versus equilibrium control in 
the formation of  NH4

+. As the δ15N of  NH3 may change dur-
ing the formation of new particles, the form of  NHx must be 
considered in field sampling and laboratory measurements, 
and the source of the emissions should also be determined 
to minimize the effects of chemical and physical processes 
and to obtain meaningful data for the δ15N in  NH4

+ and  NH3 
(Walters and Hastings 2018).

3.2  Nitrogen Isotope Determination Methods 
for Ammonium Ion

Quartz fiber filters are generally used for the collection of 
aerosol  NH4

+, and ultrapure water is then used to extract the 
 NH4

+ from the particles, and the solution is then used for the 
nitrogen and oxygen isotope determinations of  NH4

+.(Huang 
et al. 2018; Xiang et al. 2019). The methods currently used 
for determining  NH4

+ nitrogen isotopes (δ15N-NH4
+) can be 

divided into two categories: Duma and chemical conversion 
methods (Liu et al. 2017). The Duma methods are tradi-
tional, mainly including distillation, diffusion, ion exchange, 
etc. These methods usually convert the  NH4

+ extracted from 
the sample into  N2 by combustion and oxidation, and then 
the N isotopes of the  NH4

+ are determined by isotope ratio 
mass spectrometry (IRMS) (Liu et al. 2017; Wen et al. 2016; 
Xiang et al. 2019).

For the distillation method, the filter extract is heat-
distilled in an alkaline environment to convert  NH4

+ into 
 NH3, which is then absorbed by an acidic liquid (most 
often  H2SO4) (Freyer 1978; Heaton 1987; Velinsky et al. 
1989). Then the Dumas combustion method is used to 
convert  NH4

+ into  N2 for the measurements of nitrogen 
isotopes (Liu et al. 2017; Wen et al. 2016). Although this 
method has a high nitrogen recovery rate, it is prone to 
cross-contamination of 15N. The diffusion method for 
 NH4

+ nitrogen isotope measurements is similar to the 
distillation method, but for the diffusion method, the 

(19)15NH3 +
14NH4+

⇌
14NH3 +

15NH4+.

(20)

K298.1 K = �298.1 K =

15NH4+∕14NH4+

15NH3∕
14NH3

= 1.034 ± 0.002.

Fig. 3  Previously reported δ15N-NH3 values of  NH3 source emis-
sions (Chang et al. 2016; Felix et al. 2013; Freyer 1978; Heaton 1987; 
Schulz et al. 2001; Smirnoff et al. 2012)
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separated  NH3 is absorbed into a solution using a filter 
device (Holmes et al. 1998). The diffusion method is less 
prone to cross-contamination, but the absorption time 
is long (Zeng et al. 2013). The ion exchange method for 
 NH4

+ nitrogen isotopes uses a resin to adsorb  NH4
+, and 

after loading, the adsorbed ions are removed with a suit-
able eluent (Xiao and Liu 2001a, 2002). Unfortunately, the 
adsorption of  NH4

+ in this method is susceptible to arti-
facts from strong ions (Hu and Liu 2013). In addition, all 
of the Duma methods use  N2 for the IRMS analysis mak-
ing them susceptible to interferences from the atmospheric 
 N2 background. As a result, these methods are not suitable 
for the determination of low concentration samples.

Zhang et al. (2007) developed a new analytical technique 
for low-concentration samples (< 0.5 µM) in which  NH4

+ 
is chemically converted to  N2O prior to mass spectrometry. 
The first step for the procedure is to add a low concentra-
tion of  BrO− solution to the original acidic absorption solu-
tion. The  NH4

+ is oxidized to  NO2
− which in turn is con-

verted into  N2O for N isotope determinations with the use 
of sodium azide in an acetic acid buffer or hydroxylamine 
hydrochloride (Liu et al. 2014; Zhang et al. 2007). However, 
as noted above, hydrazoic acid is highly toxic, and it is also 
volatile, so it must be handled carefully in a fume hood. In 
comparison, hydroxylamine hydrochloride  (NH2OH·HCl) 
solutions are less volatile and less toxic. Indeed, Liu et al. 
(2014) used hydroxylamine hydrochloride to reduce the 
 NO2

− which is from the first step to  N2O and then deter-
mined the N isotopes in  NH4

+. This recently developed con-
version method does not require the use of toxic reagents, 
and it also has the advantage of being simple operationally. 
The precision of the final results is also very high (~ 0.3‰), 
and as a result, it has recently received much attention. The 
specific reaction equations are as follows:

1. In an alkaline environment,  BrO− oxidizes  NH4
+ to 

 NO2
− (Zhang et al. 2007):

2. In an acidic environment, hydroxylamine hydrochloride 
reduces the  NO2

− to  N2O (Bothner-By and Friedman 
1952; Liu et al. 2014):

It is worth noting that when using chemical reagents 
(sodium azide in an acetic acid buffer or hydroxylamine 
hydrochloride) to reduce  NO2

− to  N2O, it is necessary to 
add sodium arsenite solution to remove excess  BrO− rea-
gent before adding the next chemical reagent. Otherwise, 
the remaining  BrO− will react with the next reducing agent, 
causing an interference (Liu et al. 2017).

