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Abstract Ion chromatography (IC) is widely used to
quantify sulfate, nitrate, ammonium, sodium, chloride, and
potassium from PM,s water extracts. IC hardware and
software have progressed to allow a broader range of
water-soluble compounds to be determined for the existing
anion and cation programs and on the same solutions using
analytical column, eluent, and detector modifications.
Alkylamine, organic acid, and carbohydrate quantification
by IC expands the number of source markers, especially for
different types of biomass burning and secondary organic
aerosols. Although modern systems are highly automated,
internal quality control (QC) and external quality assurance
(QA) programs are essential. QC includes detailed standard
operating procedures, calibration over the range of expec-
ted concentrations, performance tests with independent
standards, inspection of filters and chromatograms, and
anion/cation balances. QA consists of independent system
and performance audits, analysis of externally prepared
performance samples, and interlaboratory comparisons.
The additional water-soluble species provide compounds
for speciated emission inventories, source markers to refine
aerosol source apportionment, and increased understanding
of global carbon, sulfur, and nitrogen cycles.
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Introduction

Measurements of PM, s (particulate matter with aerody-
namic diameter less than 2.5 micrometers) elements, ions,
and carbon fractions in chemical speciation networks are
necessary, but not sufficient, for identifying and quantify-
ing modern source contributions (Chow and Watson 2013;
Watson and Chow 2013, 2015; Watson et al. 2016). Many
elemental source markers are being eliminated from
emission streams owing to their toxicity. As these primary
PM emissions decrease, secondary organic aerosols
(SOAs) are increasing in importance (Donahue 2013).
Many of the SOA compounds absorb light at shorter (<600
nm) wavelengths, thereby affecting the Earth’s radiation
balance as Brown Carbon (BrC) (Laskin et al. 2015). The
broad diversity of biomass fuels and burning conditions
(Chakrabarty 2016), especially in countries outside of
North America and Europe, require more specific markers
to better determine control strategies. Peat burning, a
common Asian combustion source (Wang et al. 2004), is
poorly studied, even though it may have an important
effect on the global carbon (Turetsky et al. 2015) and
nitrogen (Galloway et al. 2004) cycles.

Watson et al. (2016) identify several proven analytical
methods that can be applied to samples already acquired in
PM speciation networks (Dabek-Zlotorzynska 2011;
IMPROVE 2016; U.S.EPA 20016a; Zhang et al. 2012) as
illustrated in Fig. 1. Watson et al. (2016) also associate the
measured species with potential sources. This article
elaborates on further analysis of the water-extracted com-
pounds using ion chromatography (IC). IC with conduc-
tivity detection was developed in the mid-1970s (Small
et al. 1975) to obtain multipollutant measurements with a
single analysis for water-soluble ions. Analytes include
fluoride (F~), chloride (Cl™), nitrite (NO;), bromide
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1. Teflon-membrane filter

(25 mm to 47 mm, 5 to 24 L min™)

2. Quartz-fiber filter

(25 mm to 47 mm, 5 to 24 L min™)

3. Quartz-fiber or Nylon-membrane filter
(25 mm to 47 mm, 5 to 24 L min")

Fig. 1 Filter samples are commonly acquired in PM compliance and
speciation networks (IMPROVE 2016; U.S.EPA 20016a). In these
networks the Nylon-membrane filter is preceded by anodized
aluminum denuder tubes (Chow 1993) that remove gaseous nitric

(Br™), iodide (I"), nitrate (NOj), sulfate (SO?[), and
phosphate (PO;~) for anions; and sodium (Na™), ammo-
nium (NHJ), magnesium (Mg>"), potassium (K*), and
calcium (Ca“) for cations. For PM, 5 deposits on filters,
samples are first extracted in distilled-deionized water
(DDW). IC separates the water-extracted solutes with an
ion exchange resin that delays their passage owing to dif-
ferent ion sizes and charges relative to the ionic eluent.
This results in different retention times for individual ion
quantification with a detector, typically a conductivity
detector that measures the electrical current traversing the
eluted solution. Prior to detection, the ion exchange column
effluent enters a suppressor (membrane or column) where
the eluent is neutralized, reducing its conductivity while
retaining that of the ions of interest. Ionic compounds are
identified by their elution/retention times and quantified by
the conductivity peak area. Peak areas are related to con-
centrations from standard solutions for quantification.
Although IC instruments can be set up to calculate con-
centrations by either peak area or peak height, laboratory
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acid so only PM nitrate is collected. Shading indicates the analyses
and outputs that are currently obtained from these samples. Figure is
adapted from Watson et al. 2016

tests show that peak area provides better accuracy and
precision than those for peak height. Peak area is not
affected by baseline shifts which commonly occur in IC
analysis.

