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Abstract
To investigate the pollution characteristics, sources and health risk assessment of various elements in  PM2.5 of Huangshi 
city, 54 samples were collected from March 2012 to February 2013. The composition and characteristic of sixteen elements 
(Mg, Al, Ca, Ti, Cr, Mn, Cu, Zn, V, Fe, As, Pb, Cd, Co, Ni and W) were analyzed by high-sensitivity X-ray fluorescence 
(XRF). The result showed that the annual mean concentration of  PM2.5 was 104.4 μg/m3, far exceeding the secondary level 
of Ambient Air Quality Standard of China (annual average limit 35 μg/m3). Element W has the highest annual concentration, 
followed by Zn, Pb and As. Compared with the concentration limit of National Ambient Air Quality Standard of China, Cd 
and As in Huangshi were 4.3 times and 32.8 times higher, respectively, than national standard. The concentration of most 
elements has distinct seasonal characteristic which is higher in winter and lower in summer. Enrichment factor (EF) analysis 
indicates that W, Fe, Cd, As, Pb, Zn, Cu, Cr, Co and Ni are extremely enriched in  PM2.5, Ca, Mg and Mn are highly enriched, 
and V is significant enriched. EF of Ti is less than 2, suggesting minimal pollution. Positive matrix factorization (PMF) 
analysis indicates that Ca, Ti and Al are associated with fugitive dust, and As is associated with coal-fired industrial activity. 
W, Cr, Cd, V and Ni are originated from chemical and metallurgical industry activities. Pb, Zn, Cu and Mg are derived from 
vehicle emissions. The results of the human health risk assessment model show that As may pose great non-carcinogenic 
risk to children and adults. Cr and As have a higher carcinogenic risk for adults, and Cr has a higher carcinogenic risk for 
children, and other toxic metals are in relatively safe range.
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1 Introduction

Atmospheric particulates, especially fine particles  (PM2.5), 
can diffuse and absorb solar radiation and directly affect 
visibility and climate change (Booth et al. 2012; Cao et al. 
2012b; Pöschl 2005; Ramanathan et al. 2001). Epidemio-
logical studies have confirmed that cardiovascular morbidity 
and mortality are closely related to atmospheric particulate 

concentrations (Brook et al. 2010; Pope et al. 2002, 2009; 
Thurston et al. 2016). Atmospheric particulate matter (PM) 
is important carrier of toxic and harmful metal elements 
(such as Cr, As, Cd, Ni, Cu, Pb, Zn, etc.) and other organic 
pollutants (such as PAHs, VOCs). Studies show that smaller 
particle, due to its relative larger surface area, carries pollut-
ants that are higher in quantity and complexity and obtains 
easier access to body’s respiratory system and blood cir-
culation, thus impacting human health (Meng et al. 2013); 
consequently,  PM2.5 has become a heated topic for current 
international atmospheric environment.

Many previous studies have analyzed the pollution char-
acteristics, specific sources and toxicity of heavy metals in 
ambient PM, due to their adverse health effects (Chen et al. 
2015; Satsangi et al. 2014; Schleicher et al. 2011; Tecer 
et al. 2012; Wild et al. 2009). Heavy metals, mostly from 
traffic and industrial emissions, are differed widely from the 
sites of ambient environment. Industrial activities such as 
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metallurgical (steel, copper, stainless steel and other forms 
of nonferrous metals), concrete, ceramic and petrochemical 
industries have different characteristics of marker elements. 
For example, metallurgy production emissions are linked to 
high levels of Cr, Ni, Cu, Zn, Mn, Cd, As, Pb and Sn, while 
high levels of Ni and V are always regarded as the tracers 
of petrochemical industries or fuel–oil combustion (Querol 
et al. 2007). Marker elements may provide certain insights 
in the interpretation of PM emission sources in receptor-
modeling studies.