(21)BrO− + NH+
4
→ NO−

2
+ 3H2O + 3Br.

(22)NH2OH + HNO2 → N2O + 2H2O.

3.3  Determination Nitrogen Isotopes in Ammonia

Passive samplers are commonly used for collecting dry N 
deposits because the samplers are inexpensive, easy to use, 
and do not require power. The passive samplers commonly 
used for  NH3 sampling include those made by Ogawa and 
ALPHA (adapted low-cost passive high absorption)—these 
have been used many times to collect and measure  NH3 
(Felix et al. 2013). For passive  NH3 sampling, polyamide 
fiber filters are typically impregnated with citric acid and 
then used to collect the samples. Compared with other acids, 
such as phosphoric acid or oxalic acid, the  NH4

+ concen-
tration gap of citric acid is lower, and that makes it more 
suitable for high time-resolution measurements (Felix et al. 
2012, 2013; Walters and Hastings 2018).

After a suitable sampling period, the  NH3 on the filter 
from the passive sampler is extracted with ultrapure water. 
Aliquots of the extract can then be used to determine the 
nitrogen isotope composition of  NH3 (δ15N-NH3) by the 
same methods as described above for  NH4

+. In addition, 
as there are no interferences from  NO3

− or  NO2
− in the 

passively collected  NH3 sample, the  NH3 nitrogen isotope 
composition can be determined by the denitrifying bacteria 
method (Felix et al. 2013).

4  Research Progress for the Determination 
of Stable Isotopes in Ammonia 
and Ammonium

The currently used  NH3 collection methods have not 
yet been fully verified relative to the characterization of 
δ15N-NH3, but Walters and Hastings (2018) have discussed 
the suitability of an established collection device for that 
purpose. The device uses a honeycomb denuder (HCD) that 
is acid-coated (2% citric acid (w/v) + 1% glycerol (w/v) in 
a 80:20 methanol to water solution) and housed in Chem-
Comb Speciation Cartridge (CCSC) (Koutrakis et al. 1993, 
1988; Walters and Hastings 2018). The polytetrafluoroeth-
ylene (PTFE) coating inlet on the device can have a  NH3 
transmission efficiency > 97.3%, and a circular reservoir on 
the  PM2.5 impactor is covered with PTFE to prevent particle 
bounce and to limit the absorption of  NH3. In practice, two 
HCDs are used in series, and they are separated by a PTFE 
spacer: the first HCD is used to capture  NH3 from the sample 
airstream, and the second is used as a control to check for 
possible  NH3 breakthrough. The subsequent chemical treat-
ment for N isotope determinations is carried out using the 
chemical conversion method with sodium azide in an acetic 
acid buffer (Zhang et al. 2007).

Walters et al. evaluated the reagent blanks, matrix effects, 
collection efficiency, selectivity, operative capacity, the sta-
bility of reaction products, field utility, and isotope bias for 
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this device (Perrino et al. 1990), and they concluded that the 
method is suitable for the determination of δ15N-NH3. The 
acid-coated HCD collection device for δ15N-NH3 analysis 
and the subsequent chemical treatment lead to extremely 
high accuracy, with a precision of ± 1.6‰ (2σ; n = 75). 
The device has an operational capacity (collection effi-
ciency > 95%) of 400 μg of collected  NH3 at a concentration 
of ≤ 207 ppbv. In addition, this method is also applicable 
to studies of the natural atmosphere, and the resolution of 
δ15N-NH3 is ~ 1 h (Walters and Hastings 2018). This sampler 
represents the first laboratory-proven δ15N-NH3 device that 
has high time resolution and excellent δ15N-NH3 accuracy, 
and it may well become the sampler of choice for the air 
quality studies needed to improve our understanding of  NH3 
sources and sedimentation processes.

If a filter suitable for collecting  PM2.5 is used, the HCD 
device could simultaneously measure δ15N-NH3 and 
δ15N-NH4

+, making it useful for studying  NHx. In addition, 
the combined denuder-filter collection technique may be 
extended to isotope analysis of other gaseous compounds 
such as sulfur dioxide  (SO2), nitric acid  (HNO3), and nitro-
gen dioxide  (NO2) because, with a suitable HCD coating, the 
device may be used to collect different gases. For example, 
 NH3 can be collected with the use of an acidic coating on the 
HCD, and acid gases such as  HNO3 or  SO2 can be collected 
by a carbonate coating on the HCD.

5  Conclusions

Due to the frequent haze events in China, there has been 
increasing interest and concern over the behavior of atmos-
pheric  NO3

− and  NH4
+. Analysis of the stable N isotopes 

of atmospheric  NO3
− and  NH4

+ could provide a powerful 
tool to identify  NOx or  NH3 sources. Combined with some 
models, the contribution of different sources can be quali-
tatively and quantitatively assessed by isotope techniques. 
With this tool, it is possible to control and reduce the emis-
sion of nitrogen-containing pollutants from the emission 
sources. Therefore, it is necessary to review the techniques 
used for measurements of N isotopes in atmospheric aero-
sols. However, there also can be considerable overlap in the 
δ15N values for different emission sources. This suggests that 
there should be further exploration of N isotopes of major 
emission sources.
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