While most applications involve sampling onto filters
with extraction and analysis in the laboratory, a growing
number of in situ IC-based instruments are being used to
obtain real-time concentrations with high time resolution
(ten Brink et al. 2007; URG 2016; Weber et al. 2001). Sub-
diurnal time resolution can also be obtained using the
recently developed Sequential Spot Sampler (Hecobian
et al. 2016) that impacts PM; s into small wells on a car-
ousel that can be subsequently extracted and analyzed with
an automated laboratory IC.

Newer instrumentation and software have expanded the
capability of IC to quantify selected organic compounds,
several of which appear in the same spectra produced for
inorganic ions and others that are detected using different
columns, eluents, and detectors. This presentation updates
a prior evaluation (Chow and Watson 1999) of IC methods
applied to PM;s filter samples that are acquired in
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compliance and speciation networks. It provides a brief
summary of recent reviews on liquid chromatography (LC)
applications to environmental samples, then defines the key
terms used in IC analyses. This work summarizes tests on
water-soluble extraction efficiencies for particles collected
on different filter media and describes procedures for cal-
ibration, standardization, and quality control/quality
assurance (QC/QA). It compares chromatograms from
different systems, demonstrating the progress of improved
hardware and software to better resolve water-soluble
components. It proposes instrumental configurations that
can obtain more information from the sample extracts than
is currently achieved by simple inorganic anion and cation
analyses.

Table 1 lists the analytes that can be obtained from the
IC methods described here and associates them with
potential pollution sources. The major ionic components of
Cl-, NO3, SOz 2, Na*, and NH] are essential for recon-
structing PM mass (Chow et al. 2015) and estimating
chemical light extinction to improve visibility (Cheng
2015; Pitchford et al. 2007; Watson 2002). Other ions,
such as F~, Br—, I, PO3}~, Mg*", K*, and Ca’>" which
often go unreported, also have value as source markers.
Water-soluble K* is a common biomass burning marker
(Calloway et al. 1989), while water-soluble Ca>* is found
in transported Asian dust (Duvall et al. 2006). The addition
of alkylamines, organic acids, and carbohydrates quantifi-
cation by IC expands the number of source markers for
biomass burning; fuel combustion; biodiesel, diesel, and
gasoline engine exhaust; meat cooking; marine aerosol,
and bioaerosol. Although several sources are potential
contributors, these can be narrowed down by the study
context and network design (Chow et al. 2002). Agricul-
tural sources such as fertilizer and animal husbandry con-
tributions would not be expected at urban sites, and
biomass burning would favor SOA formation during cold
winter periods.

Recent Reviews of Liquid Chromatography (L.C)
Methods

Liquid chromatography (LC) includes both IC and high
performance liquid chromatography (HPLC) that have
wide application to analyses of compounds dissolved in
water. IC is used for most inorganic constituents, whereas
HPLC speciates organic molecular constituents (Michal-
ski 2016). HP uses a high-pressure pump [~ 3000 to
~ 6000 psi (pounds per square inch) or ~ 21,000 to
~ 41,000 kilopascals (kPa)] (Hartwell et al. 2013) to push
the sample and eluent through the separating columns
while lower pressures (<2,000 psi or ~ 14,000 kPa) are
applied in IC. The types of stationary phase matrices,

column packing methods, eluent compositions, and
detection modes vary between IC and HPLC. IC variants,
such as ion-exclusion chromatography (IEC), ion-pair
chromatography (IPC), and reversed-phase liquid chro-
matography (RPLC), have also been used to separate
hydrophilic molecules, biomolecules, and metal com-
plexes (Fritz 1991; Gama et al. 2012; Gennaro and
Angelino 1997; Michalski 2014; Nakatani et al. 2012). In
tandem with mass spectrometric (MS) detection, as
implemented in HPLC-MS, LC-MS, and LC-MS/MS,
more complex water-soluble organic compositions,
molecular structures, molar weights, and functional
groups (Fenn 2002, 2003; Michalski 2014) can be quan-
tified at ultra-low detection limits.

Recent reviews (Butt and Riaz 2009; Hartwell et al.
2013; Karu et al. 2012; Lucy and Wahab 2013; Michalski
2013, 2014; Nakatani et al. 2012; Olariu et al. 2015; Pohl
2013; Zhang et al. 2015) highlight the technological
advances in IC systems and applications for environmental,
pharmaceutical, clinical, and food chemistry samples. The
sensitivity, selectivity, and linearity of IC systems can be
modulated based on the selection of stationary phase
properties and eluent compositions. Although IC methods
began with conductivity detection (Small et al. 1975),
other advanced detection techniques such as UV-VIS or
diode array absorbance, amperometry, and potentiometry
have been used to quantify additional water-soluble com-
pounds (Buchberger 2001).