With the rapid development of China’s economy and 
technology, the problem of urban air pollution has become 
more complicated and poses a great threat to human health. 
In 2013, The 2010 Global Disease Burden Assessment noted 
that in 2010, China’s outdoor  PM2.5 pollution resulted in 
1.234 million deaths and 25 million years of health life loss 
in China (Yang et al. 2013). At present, domestic research on 
atmospheric  PM2.5 pollution is mainly focused on large cit-
ies such as Beijing, Shanghai, Guangzhou, Chengdu, Xi’an, 
Nanjing, Tianjin, etc., discussing the  PM2.5 pollution char-
acteristics, element composition, source apportionment and 
health risk (Cao et al. 2012a; Hu et al. 2012; Huang et al. 
2014; Tao et al. 2013; Wang et al. 2006, 2013; Zhang and 
Cao 2015; Zheng et al. 2005). In recent years, haze events 
frequently occur over the Wuhan city cluster and its sur-
rounding areas during autumn and winter, and have aroused 
widespread concern of the public. Unfortunately, study of 
urban atmospheric  PM2.5 in central China is rarely reported 
at present (Guo et al. 2015; Lyu et al. 2016; Wei et al. 1999).

Huangshi City is located in the southeastern part of 
Hubei Province, at the south bank of the middle reaches 
of the Yangtze River. It is the suburban center of Wuhan 
city cluster and is also an important industrial base of raw 
materials in central China. Huangshi holds rich mineral 
resources, with more than 190 deposits of iron, copper and 
gold, providing favorable conditions for the metallurgical, 
chemical, building materials industries. However, long 
periods of mineral resource exploitation and smelting have 
seriously affected the ecological environment of Huangshi 
area, and heavy metal pollution is particularly serious (Cai 
et al. 2015; Du et al. 2015; Gao et al. 2003; Yan et al. 2007; 
Yu et al. 2005). Additionally in recent years, the number of 
motor vehicles in Huangshi increased yearly, motor vehicle 
emissions added serious burden to local air pollution. The 
study of atmospheric  PM2.5 in Huangshi area is of great sig-
nificance to understand the composition, content and source 
of heavy metals in urban atmosphere, so to protect public 
health and formulate practical control measures.

In this study, the  PM2.5 samples were collected at a 
building rooftop of Hubei Polytechnic University, located 
in Huangshi, from March 2012 to February 2013. The mass 
concentrations of  PM2.5 and 16 elements were analyzed. 
The element composition and sources were assessed, and 

the health risks of heavy metal elements were evaluated. We 
hope this study could provide basic data and reference for 
Huangshi atmospheric environmental management, pollu-
tion prevention and health protection.

2  Materials and Methods

2.1  Sampling and Analysis

The sampling site (30°12′35.47″N,115°01′30.38″E) of this 
study was located on the rooftop of the Environmental Sci-
ence and Engineering Institute building (about 16 m above 
ground and 48 m above sea level) in Hubei Polytechnic 
University of Huangshi city, close to central China (Fig. 1). 
No single specific pollution sources were identified near the 
sampling site.

Fifty-four  PM2.5 samples were collected from March 
31, 2012 to February 24, 2013 with battery-powered mini-
volume samplers (Airmetrics, Oregon, USA) operating at a 
flow rate of 5 L/min. One 24-h  PM2.5 sample was collected 
on 47-mm teflon filter (Whatman, England) every 6 day. The 
sampling was started at 9:00 am to next day at 9:00 am. 
Before and after sampling, the filters were conditioned at 
20 ± 1 °C in relative humidity of 50 ± 2% for 24 h. The fil-
ters were then weighed by an electronic microbalance with 
a detection sensitivity of 1 μg (Mettle M3, Switzerland). 
The filter samples were stored at − 4 °C until pretreatment.

The mass concentration of  PM2.5 was determined by 
gravimetric method. The element compositions were ana-
lyzed after being exposed to high-sensitivity X-ray fluo-
rescence (Epsilon 5, Netherlands) under certain conditions 
(30 °C) for 22 min. Sixteen elements (Ca, Mg, Ti, Al, Cr, 
Mn, Cu, Zn, V, Fe, As, Pb, Cd, Co, Ni and W) were meas-
ured for each  PM2.5 sample.

