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Abstract
The aim of this paper is the study of first-order stationary systems of PDEs of the form∑

k Ak∂kU + KU = 0 with K ≯ 0 on � = Rd and � ⊂ Rd bounded. We prove that
the classical assumption K > 0 is not necessary for the well-posedness of the system
and is violated in the particular case of the first-order Poisson problem. In the case
� = Rd , we use Fourier analysis for the existence and uniqueness of solutions. For
� ⊂ Rd bounded, we use a complex analog of the Banach–Nečas–Babuška theorem
to obtain the existence and uniqueness of a solution in a setting that encompasses
both Friedrichs’ systems and the first order reduction of the Poisson problem. The
techniques used to prove the classical inf-sup conditions are inspired by harmonic
analysis arguments that are consistent with the case � = Rd . In order to illustrate
our approach, we study in detail the reduction of the Poisson equation to a first-order
system.
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712 M. Ndjinga, S. K. Ngwamou

1 Introduction

Let d, m ∈ N∗. We consider systems of first-order PDEs

d∑

k=1

Ak∂kU (x) + KU (x) = F(x), (1)

with unknownU ∈ (
L2(Rd)

)m
,where Ak, k = 1, . . . d, and K arem×m realmatrices

and F ∈ (
L2(Rd)

)m
.The system (1) takes the conservative form∇ ·F(U )+ KU = F

with linear flux F(U )�ξ = A(�ξ)U and jacobian matrix A(�ξ) = ∑d
k=1 ξk Ak where

�ξ = (ξ1, . . . , ξd).

The classical theory of Friedrichs systems ([1], [2, section 5.2]) covers the case of
symmetric systems with K > 0, using a variational formulation and Lax-Milgram
theorem. The coercivity required for the Lax-Milgram theorem is a consequence of
the assumption K > 0.

However, in several important cases, one has to consider systems (1) with K ≯ 0.
The first class of examples is conservation laws with source terms in the stationary
regime. In the particular case of gas dynamics, taking into account a friction force [3],
a Coriolis force [4] or a chemical reaction [5, chapter 2 section 5] yields K ≯ 0.

The second class consists of themixed formulation of stationary diffusion problems
∇ · (D �∇u) = f . The prototypical example of a diffusion equation is the Poisson
problem whose first-order reduction is given in Sect. 4. Finite volume schemes for
stationary diffusion on unstructured meshes can have a very complex design (see
for instance [6]). The authors however believe that the discretization of the mixed
formulation of stationary diffusion on unstructured meshes will yield simpler schemes
with smaller stencils and linear systems that are larger but with a better condition
number (O( 1h ) instead of O( 1

h2
)).

The main objective of this paper is to lay the ground for the numerical analysis
of finite volume methods for stationary first-order systems with K ≯ 0. In this first
account of our research, we emphasize the relations between the symbol A, the friction
matrix K and the boundary condition operator P∂� that yield a well-posed problem.

We quickly review in Sect. 2 the well-posedness of the problem (1) on Rd . We
prove that K > 0 is not a necessary condition but only a particular case. There is
even no need for K to be invertible as shown in Theorem 1 and Corollary 3. Then in
Sect. 3 we investigate the case� ⊂ Rd bounded.We use a complex analog of the BNB
theorem [2], instead of the Lax-Milgram theorem to obtain a general existence result
(see Theorem 5 and Corollary 2). In Sect. 4 we investigate the first order reduction of
the Poisson problem with Dirichlet boundary condition. An existence result is given
in Theorem 7 as an application of the approach laid in Sect. 3.
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On the first order elliptic systems 713

2 The caseÄ = Rd

In this section, the solutions are sought for in
(
L2(Rd)

)m
and we give three theorems

(Theorems 1, 2 and 6) that are straightforward applications of the Fourier transform
on first order systems (1) as done in [7, section 3.1] for hyperbolic systems.
Existence of solutions to (1) is guaranteed provided i A(�ξ)+ K is an invertible matrix
for almost every ξ ∈ Rd and (i A(�ξ) + K )−1 F̂ ∈ (

L2(Rd)
)m

.

Theorem 1 (Existence for first order systems) Let m, d ∈ N∗, A1, . . . , Ad , K be
m × m real matrices and F ∈ (

L2(Rd)
)m

such that i A(�ξ)+ K is an invertible matrix
for almost every ξ ∈ Rd and

(
i A(�ξ) + K

)−1
F̂(�ξ) ∈

(
L2(Rd)

)m
. (2)

Then (1) admits a unique solution U ∈ (
L2(Rd)

)m
.

Proof Taking the Fourier transform, (1) is equivalent to
(

i A(�ξ) + K
)

Û (�ξ) = F̂(�ξ),

hence Û (�ξ) =
(

i A(�ξ) + K
)−1

F̂(�ξ) should be in
(
L2(Rd)

)m
for a unique solution

to exist. ��
We propose to define elliptic systems as systems such that det

(
i A(�ξ) + K

)
	= 0

almost everywhere. This definition is different from both the Petrovski [8–11] and
ADN-ellipticity definitions [8, 9, 12], since they do not involve zero order terms, i.e.
the matrix K in our case. In the case of the first order Poisson system (Sect. 4), the

quantity det
(

i A(�ξ) + K
)

	= 0 matches exactly the symbol of the scalar Poisson

problem (see Eq. 46).
Let σmin(M) denote the smallest singular value of a matrix M . The following

theoremstates that solutions to (1) exist provided the ratio between F̂ andσmin(i A(�ξ)+
K )−1 is bounded in L2. This condition is similar to the condition (40) found when
studying the Poisson problem on Rd .