There are several suppliers of IC hardware (Lachat
2016; Metrohm 2016; Thermo-Dionex 2016; Waters
2016), with Thermo/Dionex being the major one. Figure 2
illustrates a generic IC set-up, but there are countless
combinations of columns, eluents, and detectors that can be
selected from the vendors’ websites. The configurations
described here are specified in Table 2. Basic components
and terminology used in IC systems are documented in
Table 3.

Filter Preparation, Receipt, Acceptance Testing,
and Storage

Each batch of unexposed filters should be acceptance-
tested with a visual inspection of every filter over a
light table, with rejection of blank filters showing visual
flaws, pinholes, or discoloration. One filter from each
batch of 100 is extracted and analyzed for the intended
species and the batch is rejected if excessive blank
levels exceeding 0.5 pg per filter are detected. Nylon-
membrane filter (Pall 2016) acceptance testing is
especially important as it passively absorbs nitric acid
vapors when exposed to the atmosphere (Bytnerowicz
et al. 2005). Acceptance-tested filters are then placed in

@ Springer



10

Aerosol Sci Eng (2017) 1:7-24

Table 1 Pollution sources and detection limits for anions, cations, akylamines, organic acids, and carbohydrates®

Analyte (molecular formula)

Compound class

Nylon water extract (pg/mL)

Pollution source

MDL? LQL?

Chlorine (C17) Anion 0.002 0.014 Marine/sea salt; dry lakes; de-icing material;
crustal material; biomass burning

Nitrite (NO; ) 0.002 0.050 Fresh fossil fuel combustion

Nitrate (NO3) 0.004 0.070 Secondary ammonium nitrite or sodium nitrate;
fertilizer

Sulfate (SO;2) 0.0008 0.017 Secondary ammonium sulfate, ammonium
bisulfate, or sulfuric acid

Fluoride (F~) 0.002 0.006 Aluminum production

Bromine (Br™) 0.002 0.007 Marine aerosol; dry lakes; crustal material

Todide (I7) 0.002 0.007 Marine/sea salt; dry lakes

Phosphate (PO;?) 0.0008 0.013 Fertilizer

Ammonium (NHI) Cation 0.001 0.028 Secondary ammonium sulfate, ammonium
bisulfate, or nitrate; agriculture/animal
husbandry; fertilizer; wastewater treatment

Sodium (Na*) 0.007 0.037 Marine/sea salt; dry lakes; de-icing material;

Magnesium (Mg*?) 0.0016 0.002 Marine/sea salt; dry lakes

Potassium (K™) 0.0052 0.076 Biomass burning

Calcium (Ca”) 0.0058 0.027 Marine/sea salt; transported Asian dust

Methylamine (CHsN) Akylamines 0.010 0.075 Derivatives of ammonia (NHj3); same sources as
(NH ) including agriculture/animal husbandry,
and wastewater treatment

Dimethylamine (C,H7N) 0.010 0.054 NHj; derivatives

Trimethylamine (C3HgN) 0.010 0.102 NHj; derivatives

Formic acid/formate (CH,0;) Organic acids 0.005 0.006 Biogenic POAC; biogenic SOAY; biomass
burning

Acetic acid/acetate (C;H40;) 0.006 0.006 Biogenic POA; SOA

Lactic acid/lactate (C3HgO3) 0.009 0.009 Marine aerosol®

Methanesulfonic acid 0.011 0.011 Marine/sea salt; SOA/

(MSA)/methanesulfanate
(CH4S0s3)

Oxalic acid/oxalate (C,H,0,) 0.010 0.010 Biomass burning; marine aerosol; SOA

Succinic acid/succinate (C4HgO4) 0.035 0.035 Engine exhaust; meat cooking; biomass burning;
SOA

Maleic acid/maleate (C4H4O4) 0.020 0.025 Engine exhaust (photo-oxidation of benzene and
aromatic VOCs from diesel and gasoline
engines)

Malonic acid/malonate (C3H4O4) 0.025 0.025 Engine exhaust; biomass burning; SOA

Glutaric acid/glutarate (CsHgOy) 0.017 0.017 Engine exhaust; biomass burning; SOA

