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Abstract
In this paper, we study a class of nonlinear elliptic problems whose model is the
following

⎧
⎨

⎩

− div
(

b(u)|∇u|p−2∇u
)

= f
(
1 + 1

|u|γ
)

in �,

u = 0 on ∂�,

where � is a bounded open subset of RN (N ≥ 2), γ > 0, b is a positive continuous
function which blows up for a finite value of the unknown u. We will prove exis-
tence and uniqueness of a renormalized nonnegative solution in the case where the
nonnegative source f belongs to L1(�).
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1 Introduction

In this paper we are interested in the existence and uniqueness of a renormalized
solution for a classe of nonlinear elliptic equations of the type
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⎧
⎪⎪⎨

⎪⎪⎩

− div
(

a(x, u,∇u)
)

= f
(
1 + 1

uγ

)
in �,

u ≥ 0 in �,

u = 0 on ∂�.

(1.1)

Here� is a bounded open subset ofRN (N ≥ 2), γ > 0, f is a nonnegative function
which belongs to L1(�) and a(x, u,∇u) is a Carathéodory function which blows up at
a finite value of the unknown u. More precisley, let m > 0 and assume that there exists
a function b ∈ C0((−∞, m), (0,+∞)) which satisfies b(s) > 0, ∀s ∈ (−∞, m),

lim
s→m− b(s) = +∞ and such that a(x, s, ξ)ξ ≥ αb(s)|ξ |p for almost every x ∈ �, for

any s ∈ (−∞, m) and for any ξ ∈ R
N , with α > 0.

When the function b blows up at a finite value m > 0, b(s) ≥ α0 > 0 for any
s ∈ (−∞, m) and γ = 0, problems similar to (1.1) have been considered in the
literature under various assumptions and in different context on the equations, for
more details, we refer to [1, 2, 16, 19, 21, 22, 27, 33, 35]. In these papers, it is
natural to look for solutions to (1.1) that are less or equal than m depending on the

nature of the integral
∫ m

0
b(s) ds. Indeed, if

∫ m

0
b(s) ds = +∞, then the solutions

do not reach m almost everywhere in �, so that one can give a sense to the field
a(x, u,∇u)∇u at {u = m} which insures that u is a weak solution. Otherwise, if∫ m

0
b(s) ds < +∞, then the solutions may attain the value m almost everywhere in

� (i.e. meas({u = m}) > 0) and the energy term a(x, u,∇u)∇u is well defined at
{u = m} provided the hypothesis of the smallness on the Lebesgue norm of the data
f . In order to avoid this assumption on f , the framework of renormalized or entropy
solutions is then employed and allows us to get the existence result and then to give
a sense to the energy term a(x, u,∇u)∇u on the set {u < m} even if the datum f is
merely integrable.

Now if b ≡ 1, problem (1.1) has been studied by many authors in the past. In

the linear case and if f (x)
(
1 + 1

sγ

)
= g(x, s), we refer in particular to the classical

papers: [38] by Stuart, [12] by Crandall et al. and [24] by Lazer and McKenna. In [12,
38] the authors proved the existence and regularity results of classical nonnegative
solutions (i.e a C2(�) ∩ C0(�) solutions) if g(x, s) and the boundary ∂� are smooth
enough. In [3], existence and regularity of solutions has been studied by Boccardo and
Orsina when the datum f belongs to Lm(�), m ≥ 1. They have proved the existence
and regularity of solutions by discussing the cases γ > 1, γ = 1 and γ < 1. In
the nonlinear case, the authors in [10, 11, 31, 32, 36] proved the existence of weak
solutions when themain operator satisfies the Leray–Lions assumptions and the datum
f belongs to Lm(�), m ≥ 1 or belongs to the space of the Radon mesure. For a review
of more results about problems having singular lower order term, we refer to [5–11,
13, 15, 17, 20, 28, 31, 34, 39] and the references therein.