Theorem 2 Let m, d ∈ N∗.
Let A1, . . . , Ad , K be m × m real matrices and F ∈ (

L2(Rd)
)m

such that

F̂

σmin

(
i A(�ξ) + K

) ∈
(

L2(Rd)
)m

. (3)

Then the system (1) admits a unique solution in
(
L2(Rd)

)m
.

Proof Since

∥
∥
∥
∥

(
i A(�ξ) + K

)−1
F̂

∥
∥
∥
∥ ≤ ‖F̂‖

σmin

(
i A(�ξ)+K

) , (3) implies
(

i A(�ξ) + K
)−1

F̂ ∈
(
L2(Rd)

)m
. Hence Theorem 1 yields the existence of a unique solution to (1) in

(
L2(Rd)

)m
. ��
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714 M. Ndjinga, S. K. Ngwamou

The following corollary shows that Theorem 2 generalizes the well-known results
about Friedrichs’ systems (see [2, Section 5.2]) to the cases where K ≥ 0.

Corollary 1 (Case of Friedrichs’ systems) Assume Ak, k = 1, . . . , d and K are sym-
metric matrices, and that K > 0. Then for any F ∈ (

L2(Rd)
)m

, the system (1) admits
a unique solution U in

(
L2(Rd)

)m
.

Proof We prove that σmin(i A(�ξ) + K )−1 ∈ L∞(Rd) and then apply Theorem 2.
Since Ak, k = 1, . . . , d and K are symmetric matrices, they are diagonalizable

with real eigenvalues in an orthonormal basis of Rd and therefore

∀X ∈ Cm, t X̄ Ak X ∈ R, k = 1, . . . , d,

∀X ∈ Cm, t X̄ K X ∈ R,

from which we deduce

∀X ∈ Cm, �ξ ∈ Rd |t X̄(i A(�ξ) + K )X | = |i t X̄ A(�ξ)X + t X̄ K X)| ≥ λmin(K )||X ||2.

Since

∀X ∈ Cm, �ξ ∈ Rd |t X̄(i A(�ξ) + K )X | ≤ ‖X‖ ‖(i A(�ξ) + K )X‖,

we deduce

∀X ∈ Cm, �ξ ∈ Rd λmin(K )‖X‖2 ≤ ‖X‖ ‖(i A(�ξ) + K )X‖

and finally since K > 0 implies λmin(K ) > 0 we deduce

σmin(i A(�ξ) + K )−1 ≤ 1

λmin(K )
.

Hence σmin(i A(�ξ) + K )−1 ∈ L∞(Rd). As a consequence for any F ∈ (
L2(Rd)

)m
,

‖(i A(�ξ) + K )−1 F̂‖2 ≤ σmin(i A(�ξ) + K )−1‖F̂‖2 ∈ L2(Rd) and Theorem 1 yields
the existence of a unique solution U in

(
L2(Rd)

)m
to the system (1). ��

Corollary 1 cannot be used for first-order systems with K ≯ 0. An example is
given with the first order reduction of the Poisson equation in Sect. 4.1, where the
more general Theorem 1 is used instead of Corollary 1.

3 The case of a boundedÄ

In this section,� is assumed bounded with a Lipschitz boundary. As� 	= Rd , we can
no longermake straightforward use of the Fourier transform to obtain a linear algebraic
system. Also in this case of bounded �, boundary conditions are fundamental for
solutions’ existence and uniqueness.
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On the first order elliptic systems 715

Aparticular feature of bounded domains� is the existence of a Poincaré inequality,
which allows for the coercivity of bilinear forms arising from weak formulations. In
some simple cases such as the Poisson equation, Poincaré inequality enables the use of
the Lax-Milgram theorem to derive the existence of a unique weak solution. However,
in the case of first-order elliptic systems, existence and uniqueness are more tricky to
prove. The classical theory [1, 13–15] of Friedrichs’ systemsmakes some assumptions
such as K > 0 that enable the use of the Lax–Milgram theorem to derive existence
results (see for instance theorem 5.4 in [2]).

However, the assumption K > 0 is a serious obstacle to the analysis of linear
symmetric hyperbolic systems in stationary regimes since these do not necessarily
include a non-zero friction operator K (see for instance conservation laws in [7]).
Another interesting example is the reduction of the Poisson equation to a first-order
system with K ≯ 0 (see Sect. 4). Giving up the assumption K > 0 yields a loss of
coercivity and we can no longer use the Lax-Milgram theorem. Therefore, Theorem 5
and Corollary 2 use a complex analog of the more general Banach–Nečas–Babuška
theorem (Sect. 3.5) to obtain the existence and uniqueness of a solution in a setting
that encompasses both Friedrichs’ systems and the first order reduction of the Poisson
problem. The techniques used to prove the classical inf-sup conditions are inspired by
harmonic analysis arguments that are consistent with the case � = Rd .

Weconsider a first order system ofm ∈ N∗ partial differential equations on� ⊂ Rd

taking the form

d∑

k=1

Ak∂kU + KU = F on � (First order system), (4)

P∂�(�ξx )U (x) = 0 on ∂� (System Boundary conditions), (5)

where U ∈ (
L2(�)

)m
is the unknown and F ∈ (

L2(�)
)m

the source term. The
function P∂� is a symmetric projection matrix depending on �ξx , the outward normal
vector to ∂� at x ∈ ∂�.