Levoglucosan (C¢H;¢Os) Carbohydrates 0.001 0.020 Biomass burning

Mannosan (C¢H;0Os) 0.001 0.040 Biomass burning

Galactosan (CgHoOs) 0.002 0.040 Biomass burning

Glycerol (C3HgO3) 0.002 0.003 Biodiesel engine exhaust; meat cooking

2-Methylerythritol (CsH;204) 0.003 0.009 Biogenic POA; SOA

Arabitol (CsH;,0s) 0.001 0.033 Bioaerosol—fungi

Mannitol (CeH;40¢) 0.002 0.109 Bioaerosol—fungi

Xylitol (CsH;,0s) 0.002 0.113 Biomass burning

Erythritol (C4H;0O04) 0.001 0.018 Biogenic POA*

Adonitol (CsH;,05) 0.002 0.010 Bioaerosol—bacteria

Inositol (C¢H;206) 0.004 0.010 Biogenic POA

Glucose (CgH;20¢) 0.002 0.113 Biogenic POA
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Table 1 continued

Analyte (molecular formula) Compound class

Nylon water extract (pg/mL)

Pollution source

MDL? LQL?
Galactose (CsH;20¢) 0.001 0.056 Biogenic POA
Arabinose (CsH;(Os) 0.002 0.058 Biogenic POA
Fructose (CsH;20¢) 0.001 0.258 Biogenic POA
Sucrose (C12H2011) 0.009 0.110 Biogenic POA
Trehalose (C1,H2011) 0.003 0.110 Bioaerosol—fungi

% See Watson et al. 2016 for a more complete list of source markers

® MDLs (minimum detection limits) and LQLs (lower quantifiable limits) are defined as three times the standard deviation of the instrument
response to a known concentration of zero (i.e., a filter extract using laboratory blanks) and dynamic field blanks, respectively (Chow and Watson
1999). MDLs reflect instrument performance at low analyte concentrations, used to ensure no contamination of filter lots and establish instrument
sensitivity. LQL provides background levels in passive field samples (the dynamic field blank may vary from each airborne particle sampling

program and sampling location)
¢ POA primary organic aerosol
4 SOA secondary organic aerosol
¢ Miyazaki et al. (2014)

f Methanesulfonic acid is produced by hydrolysis of dimethyl sulfoxide (Davison 1996), which is produced from the photochemical oxidation of
dimethyl sulfide by marine algae and salt marsh plants (Baker et al. 1991)

6. Data Analysis 5. Detection
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- [ )
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Data Station Rcagem<_
Out
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Analytical Column —
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Eluent Guard Column
Generator| Sample
Loop
Sample
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DDW |Pump
Waste

lnjectionl Valve
(Diverter Valve)

1. Eluent Delivery 2. Sample Injection

Fig. 2 Basic components of the ion chromatography system (based
on the Thermo Scientific/Dionex ICS 5000"configuration, DDW
distilled-deionized water)

clean Petri slides or Petri dishes with bar-coded IDs,
then sorted and sealed into ziplock bags prior to being
loaded into sealed filter holders for shipment to and
from field sites. This sealing intends to minimize pas-
sive absorption or deposition onto the filters. It is good
practice to store filters and extracts at <4°C in labo-
ratory refrigerators with controlled access before ion
analyses to minimize evaporation and contamination.

Filter Extraction

If available, the entire filter is immersed in 15 mL of DDW
after placement in a polystyrene extraction tube that is
labeled with the barcoded filter ID. If portions of the filter
are to be used for other analyses, it can be sectioned into
halves or quarters with one section used for extraction.
Less than 15 ml of DDW can be used as the solvent, but it
is important that the filter is completely immersed within
the vial.

Extraction tubes (FisherScientific 2016) are capped,
placed in extraction racks, and sonicated for 60 min in a
temperature-controlled (<25 °C) sonication bath. Sonica-
tor bath water is recirculated to minimize temperature
increases from the dissipation of ultrasonic energy. After
sonication, the extraction tubes are mechanically shaken [at
a speed setting on 20 revolutions per minute (rpm)] for 60
min. Agitation assists the extraction of water-soluble par-
ticles embedded within the filter. The extracted filters are
then aged for >12 h in a refrigerator at <4 °C. This process
allows for complete dissolution of water-soluble compo-
nents and the settling of any solid materials to the bottom
of the vial (Stevens et al. 1978).