In the present paper, motivated by the works [1, 18, 23], we focus on the existence
and uniqueness of a renormalized solution of problem (1.1). Here, in the left hand side
of (1.1), we asume that the main operator has a singularity at u = m, the tem in right
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hand side is singular at u = 0 and f nonnegative and belongs to L1. So, to give a
sense to our problem, we have to manage both the sets {u = m} and {u = 0}. For this
purpose, we will use the framework of renormalized solutions introduced in [14, 29,
30] for L1 or measure data in order to handle the singularity of the coefficient b near
m. In the spirit of [1], we give a definition of renormalized solutions by considering
the formulation of the problem (1.1) in {u < m} and to precise carfully the behavior of
the energy term near to set {u = m}. On the other hand, to deal with the singular term
in the right hand of (1.1), it is not convenient, since the principal operator is singular
at {u = m} and does not satisfy any growth assumption with respect to u to apply the
strong maximum principle. To bypass this difficulty, we will use suitable test function
as in [15, 18, 23] to handle the set where the solution is near to zero.
As far as the uniqueness of a renormalized solution for (1.1) is concerned, in [18] the
authors proved the uniqueness of an entropy solution to (1.1) in the case where the
principle operator degenerates at infinity by using an additional assumption on the
Carathéodory function a and the fact the singular term is nonincreasing. In this work,
we show that the singular term in the right hand side of (1.1) will help us to extend
and improve the uniqueness result proved in [1]. Indeed, in [1] it was given a partial
uniqueness result by assuming that {u1 = m} = {u2 = m}, where u1 and u2 are two
nonnegative renormalized solutions. Our aim is then to establish the uniqueness result
by avoiding the use of this assumption.
The paper is organized as follows. In Sect. 2 we precise the assumptions on the data
and we state the definition of solutions and the main results. In Sect. 3 we prove our
existence result by means of an approximation procedure. Section 4 is devoted to the
study the case of strong singularity γ > 1. In Sect. 5 we will establish the uniqueness
result for the renormalized solution of problem (1.1).

2 Assumptions on the data and statements of main results

Let us specify the assumptions of the problem (1.1) that we will study. Let � be
a bounded open subset of RN (N ≥ 2), γ > 0. Let 1 < p < N , m > 0 and
a(x, s, ξ) : � × (−∞, m) × R

N → R
N be a Carathéodory function such that

a(x, s, ξ) = b(s)a(x, s, ξ) a.e. x ∈ �, ∀s ∈ (−∞, m), ∀ξ ∈ R
N ,

where b is a continuous function of C0((−∞, m),R+) satisfying

b(s) > 0, ∀s ∈ (−∞, m), lim
s→m− b(s) = +∞, and

∫ m

0
b

1
p−1 (s) ds < +∞.

(2.1)

The Carathéodory function a(x, s, ξ) : � × R × R
N → R

N satisfies the following
assumptions

a(x, s, ξ).ξ ≥ α|ξ |p a.e. x ∈ �, ∀s ∈ R, ∀ξ ∈ R
N , with α > 0. (2.2)

a(x, s, tξ) = t p−1a(x, s, ξ), a.e. x ∈ �, ∀s ∈ R, ∀ξ ∈ R
N , ∀t ≥ 0. (2.3)
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For any k > 0, there exist a constant Ck > 0 and a positive function L ∈ L p′
(�) with

p′ = p
p−1 such that

|a(x, s, ξ)| ≤ Ck(L(x) + |ξ |p−1) a.e. x ∈ �, ∀s ∈ (−k, k), ∀ξ ∈ R
N , (2.4)

[a(x, s, ξ) − a(x, s, ξ ′)][ξ − ξ ′] > 0, a.e. x ∈ �, ∀s ∈ R, ∀ξ, ξ ′ ∈ R
N , ξ �= ξ ′.

(2.5)

The nonnegative function f is measurable such that

f ∈ L1(�). (2.6)

Throughout the paper, we will make use of the following functions: for every k, l > 0
and r ∈ R, the functions Tk , T k

l and Sk are defined by

Tk(r) =
{

r if |r | ≤ k,

k r
|r | if |r | > k,

T k
l (r) =

⎧
⎨

⎩

−k if r ≤ −k,

r if − k ≤ r ≤ l,
l if r ≥ l,

and

Sk(r) =
⎧
⎨

⎩

1 if |r | ≤ k,
2k−|r |

k if k ≤ |r | ≤ 2k,

0 if |r | > 2k.

For j ≥ 1 fixed, we define the functions

h j (r) =

⎧
⎪⎨

⎪⎩

1 if r ≤ m − 2
j ,

j(m − 1
j − r) if m − 2

j ≤ r ≤ m − 1
j ,

0 if r ≥ m − 1
j .

For the sake of simplicity, we will use when referring to the integrals the following
notation

∫

�

f =
∫

�

f (x) dx .