2.2  Enrichment Factors (EFs)

EFs are often used to assess the degree of element enrich-
ment in atmospheric particulate matter and determine the 
geological or anthropogenic origin of a certain pollutant ele-
ment. The equation for the EFs is:

where i is the element of interest, Ci is the concentration 
of i, and Cn is the concentration of a reference element. 
(Ci/Cn)sample represents the concentration ratio of studied 
element collected in  PM2.5 sample to the reference element, 
and (Ci/Cn)background is the concentration ratio of studied ele-
ment to reference element of background soil. In this study, 

(1)EF =
(C

i
∕C

n
)sample
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aluminum (Al) was chosen as the reference element, and the 
concentration of Al (7.19%) was taken from soil background 
values in China (China National Environmental Monitor-
ing Center 1990). If the EFs value is between 0 and 1, it 
generally indicates that the element is not enriched in the 
atmosphere, but primarily originated from geological weath-
ering. If the EFs value is between 1 and 10, it means that the 
element was influenced by both natural and anthropogenic 
sources. If the EFs is higher than 10, it indicates that the 
element was dominated by anthropogenic contributions. 
According to the study of Sutherland (2000), the pollution 
enrichment levels can be divided into a five-category system: 
when EFs is less than 2, it suggests nearly no enrichment or 
minimal pollution; when EFs is between 2 and 5, it suggests 
moderate enrichment; when EFs is between 5 and 20, it sug-
gests significant enrichment; when EFs is between 20 and 
40, it suggests highly enrichment; when EFs is greater than 
40, it suggests extremely enrichment.

2.3  Source Apportionment

Positive matrix factorization (PMF) is a multivariate recep-
tor model that estimates the source profiles and their contri-
butions based on a weighted least square approach (Paatero 
and Tapper 1993). It is also a tool for analyzing atmospheric 
particulate source recommended by the US Environmen-
tal Protection Agency (US EPA) and the Ministry of Envi-
ronmental Protection of China. In the present study, PMF 

5.0 was employed with the inclusion of 16 elements in the 
model computation.

2.4  Health Risk Assessment

According to the human health risk assessment model 
based on those developed by the US EPA (2011a), exposure 
parameters suitable for Chinese were selected, exposure con-
centration (EC) was estimated to assess the health risks of 
ten inhalable heavy elements (Cr, Mn, Cu, Zn, V, As, Pb, Cd, 
Co and Ni) in  PM2.5. The reference dose of W and Fe was 
not available, so the assessment of health risks in this study 
did not include W and Fe. The assessment subjects were 
divided into two groups: adults (> 15 years) and children 
(0–15 years), owning to the differences in their behavior and 
respiratory system (Li et al. 2016). In this study, Mn, Cu, Zn 
and V are non-carcinogenic, and Cr, As, Cd, Co, Pb and Ni 
are carcinogenic.

The average daily dose of heavy metals exposure through 
inhalation of particulate matter is calculated by following 
the Eq. (2):

where C represents heavy metal concentration in  PM2.5 
(μg/m3); ET is exposure time (h/day); EF is exposure fre-
quency (day/year); ED is duration of exposure (a); and AT 
is the average exposure time through inhalation (h). For 

(2)ECinh =
C × ET × EF × ED

AT
,

Fig. 1  Location of Huangshi City. The green color in the map means protected areas (color figure online)
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non-carcinogens, AT = ED × 365 days × 24 h/day; for car-
cinogens, AT = 70 × 365 days × 24 h/day. The parameters 
involved in the model are shown in Table 1.

The risk of exposure to heavy metals through inhalation 
is calculated by Eqs. (3) and (4) (Li et al. 2016; You et al. 
2017):

where HQ is non-carcinogenic quotient; ELCR is excess life-
time carcinogenic risk; RfCi is the inhalation reference con-
centration, mg/m3; IUR is the inhalation unit risk, per μg/m3.