Although many tests of water extraction efficiency from
filters have been conducted over the decades, few results
from these tests have been published (Fosco and Schmeling
2007; Hoffer et al. 1979; Talebi and Abedi 2005). These
tests involve either spiking the filter with known amounts
of the ions using a microsyringe, comparing a less
aggressive extraction with a more proven aggressive
method, or by submitting an extracted filter to a second
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extraction (Mouli et al. 2003). Derrick and Moyers 1981
examined extraction methods for Teflon-membrane and
quartz-fiber filters. Teflon is hydrophobic, and DDW does
not wet the surface or penetrate within the membrane
(Wolfson 1980). Pure DDW, sodium carbonate/bicarbonate
eluent, and perchloric acid by themselves yielded <80%
efficiencies after 15 min of sonication and <2 h of aging for
nitrate, sulfate, and ammonium. However, the DDW
extraction yielded >95% efficiencies for these ions when
analyzed after 24 h of aging following sonication. Chow
and Watson (1999) noted the hydrophobic nature of Teflon-
membrane filters that require applications of a wetting
solution (e.g., 200 pL ethanol or methanol) onto the filter
deposit surface to ensure complete dissolution of the ana-
lyte ions.

Nylon-membrane filters are hydrophilic, as evidenced
by their soaking up of a water droplet, in contrast to the
Teflon-membrane on which the droplet remains on the
surface. Yu et al. (2005) found equivalent nitrate and
sulfate concentrations on Nylon-membrane filters extrac-
ted in DDW and IC eluent, both with 30-45 min of
sonication. They did not report the aging time prior to
analysis, but it is evident that the eluent extraction is
unnecessary. This is a useful result, as the sodium car-
bonate/bicarbonate IC eluent for anions would interfere
with possible cation analysis on the extracts. A pure
DDW extraction is preferable

Extraction efficiencies determined from two sets of 20
Nylon-membrane filters spiked with known concentrations
of mixed anion standards are compared in Fig. 3. Recovery
rates range from 100-103.9% and 92-96% for Laboratories
A and B, with averages and standard deviations of 100.2 +
0.8% and 94 + 2.1%, respectively.

IC for Anions, Cations, Organic Acids,
and Carbohydrates

Thermo/Dionex ICs are most commonly used, although
alternatives are also available. The older models (e.g.,
DX-500, DX-600, and ICS-2000) have been used in the
past (Chow et al. 1990; Watson 1991) and are adequate
for inorganic anion and cation analyses. These instru-
ments are still available on the used-instrument market,
along with replacement parts and supplies. They have
been largely superseded by later model hardware and
software.

Anions
Anion columns use carbonate or hydroxide-selective anion

exchange resins that can accommodate a reasonable
(~2000) sample throughput. An anion electrolytically

@ Springer
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Fig. 3 Extraction efficiencies of two sets of standard spiked (2 pg/mL
mixed anion standards) Nylon-membrane filters following two
laboratory procedures (Lab A uses 15 mL extraction volume,
followed by 60 min each of sonication and mechanical shaking with
~ 12 h of refrigeration aging; Lab B uses 20 mL extraction volume,
followed by 30 min of sonication, then left at room temperature for 24
h before refrigeration overnight)

regenerated suppresser (AERS) is used to reduce back-
ground conductivity by exchanging the K™ with hydrogen
ion (H") to produce water in the case of hydroxide (or
similarly convert carbonate to bicarbonate and/or carbonic
acid). An eluent generator is used to produce a 15 mil-
limole (mM) potassium hydroxide solution for isocratic
elution followed by conductivity detection.

Anion chromatograms from two systems are compared
in Fig. 4. The ICS-5000" configuration (Fig. 4b) has
higher sensitivity with improved chromatographic resolu-
tion. This is partially due to the carbonate/bicarbonate
buffer system used by the ICS-3000, which does not
completely eliminate background conductivity. This is
most evident for the fluoride or chloride peak, which often
interferes with the DDW dip. As the conductance of DDW
is often less than that of the suppressed eluent, fluoride or
chloride eluting near the DDW dip is co-eluted or sup-
pressed. Background subtraction and manual adjustments
are required for the older IC systems to quantify potential
co-eluted species and peak overlaps. This is labor-intensive
and results in large uncertainties in ion concentrations
(Chow and Watson 1999). Nitrite was also found in this
sample, though it was below ICS-3000 minimum detection
limits (MDLs) (Fig. 4a).