3.1 Trace operator

The assumption that� is an open bounded domain with Lipschitz boundary ∂� allows
for the existence of a trace operator u → u|∂� for functions u ∈ H1(�). The trace
operator enables us to retrieve the boundary values of any u ∈ H1(�) (see comment 7
of chapter 9 in [16]) and to set boundary conditions.

Thanks to this operator, it is also possible to state the Green–Ostrogradski formula

for f ∈ H1(�, C), �g ∈ (
H1(�, C)

)d :

∫

�

(
�g · �∇ f + f ∇ · �g

)
dv =

∫

∂�

f �g · d�s. (6)
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716 M. Ndjinga, S. K. Ngwamou

3.2 Boundary conditions

Unlike scalar elliptic equations, we cannot impose a global boundary condition U =
Ub on ∂�. Instead we can impose a condition on some components of U on some
parts of ∂�, as for instance: u1 = 0 on ∂�1 ⊂ ∂�.

In order to be able to impose such conditions on the boundary we assume the
existence of a symmetric matrix-valued function P∂� : Rd → Mm(R) such that P∂�

is an orthogonal projector:

t P∂� = P∂�, P2
∂� = P∂�.

The boundary condition (5) can be equivalently formulated as U ∈ ker P∂� or
U ∈ Im(I − P∂�). We are thus led to seek a solution to (5) in the space

H1
P∂�

(�) =
{

U ∈
(

H1(�)
)m

, U|∂� ∈ Im(I − P∂�)
}

.

3.3 Weak formulation

We define the C-valued bilinear form a on H1
P∂�

(�, C) × (
L2(�, C)

)m
as

a : H1
P∂�

(�, C) ×
(

L2(�, C)
)m → C (7)

(U , V ) �→
∫

�

(
d∑

k=1

Ak∂kU + KU

)

·V̄ dx, (8)

U and V are taken C-valued because harmonic analysis tools will be required later in
our approach.

The weak formulation of problem (4), is to find U ∈ H1
P∂�

(�, C) such that

∀V ∈
(

H1(�, C)
)m

, a(U , V ) =
∫

�

F · V̄ dx . (9)

We will then prove that the solution U is indeed in H1
P∂�

(�, R) provided F is real
valued (see Remark 2 later).

3.4 The first order operatorWA,K

In the sequel, we study the first order operatorU �→ ∑d
k=1 Ak∂kU + KU by means of

Fourier analysis. Since � is bounded, L2(�) ⊂ L1(�) and we can use the expression
of the L1-Fourier transform on Rd to define Û by extending U by zero outside �. We
therefore define the Fourier transform F of a function U ∈ (

L2(�)
)m

as

F(U )(�ξ) = Û (�ξ) ≡ 1

(2π)
d
2

∫

�

U (x)e−i �x ·�ξdx . (10)
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On the first order elliptic systems 717

Similarly, the inverse Fourier transform is defined for V ∈ (
L2(Rd , C)

)m
as the limit

of the Fourier transform on L2 ∩ L1:

F−1(V )(�x) = V̂ (−�x) ≡ lim
n→∞

1

(2π)
d
2

∫

B(0,n)

V (�ξ)ei �x ·�ξd�ξ . (11)

We start by defining the following operator

WA,K :
(

H1(�)
)m →

(
L2(Rd), C

)m

U �→ F
(

d∑

k=1

Ak∂kU + KU

)

. (12)

In order to find another expression for WA,K , we can use the Green–Ostrogradski
formula (6) expressed as follows: for U ∈ (

H1(�, R)
)m

and v ∈ H1(�, R)

∫

�

(
F̃ · �∇v + v∇ · F̃

)
dx =

∫

∂�

vF̃ · d�s,

with the matrix F̃ = (A1U , . . . , AdU ). For a given �ξ ∈ Rd , we consider vξ (�x) =
e−i �x ·�ξ and obtain

WA,K (U )(�ξ) = 1

(2π)
d
2

∫

�

(
d∑

k=1

Ak∂kU + KU

)

e−i �x ·�ξdx

= 1

(2π)
d
2

∫

�

(

−
d∑

k=1

Ak∂kvξ (�x) + vξ (�x)K

)

Udx

+ 1

(2π)
d
2

∫

∂�

vξ (�x)A(�ξ�x )U (�x)ds

= 1

(2π)
d
2

∫

�

(
d∑

k=1

i Akξk + K

)

Ue−i �x ·�ξdx

+ 1

(2π)
d
2

∫

∂�

e−i �x ·�ξ A(�ξ�x )U (�x)ds

= (i A(�ξ) + K )Û (�ξ) + 1

(2π)
d
2

∫

∂�

e−i �x ·�ξ A(�ξ�x )U (�x)ds. (13)

As was the case with � = Rd , we see with Eq. (13) for a bounded set � ⊂ Rd that
the Fourier transform of

∑d
k=1 Ak∂kU + KU displays the symbol (i A(�ξ) + K )Û (�ξ)

of the operator
∑d

k=1 Ak∂kU + KU . However, unlike the case with � = Rd , we see
with Eq. (13) an extra contribution arising from the boundary of �.