(3)HQ =
ECinh

RfC
i
× 1000

,

(4)ELCR = IUR × ECinh,

3  Results and Discussion

3.1  Mass Concentrations and Characteristics 
of  PM2.5 and Elements

Table 2 shows the mass concentrations of atmospheric 
 PM2.5 and 16 elements in Huangshi. The results indicate 
that during the sampling period, the average annual  PM2.5 
concentration in Huangshi is 104.4 μg/m3, and the mean 
values of  PM2.5 in spring, summer, autumn and winter are 
(96.9 ± 27.0) μg/m3, (60.7 ± 24.7) μg/m3, (111.1 ± 45.8) 
μg/m3 and (114.0 ± 43.8) μg/m3, respectively. Compared 
with the average 24-h (75 μg/m3)  PM2.5 mass concentration 
standard set from China’s “Environmental Quality Stand-
ards” (GB 3095-2012 2012), except for summer, Huangshi 
 PM2.5 concentration in spring, autumn and winter is 1.29 
times, 1.48 times and 1.52 times higher than national aver-
age, respectively. The concentration of  PM2.5 in autumn 
and winter is evidently higher than that in summer, which 
is similar to many other studies. The main reason is that 

Table 1  Exposure parameters 
via respiration

Item Adults Children References

EF/day/a 350 350 (HJ 25.3-2014 2014)
ED/a 24 6 (HJ 25.3-2014 2014)
AT (carcinogenic)/h 70 × 365 × 24 70 × 365 × 24 (US EPA 2013)
AT (non-carcinogenic)/h ED × 365 × 24 ED × 365 × 24 (US EPA 2013)

Table 2  PM2.5 (μg/m3) and 16 metal elements (ng/m3) mass concentrations in Huangshi city

SD standard deviation

Component Range Spring Summer Autumn Winter Annual average

Average SD Average SD Average SD Average SD

PM2.5 29.4–501.4 96.9 27.0 60.7 24.7 111.1 45.8 114.0 43.8 104.4
Ca 13.5–1846.6 447.4 264.8 356.2 135.2 506.1 445.2 508.1 514.1 455.0
Mg 0–656.7 239.2 124.2 234.2 194.1 253.1 212.8 277.8 171.2 251.9
Ti 0–101.4 24.2 18.5 14.4 8.0 29.1 22.8 30.7 26.9 24.6
Al 107.9–1337.1 401.1 223.5 275.0 107.9 404.4 287.4 449.4 335.1 381.1
Cr 8.9–111.9 33.5 16.8 23.6 17.0 32.0 25.7 36.1 24.0 31.1
Mn 0.7–158.6 61.5 33.0 28.2 17.6 51.5 37.6 68.6 34.9 51.8
Fe 73.6–1748.4 847.8 341.1 424.4 166.0 776.3 455.9 811.8 396.3 705.6
Cu 11.0–484.9 50.1 32.8 26.5 13.2 78.7 117.0 52.0 26.3 51.9
Zn 28.2–2045.7 580.3 353.0 403.3 466.1 663.8 391.2 478.8 280.8 528.1
As 0–1550.7 223.2 271.4 156.7 389.3 241.1 369.2 320.4 119.1 196.9
Pb 28.4–1225.3 370.5 301.6 218.7 293.7 332.0 268.0 272.5 160.0 293.3
Cd 0–57.6 14.7 13.8 17.5 15.7 32.5 12.7 19.1 8.7 21.4
W 46.7–5602.2 2601.9 996.1 2402.0 78.6 2286.5 46.7 2170.0 132.6 2348.1
Co 0–8.4 4.1 3.0 2.1 1.7 3.1 2.5 2.7 1.9 2.9
Ni 0–19.3 6.3 3.0 5.3 2.8 6.3 3.0 6.5 4.4 6.1
V 0–6.8 2.2 2.3 2.6 1.7 1.8 2.0 1.6 2.1 2.1
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solar radiation is relatively weak during autumn and winter 
in Huangshi when the atmospheric boundary layer is low, 
the pollutants are difficult to disperse, and less rainfall also 
contributes to the accumulation of pollutants. While dur-
ing summer, solar radiation is stronger and boundary layer 
is higher, assisted by frequent rainfall removing pollutants, 
 PM2.5 concentration could remain at a lower level. Compar-
ing with other cities, annual average of  PM2.5 mass concen-
tration in Huangshi is similar to that of Beijing (101 μg/m3, 
Zheng et al. 2005), Shanghai (103.07 μg/m3, Wang et al. 
2013) and Shijiazhuang (101.4 μg/m3, Wang et al. 2013), 
however, significantly higher than that of Xiamen (34.1 μg/
m3, Zhang and Cao 2015), Shenzhen (32.0 μg/m3, Zhang and 
Cao 2015), Chongqing (59.1 μg/m3, Zhang and Cao 2015), 
and other cities in Europe or North America (Cheng et al. 
2016; Salameh et al. 2015).