The carbonate peaks in Fig. 4b are dominated by arti-
facts rather than components of the aerosol deposit. Despite
de-gassing of the water by helium sparging, this interfer-
ence results from carbon dioxide (CO,) dissolved in the
DDW or eluent. The carbonate peak is separable from the
other anions and causes no bias to their quantification. It
may be reduced by purging the sample chamber with an
inert gas and minimizing the time between extraction and
analysis.
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Fig. 4 Anion chromatograms for: a ICS-3000 with sodium carbonate/
bicarbonate eluent; and b ICS-5000" with potassium hydroxide
eluent for a sample from October 15, 2014, collected at Clinton, TX,

USA (DDW distilled-deionized  water). The ICS-5000"
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chromatogram minimizes the DDW dip, has a more constant baseline,
and better detects nitrite for this sample. It also resolves additional
compounds. Y axis is the response in microsiemens (pS)
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Fig. 5 Comparison between Dionex ICS-5000" and ICS-3000 systems for: a nitrate; and b sulfate with 34 Texas PM,s samples (eluent
composition is 15 mM potassium hydroxide in ICS-5000"and is 35 mM sodium carbonate/10 mM sodium bicarbonate in ICS-3000)

Figure 5 compares nitrate and sulfate concentrations for the
same sample extracts analyzed by the ICS-5000" and the ICS-
3000 systems. There is good agreement (0.98 < R> < 1) for
the replicate analyses, indicating that the eluent difference
does not affect the results for these important components.

Cations
Cation columns (i.e., either the guard column or analytical

column) use a hydrophilic and carboxylate functionalized
cation exchange resin that can accommodate a reasonable
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Fig. 6 Chromatogram for cation analysis of ambient filter sample collected in November 20, 2015, at Reno, NV, USA. Y axis is the response in

microsiemens ([LS)

(~2500) sample throughput. A cation electrolytically
regenerated suppressor (CERS) is used to reduce back-
ground conductivity by exchanging the buffer anion (e.g.,
methane sulfonate or sulfate) with hydroxide ion (OH™),
and an eluent generator is used to produce 40 mM
methanesulfonic acid (MSA) solution for isocratic elution
followed by conductivity detection. Figure 6 shows an
example of the cation chromatogram with ~ 20-min
analysis time per sample.

Both gaseous ammonia (NH3) and particle ammonium
are important atmospheric constituents that contribute to
the global nitrogen cycle (Fowler 2015), elevated PM, 5
(Wang et al. 2013), and ecosystem deposition (Granath
et al. 2014). If ammonium is the major cation of interest, a
fast run cation column (e.g., 4 x 250 mm CS12A) can be
used with a 33 mM MSA eluent composition for a 3-min
analysis time. Although there are potential savings on
analysis time (i.e., from 20 to 3 min per run), these are not
necessarily achieved when other cations are present, as
additional rinsing time is needed to elute the remaining
cations (e.g., water-soluble magnesium, potassium, and
calcium); sample carry-over may cause cross-contamina-
tion. The ~ 20-min analysis time ensures clean separation.
The only cost savings would be the time reduction in
system calibration and chromatogram validation, as fewer
ion species are needed to prepare calibration standards and
only a single peak is subject to verification.

The conductivity/concentration relationship is non-lin-
ear for ammonium at high concentrations and a quadratic
curve is needed to fit the calibration standards. Figure 7a
shows an upper limit of 10 pg/mL standard may underes-
timate the ammonium concentration. The linear curve is
improved with a calibration curve from 0.005 to 2 pg/mL
(Fig. 7b), with best linearity found with an upper limit of 1
pg/mL (Fig. 7c). For cation analyses, the upper limit can be
set at 10 pg/mL for water-soluble sodium, magnesium,

@ Springer

potassium, and calcium ions and at 1 pg/mL for ammo-
nium. Values above these require dilution and re-analysis.

Alkylamines

Alkylamines, derivatives of ammonia, can serve as
markers for agricultural sources (Ge et al. 2011) and are
determined following the cation procedure. Dimethy-
lamine may co-elute with the magnesium ion and
trimethylamine may co-elute with the calcium ion; how-
ever, their concentrations are usually small compared to
the inorganic ions. Using gradient eluent mode, Fig. 8
shows that the three alkylamines can be quantified along
with ammonium and four other inorganic cations within a
single ~ 30-min run.

Organic Acids

Organic acids derive from a mixture of anthropogenic
sources, including biomass burning; biodiesel, diesel, and
gasoline engine exhaust; marine aerosols; meat cooking;
biogenic; as well as primary organic aerosols (POAs) and
SOAs (Hawkins et al. 2010; Kundu et al. 2010; Millet
2015). Figure 9 shows the extension of anion analysis with
nine organic acids in a single run. The organic acids most
commonly found in ambient samples includes four mono-
carboxylic acids (i.e., lactate, acetate, formate, and MSA)
and five di-carboxylic acids (i.e., glutarate, succinate,
malonate, maleate, and oxalate) (Brent et al. 2014; Kar-
thikeyan et al. 2007) that can be speciated along with
commonly measured anions as specified in Table 2.