We first give in Lemma 1 an extension of the Poincaré inequality to first-order
systems, that will allow us to derive the first complex BNB condition (Lemma 4).
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718 M. Ndjinga, S. K. Ngwamou

Lemma 1 (Generalised Poincaré inequality) Assume that WA,K is injective. Then

∃α > 0,∀U ∈
(

H1(�)
)m

, ‖WA,K (U )‖(L2(Rd ))
m ≥ α‖U‖(H1(�))

m .

Proof The result follows from the open mapping theorem applied to the operator
WA,K . Indeed

• WA,K is a linear operator (see Eq. 12)
• WA,K is a bounded operator since Parseval’s identity yields

‖WA,K (U )‖(L2(Rd ))m = ‖F−1(WA,K (U ))‖(L2(Rd ))m

=
∥
∥
∥
∥
∥

d∑

k=1

Ak∂kU + KU

∥
∥
∥
∥
∥

(L2(�))m

≤ sup {|||K |||, |||A1|||, . . . , |||Ad |||} ‖U‖(H1(�))m .

(14)

Therefore assuming thatWA,K is injective,W−1
A,K is surjective fromWA,K ((H1(�))m)

⊂ (L2(Rd , C))m to (H1(�))m . The open mapping theorem implies that W−1
A,K is a

continuous linear map, hence the result. ��
Remark 1 (Connection with Poincaré inequality) We called Lemma 1 “Generalised
Poincaré inequality” because using Parseval equality it yields

∀U ∈
(

H1(�)
)m

,

∫

�

∥
∥
∥
∥
∥

d∑

k=1

Ak∂kU + KU

∥
∥
∥
∥
∥

2

2

dx ≥ c
∫

�

‖U‖22dx .

We recover Poincaré inequality if m = d, K = 0, Ak = �ek ⊗ �ek where �ek, k =
1, . . . , d are the vectors forming the canonical basis of Rd .

Note that the boundary conditions required for the classical Poincaré inequality are
hidden behind the assumption that WA,K be injective

3.5 The complex BNB theorem

Considering two Banach spaces V , W and a bilinear form a ∈ L(V × W ′, R), the
classical BNB conditions [2, Theorem 2.6]

inf
v∈V

sup
w∈W ′

a(v,w)

‖v‖V ‖w‖W ′
≥ α, (15)

∀w ∈ W ′, (∀v ∈ V , a(v,w) = 0) ⇒ w = 0, (16)

are deduced from the characterisation of bijective Banach operators (see [2, Theo-
rem A.43]):
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On the first order elliptic systems 719

Theorem 3 (Characterisation of bijective operators) Let V , W be two Banach spaces
and A ∈ L(V ; W ) a continuous linear operator.

A is bijective if and only if

1. AT : W ′ → V ′ is injective and
2. there exists α > 0 such that

∀v ∈ V , ‖Av‖W ≥ α‖v‖V . (17)

Then the classical BNB conditions are obtained under the assumption that W is
reflexive and that A ∈ L(V ; W ) is associated with a real-valued bilinear form a ∈
L(V × W ′, R) such that < Av,w >W ,W ′= a(v,w) (see [2, Corollary A.46]).

The first BNB condition (15) is therefore a direct consequence of the condition (17)
in the real case where a ∈ L(V × W ′, R).

In the complex case, we must assume instead that A ∈ L(V ; W ) is associated with
a complex-valued bilinear form a ∈ L(V × W 	, C) such that < Av,w >W ,W 	=
a(v,w), where W 	 is the space of complex-valued linear applications on W .

The analog of [2, Corollary A.46] in the complex case now follows.

Theorem 4 (The complex BNB conditions) We assume that W is reflexive and that
A ∈ L(V ; W ) is associated with a bilinear form a ∈ L(V × W 	, C) such that
〈Av,w〉W ,W 	 = a(v,w).

The following statements are equivalent:
1. For all f ∈ W , there is a unique u ∈ V such that a(u, w) = 〈 f , w〉W ,W 	 for all

w ∈ W 	.

2. There is α > 0 such that

inf
v∈V

sup
w∈W 	

| a(v,w) |
‖v‖V ‖w‖W 	

≥ α, (18)

∀w ∈ W 	, (∀v ∈ V , a(v,w) = 0) ⇒ w = 0. (19)

The proof of Theorem 4 will require the following lemma.

Lemma 2 Let V be a normed vector space.

∀v ∈ V , ‖v‖V = sup
l∈V 	,‖l‖V 	=1

|〈v, l〉|V ,V 	 = sup
l∈V 	

|〈v, l〉|V ,V 	

‖l‖V 	

. (20)

Lemma 2 is a complex analog of [2, Corollary A.17], which is a consequence of
the Hahn-Banach theorem. Lemma 2 therefore relies on a complex version of the
Hahn-Banach theorem that can be found in [17, Theorem 3.3]. A proof of Lemma 2
can indeed be found in the corollary following [17, Theorem 3.3].

Proof of Theorem 4 The first statement means that A is bijective, which thanks to The-
orem 3 is equivalent to the two conditions
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720 M. Ndjinga, S. K. Ngwamou

1.

∀w ∈ W 	, (∀v ∈ V , a(v,w) = 0) ⇒ w = 0, (21)

which is identical to (19).
2.