Element W has the highest concentration in  PM2.5 of 
Huangshi (2348.1 ng/m3). W is a rare metal element, com-
monly used for special alloy steel, which are massively 
produced for cutting tools and mining tools. Tungsten ore 
reserves are abundant in Huangshi, together with enterprises 
of special steel production and processing, resulted in the 
high enrichment of W in  PM2.5 of this region. While no 
similar report is found in studies of other cities. The order 
of mass concentration of studied element is W > Fe > Zn > 
Ca > Al > Pb > As > Cu > Mn > Cr > Ti > Cd > Ni > Co 
> V. Among them, the average concentration of Pb, Cd and 
As is 293.3, 21.4 and 196.9 ng/m3, respectively, which is 0.6 
times, 4.3 times and 32.8 times of the reference concentra-
tion limit in the Ambient Air Quality Standard of China (GB 
3095-2012 2012). Element As exceeds the limit drastically. 
V has the lowest annual average concentration (2.1 ng/m3), 
well below the reference concentration of WHO (1000 ng/
m3). The average annual concentrations of Zn, Cu, Mn, Cr, 
Ni and Co are 582.1, 51.9, 51.8, 31.1, 6.1 and 2.9 ng/m3, 
respectively; however, the current Ambient Air Quality 
Standard of China (GB 3095-2012 2012) has no concentra-
tion limits requirement for these elements.

Regard to seasonal variation, the mass concentrations of 
Ca, Mg, Ti, Al, Cr, Mn, As and Ni all show the highest 
concentration in winter and the lowest concentration in sum-
mer, which is consistent with the variation of  PM2.5 mass 
concentration. The seasonal variations of Fe, Cu, Zn and 
Pb are similar, which is high in spring, autumn and winter, 
while lower in summer. Mass concentration of V is highest 
in summer and lowest in winter, while Cd concentration is 
highest in autumn and lowest in spring. W mass concentra-
tion shows a trend of spring > summer > autumn > winter. 
The possible reasons for most of the metal element con-
centrations being lowest in summer are: (1) high frequent 
precipitation in summer enhances wet deposition effect; 
(2) the surface runoff formed by the summer rainfall to 
certain extent suppress fugitive dust caused by city traffic, 

and reduce their contribution to atmospheric particulate; (3) 
flourishing vegetation in summer absorbs and removes some 
heavy metals from the atmosphere. The seasonal variation 
of particular elements may be related to specific pollution 
sources in the region, which remains to be further studied.

As shown in Table 3,  PM2.5 metal element concentrations 
in China’s large- and medium-sized cities are significantly 
higher than those of overseas, indicating that domestic urban 
air pollution of metal elements is more severe and lead to 
greater damage to human health. Because of the differences 
in sampling time, sampling season, type of sampling site, 
analysis method and emission source in different cities, there 
are big differences in the concentration of metal elements in 
 PM2.5 in different cities at home and abroad.