Some of these organic acids could possibly interfere
with inorganic anion peaks if present in sufficient quanti-
ties. With proper gradient elution, Fig. 9 shows that early
eluting mono-carboxylic acids (e.g., acetate, formate, or
MSA) do not interfere with the chloride peak and
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Fig. 8 Example chromatogram for the separation of the three
alkylamines (i.e., methylamine, dimethylamine, and trimethylamine)
from ammonium and other cations (i.e., water-soluble sodium,
magnesium, potassium, and calcium ions). Based on a standard
solution of 0.1 pg/mL using a Thermo Scientific/Dionex ICS-5000"
system. The di- and trimethylamine are separated using gradient

dicarboxylic acids (e.g., maleate or oxalate) do not inter-
fere with the sulfate peak.

Carbohydrates
Carbohydrates are markers for biomass burning, bioaer-

osols, biogenic POAs, and SOAs. The commonly used
biomass burning marker, levoglucosan, as well as its

225
Time [min]

25.0 275 30.0 325 35.0 377

elution mode starting with a 25 mM concentration for 12 min,
increasing to 55 mM concentration for 13 min and followed by a 25
mM concentration for 5 min. This allows the three alkylamines to be
quantified along with ammonium and four other inorganic cations
within a single ~ 30 min run. Y axis is the response in microsiemens
(1S)

isomers mannosan and galactosan, can be quantified by IC
using a pulsed amperometric detection (PAD) (Engling
2006; Garcia et al. 2005; linuma et al. 2009; Zhang 2013),
with applications in several field studies (Caseiro et al.
2007; Ho 2015; Iinuma et al. 2009; Sullivan et al. 2011;
VandenBoer et al. 2012; Yttri 2015; Zhang 2013). IC-PAD
integrates HPLC and IC techniques by combining anion
exchange with electrochemical detection. It is based on the

@ Springer
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Fig. 9 Example of chromatogram showing the presence of seven
anions (i.e., fluoride, bromate, chloride, nitrite, bromide, nitrate, and
sulfate) and nine organic acids including four monocarboxylic acids

principle that multiple hydroxyl (OH) groups are detected
by amperometry, using specific voltages to induce oxida-
tion of individual species and to elute from the anion
exchange column. Carbohydrate species are separated upon
ionization with a strong alkaline eluent (see Table 2).

IC-PAD is cost-effective as it allows for detection of
polar organic compounds using portions of the same DDW
sample extract available for anion or cation analyses
without the need for chemical derivatization, solvent
extraction, and/or extract volume reduction (as is required
for gas chromatography—mass spectrometry (GC-MS)
analysis of polar organic compounds). Other analytical

108 $ TCEQ_CLINTON-59 210 [manipulated)

100
' &)
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©
80 (E |
gl 17 E
g8 | . = Mannitol Arabinose
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Fig. 10 Chromatogram from analysis of a standard solution (at 2.5
pg/mL level) for 17 carbohydrates (i.e., glycerol, inositol, 2-methyl-
erythritol, erythritol, xylitol, levoglucosan, arabitol, mannosan,

@ Springer

(i.e., acetate, lactate, formate, and methane sulfuric acid [MSA]) and
five dicarboxylic acids (i.e., glutarate, succinate, malonate, maleate,
and oxalate). Y axis is the response in microsiemens (pS)

methods used for polar organic compounds require a sep-
arate sample for solvent extraction followed by GC-MS
(Mazurek et al. 1989). An additional advantage of the IC-
PAD method is its sensitivity and selectivity for multiple
poly-hydroxy compounds (i.e., anhydrosugars and sugar
alcohols). The electrochemical detector is optimized in
pulsed amperometric mode, allowing selective measure-
ment of the anhydrosugars, along with other carbohydrates
and sugar alcohols. Figure 10 shows the chromatogram of
markers for biomass burning (e.g., levoglucosan, man-
nosan, and galactosan); fungi (e.g., arabitol, mannitol, and
trehalose); bacteria (e.g., adonitol); and biogenic POAs
(e.g., erythritol, inositol, glucose, galactose, arabinose,

STD-2.5 ug'ml

[

Glucose Galactose

Fructose Sucrose

Time [min]

trehalose, adonitol, mannitol, arabinose, galactosan, glucose, galac-
tose, fructose, and sucrose). Y axis is the response in nanocoulombs
(nC)
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fructose, and sucrose). Biogenic SOA markers (e.g., 2-
methyl-erythritol) derived from oxidation of isoprene can
also be identified and quantified with a single ~ 60-min
run.