∃α > 0,∀v ∈ V , ‖Av‖W ≥ α‖v‖V , (22)

which is equivalent thanks to Lemma 2 to

∃α > 0,∀v ∈ V , sup
w∈W 	

|〈Av,w〉|W ,W 	

‖w‖W 	

≥ α‖v‖V . (23)

Taking the infimum over v in (23) yields the equivalence with (18).

��

3.6 Themain result

In the classical study of first-order Friedrichs systems, the assumption K > 0 yields
the coercivity and the Lax–Milgram theorem [2, lemma 2.2] yields well-posedness
(see assumption F2 in [2, theorem 5.7]). Unfortunately, when K ≯ 0 we do not
have coercivity. We can prove the well-posedness thanks to a complex analog of the
BNB theorem (Theorem 4 in Sect. 3.5), which has weaker assumptions than the Lax–
Milgram theorem.

In order to use the complex BNB theorem (Theorem 4 in Sect. 3.5) and obtain the
existence of a solution to the weak formulation (9), we need to prove the following
two conditions:

∃α > 0,∀U ∈ H1
P∂�

(�), sup
V ∈(L2(�,C))

m

| a(U , V ) |
‖V ‖(L2(�,C))

m
≥ α‖U‖(H1(�,C))

m , (24)

∀V ∈
(

L2(�, C)
)m

, (∀U ∈ H1
P∂�

(�), a(U , V ) = 0) ⇒ V = 0. (25)

Since we do not have the coercivity property a(U , U ) ≥ γ ‖U‖2H1
, we are going

to find an injective function W(U ) such that a(U ,W(U )) ≥ γ ‖U‖2H1
. The operator

W(U ) = F−1(WA,K (U )) = ∑d
k=1 Ak∂kU + KU with WA,K (U ) defined in (13) is

our candidate. The following lemma connects the bilinear form a toW, and will play
an important role in proving the first BNB condition (24).

Lemma 3 (Connecting a and W). For any U ∈ H1
P∂�

(�), we define

W(U ) = F−1(WA,K (U )) =
d∑

k=1

Ak∂kU + KU .
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On the first order elliptic systems 721

Then W(U ) ∈ (
L2(�, C)

)m
and we have

a(U ,W(U )) = ‖WA,K (U )‖2L2(�,C)
. (26)

Proof W(U ) ∈ (
L2(�, C)

)m
is a consequence of U ∈ (

H1(�, C)
)m

.

From the definition of a (Eq. 8) we have

a(U ,W(U )) =
∫

�

(
d∑

k=1

Ak∂kU + KU

)

·
(

d∑

k=1

Ak∂kU + KU

)

dx

=
∫

�

∥
∥
∥
∥
∥

d∑

k=1

Ak∂kU + KU

∥
∥
∥
∥
∥

2

dx

and the result follows from Parseval’s identity:

a(U ,W(U )) =
∫

Rd
‖F−1(WA,K (U ))(�ξ)‖2d�ξ . (27)

��
Thanks to Lemmas 1 and 3 we have the following lemma on the first complex BNB

condition.

Lemma 4 (First complex BNB condition)Assume thatWA,K is injective on H1
P∂�

(�).

Then the first complex BNB condition (24) is true:

∃α > 0, ∀U ∈ H1
P∂�

(�), sup
V ∈(L2(�,C))

m

| a(U , V ) |
‖V ‖(L2(�,C))

m
≥ α‖U‖(H1(�,C))

m .

Proof Starting from

∀U ∈ H1
P∂�

(�), sup
V ∈(L2(�,C))

m

| a(U , V ) |
‖V ‖(L2(�,C))

m
≥ a(U ,W(U ))

‖W(U )‖(L2(�,C))
m

,

Lemma 3 and the Parseval’s identity yield

∀U ∈ H1
P∂�

(�), sup
V ∈(L2(�,C))

m

| a(U , V ) |
‖V ‖(L2(�,C))

m
≥

‖WA,K ‖2
L2(�,C)

‖WA,K ‖L2(�,C)

≥ ‖WA,K ‖L2(�,C).

Now the Generalised Poincaré identity (Lemma 1) yields the result. ��
The following theorem proves that the invertibility of i A(�ξ)+ K yields the second

complex BNB condition (25).
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722 M. Ndjinga, S. K. Ngwamou

Lemma 5 (Second complex BNB condition) Assume that i A(�ξ) + K is invertible for
almost every �ξ . Then the second complex BNB condition (25) is true:

∀V ∈
(

L2(�, C)
)m

, (∀U ∈ H1
P∂�

(�), a(U , V ) = 0) ⇒ V = 0.

Proof Let V ∈ (
L2(�, C)

)m
such that

∀U ∈ H1
P∂�

(�), a(U , V ) = 0.

We define

WV (�ξ) = t
(
−i A(�ξ) + K

)
V̂ (�ξ).

Since ei �x ·�ξ WV (�ξ) /∈ H1
P∂�

, we cannot write “a(ei �x ·�ξ WV (�ξ), V ) = 0 = ‖WV ‖2” to

deduce V = 0. Hence we are first going to approximate ei �x ·�ξ WV (�ξ) with functions
in

(C∞
K (�)

)m ⊂ H1
P∂�

, (where C∞
K is the space of smooth functions with compact

support in �), and then pass to the limit.
C∞

K (�) is dense in H1(�) (see [16, Corollary 9.8]). For any �ξ ∈ Rm, let a

sequence �n ∈ (C∞
K (�)

)m
, n ∈ N such that �n(·, �ξ) → ei �x ·�ξ in H1

P∂�
. The function

�n(·, �ξ)WV (�ξ) is in H1
P∂�

so we can compute

a

(
1

(2π)
d
2

�n(·, �ξ)WV (�ξ), V

)

= 1

(2π)
d
2

∫

�

(
d∑

k=1

Ak∂k�n(·, �ξ)WV (�ξ) + K�n(·, �ξ)WV (�ξ)

)

·V̄ dx

= t WV (�ξ)
1

(2π)
d
2

∫

�

(
d∑

k=1

t Ak∂k�n(·, �ξ) + t K�n(·, �ξ)

)

V̄ dx .