3.2  EF Characteristics and Source of Elements

3.2.1  EF

The annual EF for 16 elements is shown in Fig. 2. It is 
clear that the EF value of W is the highest, nearly reaching 
277853.2; followed by Fe and Cd, which exceed 10,000; Zn, 
As, Pb and Cu also show high EF (> 100); Ca, Cr, Co, Mn 
and Ni appear to be greater than 10. It suggests that these 
extremely enriched elements were probably largely affected 
by anthropogenic emissions, in consistent with the highly 
industrialized environment studied. W is possibly related 
to the prosperous special steel industry, while Fe and Cd 
are more likely impacted by the industrial processes of iron 
and steel smelting. The enrichment of Ca may be related to 
cement production and construction fugitive dust. The EF 
values of Mg and V are 7.4 and 4.3, respectively, which sug-
gests that they were influenced both by natural and anthropo-
genic sources. Ti has an EF of 0.9, mainly originating from 
natural sources such as crust or rock weathering.

The order of the mean annual EF value of element in 
Huangshi city is: W > Fe > Cd > As > Pb > Zn > Cu > C
r > Co > Ni > Ca > Mn > Mg > V > Ti, which also shows 
their accumulation degree. According to the Sutherland clas-
sification of enrichment factor (Sutherland 2000), the mean 
value EF of W, Fe, Cd, As, Pb, Zn, Cu, Cr, Co and Ni is 
greater than 40, indicating that these elements are super-
enriched and critically harmful. The EF of Ca, Mg and Mn 
is between 5 and 20, indicating significant enrichment, and 
the EF value of V is between 2 and 5, which is moderate 
enrichment. The EF value of Ti is less than 2, generally no 
enrichment.

3.2.2  PMF Fingerprints

The source apportionment of 16 elements in  PM2.5 is deter-
mined by PMF source analysis method. After several times 
of operation, analysis and comparison, four factors were 
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extracted by the PMF model, and the result of factor pro-
files is shown in Fig. 3. The extracted factors are interpreted 
as follows.

Factor 1 has high loadings of Ca, Ti and Al, and explains 
66.3, 63.2 and 47.4% of variance, respectively. Ca is a rep-
resentative indicator of cement dust, mainly from cement 
and gypsum plants or construction sites (Kim et al. 2004). 
Ti and Al are important markers of crustal source or soil 
dust (Lough et al. 2005; Viana et al. 2008). Thus, factor 1 is 
related to crust dust or soil dust.

Factor 2 explains approximately 89.6% of the variance in 
As, which has the highest loading. Many previous studies 
have shown that emissions from coal combustion contains 
higher concentration of As (Duan and Tan 2013; Kang et al. 
2011; Tian et al. 2010). This factor is attributed to emissions 
from coal combustion.

Factor 3 explains 81.7% of the variance for W. Further-
more, the factor profile is dominated by Ni, V, Cr and Cd, 
which explains 72.5, 64.2, 54.5 and 53.4% of the variance, 
respectively. W is mainly used in alloy manufacturing and 
metal processing (Yih and Wang 1979). In addition to fuel 
combustion (Vallius et al. 2005), Ni and V could also derive 
from the mineral extraction process (Brown et al. 2007). 
Cr and Cd are the symbolic elements (Alleman et al. 2010) 
in particulate matter which emitted from the petrochemical 
industry; they also come from the high temperature combus-
tion of coal, oil and garbage (Uberoi and Shadman 1991). 
Huangshi is an important base for iron ore and nonferrous 
mineral production in China, many metal manufacturing and 
processing, metal smelting enterprises. All these industrial 
activities may have an important contribution to the heavy 
metal elements, such as W, Ni, V, Cr and Cd in  PM2.5. There-
fore, factor 3 is possibly from anthropogenic source, which 
is related to the activities of the chemical and metallurgical 
industries.

In factor 4, the loadings of Pb, Zn, Cu and Mg are higher, 
which explains 74.2, 69.6, 39.9 and 35.9% of the variance, 
respectively. Pb and Zn are often used to indicate motor 
vehicle exhaust (Grieshop et al. 2006; Tecer et al. 2012). The 
high loading of Cu is a clear marker of vehicles exhaust, tires 
and brakes abrasion (Kuang et al. 2004), while the presence 
of Mg could be derived from traffic fugitive dust. Therefore, 
the origin of this factor is mainly related to traffic exhaust 
emissions.