IC Analysis Procedures, Quality Control (QC),
and Quality Assurance (QA)

Several standard operating procedures (SOPs) are available
that can serve as starting points for establishing an IC
laboratory (Pfaff 1997; U.S.EPA 2000, 2007). SOPs codify
the actions that are taken to implement a measurement
process over a specified time period (Watson et al. 2001).
The latest scientific information should be incorporated
into SOPs with each revision. QC and QA activities are
important parts of each SOP, as specified in Tables 4 and 5,
respectively.

System calibration relates the sensor output to known
concentrations as determined by standard solutions that
span the range of expected concentrations. Although these
standards can be prepared by carefully weighing and dis-
solving dehydrated salts in known amounts of DDW, it is
now possible to purchase certified solutions (AlfaAesar
2016; ERA 2016) that can be diluted to the appropriate
concentrations. The stock solution of 100 pg per milliliter
(mL) is diluted to 10 levels of working standards ranging
from 0.005 to 10 pg per mL. It is good practice to use
solutions from one supplier for calibration and from
another supplier for QC performance tests to assure that the
concentrations are accurate. Table 1 includes MDLs and
lower quantifiable limits (LQLs) achievable with the
Table 2 configurations. MDLs are typically much lower
than the LQLs derived from field blanks, which include
passive deposition and adsorption of gases.

After analysis, each chromatogram is examined for: (1)
proper operational settings and peak identification; (2)
correct peak shapes and integration windows; (3) peak
overlaps; (4) correct background subtraction (if needed);
and (5) QC standard comparisons. Level I data validation
(Watson et al. 2001) involves chromatogram inspection for
each analysis, applying range checks to batches of data and
investigating outliers, ensuring differences in replicate
analysis comparable to those of differences in long-term
averages, and examining consistency between calibration
standards and performance tests with independent QC
standards. Analysts need to re-calculate ion concentrations
from existing chromatograms when there is evidence that
peaks were not adequately defined by the peak-processing
software, and re-analyze batches of samples that do not
pass validation tests. Level I data validation flags are
assigned that indicate filter appearance, filter damage,
unusual deposits, excessive filter loading, and other

anomalies observed during the analysis. Cation/anion bal-
ances (Chow et al. 1994) are also a useful validation tool
when both are measured, although these may not balance
when unquantified hydrogen ions are present, as for sul-
furic acid.

Concentrations for each species are reported for each
filter after normalizing to the extraction volume. Analysis
precisions are calculated for different concentration inter-
vals as:

N 2X% |Ci*Ci.,-
Zi:l CitCiy ( 1)
N

CV =

Ocion = \/ (CV x ¢;)* + (MDL/3)?, (2)

where CV is the coefficient of variation for each ion; N is
the number of samples, c; is the concentration of initial
analysis of sample ifor each ion, c;, is the concentration of
sample “i” replicate analysis for each ion; MDL is defined
as three standard deviations of laboratory blanks for each
ion; Gcjon i the precision of cjop.

Data are transmitted to a master data base in any spec-
ified format, which usually includes a separate record for
each sample with the sample ID, filter lot number, analysis
date, validation flags, filter loading values, and precision
for each element. These are associated with field data, such
as air sample volume, through the sample ID for a final
output in pg/m?.

QA consists of external examinations of the measurement
process, as delineated in Table 5. These include laboratory
certifications (TNI 2016), inspections and systems audits
(Taylor 2005, 2007), and performance audits/interlaboratory
comparisons (Smiley 2005, 2007, 2009, 2010; Taylor 2008).
These are often required by an external sponsor, but they are
good practice even if not required.

Summary and Conclusions

IC has progressed from simple analyses of inorganic anions
and cations to a versatile laboratory tool applicable to a
large range of water-soluble inorganic and organic com-
pounds. Modern hardware and software allows several
organic compounds to be discerned along with the normal
anion and cation analyses. Modifications of columns, elu-
ent compositions, concentrations, and detectors allow fur-
ther characterization of alkylamines, organic acids, and
carbohydrates that are markers for biomass burning, fuel
combustion, engine exhaust, meat cooking, marine aerosol,
and bioaerosol (e.g., fungi and bacteria) as well as primary
and secondary organic aerosols. Labor is reduced by
autosampling and sample routing, such that a single sample
tray could be used for multiple analyses described here.
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These additional water-soluble species are useful to better
understand their abundances and variations in source pro-
filing and to refine aerosol source apportionment.
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