Passing to the limit, since �n(·, �ξ) → ei �x ·�ξ in H1
P∂�

we obtain

lim
n→∞ a

(
1

(2π)
d
2

�n(·, �ξ)WV (�ξ), V

)

= t WV (�ξ)
1

(2π)
d
2

∫

�

(
d∑

k=1

t Ak∂kei �x ·�ξ + t K ei �x ·�ξ
)

V̄ dx

= t WV (�ξ)
(

i t A(�ξ) + t K
) 1

(2π)
d
2

∫

�

ei �x ·�ξ V̄ dx

= t WV (�ξ)
(

i t A(�ξ) + t K
) ¯̂V
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On the first order elliptic systems 723

= t WV (�ξ)t
(
−i A(�ξ) + K

) ¯̂V
= t WV (�ξ)W̄V (�ξ) = ||WV (�ξ)‖22.

Since a(U , V ) = 0, we deduce

t
(
−i A(�ξ) + K

)
V̂ = 0.

Hence if i A(�ξ) + K is invertible for almost every �ξ, so is t (−i A(�ξ) + K ) =
t (i A(�ξ) + K ), and we can deduce that V = 0 almost everywhere. ��

We can now prove our main result Theorem 5.

Theorem 5 (Well-posedness of first-order systems) Let d, m ∈ N∗.
Let Ak, k = 1, . . . d, P∂�, and K be m × m real matrices. Let � be a bounded

open Lipschitz subset of Rd . Assume that

• WA,K (Eqs. (12) and (13)) is injective on H1
P∂�

(�).

• i A(�ξ) + K is invertible for almost every �ξ .

Then there exists a unique solution U ∈ H1
P∂�

(�, C) to the variational problem (9)
and

∃γ,∀F ∈
(

H1(�, C)′
)m

, ‖U‖H1
P∂�

(�,C) ≤ γ ‖F‖(H1(�,C)′)m . (28)

Proof The theorem is a direct consequence of the complex BNB theorem (Theorem 4
in Sect. 3.5) with W = H1

P∂�
(�, C), V = (

H1(�, C)
)m

. The constant γ is the
inverse of the inf-sup constant from the first complex BNB condition. In our case, it
follows from the open mapping theorem (see Lemma 1). ��
Remark 2 (On the real character of the solutions) Theorems 5 and 7 give the existence
of a complex-valued function U ∈ (

H1(�, C)
)m

. Their proofs do not require real
matrices Ak, k = 1, . . . , d, P∂�, K nor a real vector F and could be extended to com-
plex coefficient matrices. However the assumption of real matrices Ak, k = 1, . . . , d,

P∂�, K and a real vector F implies U ∈ (
H1(�, R)

)m
since otherwise Ū would be

another distinct solution.

In the sequel, we investigate the connections between the matrices A, K and P∂� in
order to satisfy the first complexBNBcondition (24), and deduce thewell-posedness of
the system. For simplicity, we consider only symmetric systems. Since we can always
multiply Eq. (4) by sign(K ), we assume in the following corollaries that K ≥ 0.

Corollary 2 (Boundary compatibility condition, symmetric case) Let � be a bounded
set with a Lipschitz boundary, and Ak, k = 1, . . . , d, K , P∂� be symmetric matrices
with K ≥ 0.

Assume that

• i A(�ξ) + K is invertible for almost every �ξ ∈ Rd
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724 M. Ndjinga, S. K. Ngwamou

•

∀�ξ ∈ Rd ,
(
Im − P∂�(�ξ)

)
A(�ξ)

(
Im − P∂�(�ξ)

)
= 0 (29)

•

∀�ξ ∈ Rd , ker K ∩ ker P∂�(�ξ) = {0}. (30)

Then there exists a unique solution U ∈ H1
P∂�

(�, R) to the variational problem
(9) and

∃γ,∀F ∈
(

H1(�, R)′
)m

, ‖U‖H1
P∂�

(�,R) ≤ γ ‖F‖(H1(�,R)′)m . (31)

Proof Let U ∈ kerWA,K . We are going to prove that U = 0 and deduce that WA,K

is injective. From Eq. (13) we have

For a.e. �ξ ∈ Rd , (i A(�ξ) + K )Û (�ξ) = − 1

(2π)
d
2

∫

∂�

e−i �x ·�ξ A(�ξ�x )U (�x)ds. (32)

Hence taking the inner product with Û (�ξ) yields for a.e. �ξ ∈ Rd ,

t ¯̂U (�ξ)(i A(�ξ) + K )Û (�ξ) = − 1

(2π)
d
2

∫

∂�

e−i �x ·�ξ t ¯̂U (�ξ)A(�ξ�x )U (�x)ds. (33)

after integration with respect to �ξ on the ball B(0, n), n ∈ N, we obtain

∫

B(0,n)

t ¯̂U (�ξ)(i A(�ξ)+K )Û (�ξ)d�ξ =− 1

(2π)
d
2

∫

B(0,n)

∫

∂�

e−i �x ·�ξ t ¯̂U (�ξ)A(�ξ�x )U (�x)dsd�ξ,

and Fubini theorem yields

∫

B(0,n)

t ¯̂U (�ξ)(i A(�ξ) + K )Û (�ξ)d�ξ

= − 1

(2π)
d
2

∫

∂�

t
(∫

B(0,n)

e−i �x ·�ξ ¯̂U (�ξ)dx

)

A(�ξ�x )U (�x)ds.