3.3  Health Risk Analysis

Carcinogenic risk and non-carcinogenic analysis of 10 
toxic heavy metal elements contained in Huangshi  PM2.5 
are shown in Table 4. Element As has the highest non-
carcinogenic risk (4.32), significantly higher than the 
limit of US EPA, indicating that As may lead to non-car-
cinogenic health risks for both adults and children. The Ta
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non-carcinogenic risk order is As > Mn > Cd > Co > Ni 
> Cr > V. Li et al. (2016) found that the HQ values of As, 
Mn and Cd in  PM2.5 were 3.07, 3.06 and 1.20, respectively, 
in Chengdu, China, implying a non-carcinogenic risk for 

both adults and children, which is similar to the order of 
non-cardiogenic risk value in this study.

As seen from Table 4, the risks of carcinogenic heavy 
metals for adults and children are similar, both following 

Fig. 2  Enrichment factor (EF) 
of 16 elements in Huangshi 
 PM2.5

Fig. 3  PMF fingerprints of 16 
elements in Huangshi  PM2.5
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the descending order of Cr > As > Cd > Co > Pb > Ni. 
For adults, the carcinogenic risk values for Cr and As were 
8.60 × 10−4 and 2.78 × 10−4, respectively, which exceeded 
the carcinogenic risk threshold  (10−6–10−4); the carcino-
genic risk of Cd exceeded 1 × 10−4, but within the range 
of cancer risk thresholds. For children, the carcinogenic 
risk value of Cr is 2.15 × 10−4, which exceeds the thresh-
old of carcinogenic risk. The carcinogenic risk of As is 
6.96 × 10−5, slightly lower than 1 × 10−4, which means 
potential carcinogenic risk for children. The carcinogenic 
risk of adults with six carcinogenic elements was higher 
than that of children. The carcinogenic risk found in this 
study was significantly higher than that in Nanjing (Hu 
et al. 2012), Chengdu (Li et al. 2016) and Tianjin (Chen 
et al. 2015), implying greater impact on the public health, 
the local environmental protection departments should take 
appropriate measures to reduce its harm.

4  Conclusion

During the period from March 2012 to February 2013,  PM2.5 
samples were collected in Huangshi city, and the concentra-
tions of 16 metal elements were analyzed. The main conclu-
sions were as follows:

1. The annual  PM2.5 average concentration in Huangshi 
city is 104.4 μg/m3, which is significantly higher than 
that of the national environmental air quality standard, 
indicating a critical pollution condition. Element W 
content is highest in  PM2.5, V concentration the lowest; 
As and Cd content exceeded the standard by 32.8 times 
and 4.3 times. Most elements showing seasonal trend of 
high in winter and low in summer, similar with seasonal 
variation of  PM2.5 mass.

2. EF analysis shows that, except Ti, the other 15 elements 
were all enriched in different degrees. W, Fe, Cd, As, Pb, 
Zn, Cu, Cr, Co and Ni are extremely enriched, Ca, Mg 
and Mn are significantly enriched, and V is moderately 
enriched.

3. PMF source analysis results show that there are four 
main sources of metal elements in  PM2.5 of Huangshi 
area: soil dust or fugitive dust (Ca, Ti, Al), coal combus-
tion (As), chemical industry and metallurgical industry 
(W, Ti, Ni, V, Cr, Cd), motor vehicle emissions (Pb, Cu, 
Zn, Mg).

4. The results of health risk assessment showed that the 
non-carcinogenic risk of element As is higher than 1, 
indicating a high risk of non-carcinogenesis for adults 
and children. The carcinogenic risk of Cr and As is 
higher than the tolerate limit (1 × 10−4) and may there-
fore poses a greater risk of cancer in adults. For children, 
the carcinogenic risk of Cr is higher than the threshold 
range  (10−6–10−4), indicating that there may be a greater 
risk of cancer.
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