Taking the limit n → ∞, since U ∈ H1(�) we find

∫

Rd

t ¯̂U (�ξ)(i A(�ξ) + K )Û (�ξ)d�ξ = − 1

(2π)
d
2

∫

∂�

t Ū (�x)A(�ξ�x )U (�x)ds.

We recall that we seekU in the space H1
P∂�

(�, R) and as such, the boundary condition
(5) is equivalent to U|∂� ∈ Im(I − P∂�) (P∂� is a projector). As a consequence, the
assumption (29) yields t Ū (�x)A(�ξ�x )U (�x) = 0 on ∂�.
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Hence
∫

Rd

t ¯̂U (�ξ)(i A(�ξ) + K )Û (�ξ)d�ξ = 0. (34)

Now since we assumed that A(�ξ) and K are symmetric matrices, t ¯̂U AÛ ∈ R and
t ¯̂U KÛ ∈ R. (34) thus implies

∫

Rd

t ¯̂U (�ξ)A(�ξ)Û (�ξ)d�ξ = 0, and
∫

Rd

t ¯̂U (�ξ)KÛ (�ξ)d�ξ = 0.

Hence since K ≥ 0 we have

for a.e. �ξ ∈ Rd , Û (�ξ) ∈ ker K ,

which in turn implies that the L2-Fourier transform of Û is in the kernel of K :

U (x) = lim
n→∞

1

(2π)
d
2

∫

B(0,n)

ei �x ·�ξ Û (�ξ)d�ξ ∈ ker K .

We recall that Û does not necessarily belong to L1, hence we cannot use the L1

formula for the Fourier transform. Instead, the L2 Fourier transform is obtained as a
limit using the density of L1 ∩ L2 in L2.

Now the boundary condition is U (x) ∈ ker P∂�(�ξx ) for x on the boundary so

∀x ∈ ∂�, U (x) ∈ ker P∂�(�ξx ) ∩ ker K .

Using the boundary assumption (30), U (x) is therefore 0 on the boundary. Hence the
right-hand side of Eq. (32) vanishes and

for a.e. �ξ ∈ Rd , i A(�ξ)Û (ξ) + KÛ (�ξ) = 0.

Now from the first assumption, i A(�ξ) + K is invertible and we conclude that U = 0.
HenceWA,K is injective and from Theorem 5 we deduce the existence of a unique

solution U ∈ H1
P∂�

(�, C).Now since the matrices Ak, k = 1, . . . , d, K , P∂� and the

vector F are real, Ū is also solution of (9). Uniqueness yields Ū = U and therefore
U is real valued. ��

4 The first order reduction of the Poisson equation

In this section, we illustrate the reduction of the second-order Poisson equation to
a first-order system. This first-order reduction yields a symmetric first-order system
with K ≥ 0 but K ≯ 0, and therefore classical results on Friedrichs systems do not
apply. We start with � = Rd in Sect. 4.1 and then on a bounded � endowed with a
boundary condition in Sect. 4.2.
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Let � be an open subset of Rd . The first-order reduction of the Poisson problem

− �u = f on �, (35)

amounts to defining �v = �∇u and solving the first-order symmetric system that takes
the form (1)

(
0 −∇·

−�∇ 0

)(
u
�v
)

+
(
0 0
0 Id

) (
u
�v
)

=
(

f
0

)

on �. (36)

We introduce the following symmetric matrices, unknown and right-hand side vectors

APoisson(�ξ) =
(
0 t �ξ
�ξ 0

)

, K Poisson =
(
0 0
0 Id

)

, (37)

U =
(

u
�∇u

)

, FPoisson(x) =
(

f (x)

0

)

. (38)

4.1 The caseÄ = Rd

In this case the solution is sought for in
(
L2(Rd)

)d+1
using Fourier transform. As

∂Rd = ∅, there is no need to impose boundary conditions. We cannot use Corollary 1
for the well-posedness of the system (36) since K ≯ 0. Theorem 1 should be used
instead.

Corollary 3 (Existence for first order Poisson system—� = Rd ) Let d ∈ N∗, f ∈
L2(Rd) such that

f̂

‖�ξ‖2 ∈ L2(Rd),
f̂

‖�ξ‖2
�ξ ∈

(
L2(Rd)

)d
. (39)

Let the matrices Apoisson(�ξ), K poisson and Fpoisson(�ξ) defined in (37). Then the system

(36) admits a unique solution (u, �v) ∈ (
L2(Rd)

)d+1
.

Proof Since
(

i APoisson(�ξ) + K Poisson

)−1
F̂Poisson(�ξ) = f̂ (�ξ)

‖�ξ‖2
(

1
−i �ξ

)

, according

toTheorem1, the assumptions (39) yield the existence of a unique solution in L2(Rd)×
(
L2(Rd)

)d
(actually H1(Rd) × (

L2(Rd)
)d

). ��
The assumption (39) on f in Corollary 3 is to be compared with assumption (40)

when the original second order problem is solved in L2.

Theorem 6 (Existence for the scalar Poisson equation) Let d ∈ N∗, f ∈ L2(Rd) such
that

f̂

‖�ξ‖2 ∈ L2(Rd). (40)
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Then there exists a unique u ∈ L2(Rd) such that −�u = f in the weak (distributional)
sense.

Theorem 3 has more stringent assumptions than Theorem 6. Indeed the first order

reduction require that v = �∇u ∈ (
L2(Rd)

)d
, hence the solution u given in Corollary 3

is actually in H1(Rd). The first order reduction is not able to represent very weak
solutions u /∈ H1(Rd). However, this should not be a serious issue since H1(Rd) is
the usual solution space in classical variational formulations.

4.2 The case of bounded domainÄ ⊂ Rd

We consider the Poisson equation (35) with the Dirichlet boundary condition

u = 0 on ∂�. (41)

The Dirichlet boundary condition u = 0 can be enforced on the first order system (36)
as P∂�U = 0 using a constant Dirichlet boundary operator defined as follows

P Dirichlet
∂� (�ξ) =

(
1 0
0 0

)

. (42)

The following theorem gives an existence result in H1
P∂�

for the first order reduction
of the Poisson equation (36–37) with the Dirichlet boundary condition (42). It is based
on the variational formulation (9) and the use of the complexBNB theorem (Theorem4
in Sect. 3.5) through Corollary 2.

Theorem 7 (Existence for the first order Poisson—� bounded) Let d, m ∈ N∗, let
APoisson, K Poisson be m × m real matrices defined in (37) and boundary operator
P Dirichlet

∂� defined in (42). Let � be a bounded open Lipschitz subset of Rd .

Then there exists a unique weak solution U ∈ H1
P Dirichlet

∂�

(�, R) to the variational

problem (9) and

∃γ,∀F ∈
(

H1(�, R)′
)m

, ‖U‖H1
P Dirichlet
∂�

(�,R) ≤ γ ‖F‖(H1(�,R)′)m . (43)

Proof Wecheck that the assumptions ofCorollary 2 are satisfied to deduce the theorem.
For the first condition, we need to prove that i APoisson(�ξ) + K Poisson is invertible.
We compute the determinant using the cofactor expansion along the second column:

det(i APoisson(�ξ) + K Poisson) = −iξ1

∣
∣
∣
∣
∣
∣
∣
∣
∣

iξ1 0 0 0
iξ2 1 0 0
... 0

. . . 0
iξd 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 iξ2 . . . iξd

iξ2 1 0 0
... 0

. . . 0
iξd 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

(44)

123



728 M. Ndjinga, S. K. Ngwamou

= −(iξ1)
2 +

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 iξ2 . . . iξd

iξ2 1 0 0
... 0

. . . 0
iξd 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (45)

By an induction argument we obtain

det(i A(�ξ) + K ) = −
d∑

i=1

(iξi )
2 = ‖�ξ‖22. (46)

Hence we obtain for a.e. �ξ ∈ Rd , det(i APoisson(�ξ) + K Poisson) 	= 0, thus the first
condition of Corollary 2 is met.

We now check the second condition (Eq. 29) using the definition of the Dirichlet
boundary operator (42)

∀�ξ ∈ Rd , (Im −P Dirichlet
∂� )APoisson(�ξ)(Im −P Dirichlet

∂� ) =
(
0 0
0 Id

)(
0 t �ξ
�ξ 0

) (
0 0
0 Id

)

=
(
0 0
�ξ 0

) (
0 0
0 Id

)

= 0. (47)

Hence the second compatibility condition in Corollary 2 is true.
We now check the third condition (Eq. 30): ∀�ξ ∈ Rd ,

ker K = span〈(1, 0)〉 (48)

ker P Dirichlet
∂� (�ξ) = (ker K )⊥ = span〈(1, 0)〉⊥, (49)

hence ker K ∩ker P Dirichlet
∂� (�ξ) = {0} and the third condition inCorollary 2 is satisfied.

��

5 Conclusion and perspectives

First-order systems with K ≯ 0 are of particular interest in many applications. We
studied the stationary first-order systems for� = Rd and� ⊂ Rd bounded using tools
derived from harmonic and functional analysis. In the case � = Rd , Fourier analysis
(Sect. 2) showed that the assumption K > 0 is not necessary but only sufficient for the
existence and uniqueness of solutions. On bounded domains (Sect. 3), we therefore,
looked for an alternative approach to the classical Friedrichs’ theory that assumes
K > 0. We used a complex analog of the more general Banach–Nečas–Babuška
theorem (Sect. 3.5) to obtain the existence and uniqueness of a solution in a setting
that encompasses both Friedrichs’ systems and the first order reduction of the Poisson
problem on � ⊂ Rd (Theorem 5). Indeed as shown in Sect. 4, the assumption K > 0
is violated by first-order reduction of the Poisson problem, where the kernel of K
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is not trivial. We however obtained an existence result (Theorem 7) thanks to our
new approach. This paper lays the ground for the numerical analysis of stationary
hyperbolic problems where we expect to use discrete analogs of our new approach to
design convergent numerical approximations.
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