Finally, throughout this paper, the symbol ω(n, σ, j) will denote any quantity that
vanishes as the argument goes to its natural limit (that is n → +∞, σ → 0 and
j → +∞ ).
Now we specify the definition of renormalized solutions for problem (1.1) which

can be seen as an adaptation of the one introduced in [1] (see also [19]).
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Definition 2.1 (The case γ ≤ 1) A positive function u in W 1,1
0 (�) is a renormalized

solution of problem (1.1) if

Tk(u) ∈ W 1,p
0 (�), for every k > 0, (2.7)

0 ≤ u ≤ m, a.e. in �, (2.8)

a(x, u,∇u)χ{0≤u<m} ∈ (L p′
(�))N . (2.9)

For any functionϕ ∈ W 1,p(�)∩L∞(�), such that∇ϕ = 0 a.e. on {x ∈ �, u(x) = m}
one has

lim
σ→0

1

σ

∫

{m−2σ≤u≤m−σ }
a(x, u,∇u)∇uϕ =

∫

{u=m}
f
(
1 + 1

uγ

)
ϕ, (2.10)

and if, for every function S ∈ W 1,∞(R) such that the support of S is compact and
S(m) = 0, the solution u satisfies

f

uγ
S(u)ϕ ∈ L1(�), (2.11)

∫

�

S(u) a(x, u,∇u)χ{u<m}∇ϕ +
∫

�

S′(u) a(x, u,∇u)∇uχ{u<m}ϕ

=
∫

�

f
(
1 + 1

uγ

)
S(u)ϕ, (2.12)

for every ϕ ∈ W 1,p
0 (�) ∩ L∞(�).

Remark 2.2 Due to (2.7) and (2.8), we deduce that u belongs to W 1,p
0 (�). Indeed,

Indeed, let ε > 0, by (2.7) with k = m + ε, one has Tm+ε(u) ∈ W 1,p
0 (�), so using

(2.8) and since we can write

∫

�

|∇u|p =
∫

{0<u≤m}
|∇u|p +

∫

{m<u m+ε}
|∇u|p,

from where we deduce that u ∈ W 1,p
0 (�).

We want also to point out that since we deal with nonnegative solutions, only the
behavior near the set {u = m} appears in the above definition. Finally, it is easy to see,
according to the conditions (2.7), (2.9), (2.11) and the assumptions (2.1)–(2.6), that
each term in the formulation (2.12) is well defined.

Now we state the first main result of this paper.

Theorem 2.3 Assume that (2.1)–(2.6) hold true. If γ ≤ 1, then, there exists at least a
renormalized solution u of problem (1.1).

The second main result deals with the uniqueness of a renormalized solution of prob-
lem (1.1) under additional assumption on the Carathéodory function a. We have the
following result
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Theorem 2.4 Assume that (2.1)–(2.6) hold true. Moreover, assume that for every k >

0, there exist γk ≥ 0 and Ek in L p′
(�) such that

∣
∣
∣a(x, s, ξ) − a(x, s′, ξ)

∣
∣
∣ ≤ |s − s′|

[
Ek(x) + γk |ξ |p−1

]
, (2.13)

for almost every x ∈ �, for every s and s′ such that |s| ≤ k and |s′| ≤ k, and for every
ξ ∈ R

N . If γ ≤ 1, then, there exists a unique renormalized solution u to problem
(1.1).

3 A priori estimates and existence result

In order to prove our existence result, we need to consider the following approximate
problem of (1.1).

⎧
⎪⎨

⎪⎩

− div
(

an(x, un,∇un)
)

= fn

(
1 + 1

(|un| + 1
n )γ

)
in �,

un = 0 on ∂�,

(3.1)

where for any n ∈ N
∗, for almost every x ∈ �, for every s ∈ R and for every ∀ξ ∈ R

N ,
we have set an(x, s, ξ) = a(x, T n

m− 1
n
(s), ξ), bn(s) = b(T n

m− 1
n
(s)), and fn = Tn( f ).

By the classical results in [25, 26] and bymeans of the Schauder’s fixed theorem, there
exists at least a weak solution un ∈ W 1,p

0 (�) of problem (3.1) such that

∫

�

an(x, un,∇un)∇v =
∫

�

fn

(
1 + 1

(|un| + 1
n )γ

)
v, ∀v ∈ W 1,p

0 (�) ∩ L∞(�).

(3.2)

Moreover, as the right hand side belongs to L∞(�), thanks to [37], we deduce that un

belongs to L∞(�).
Now if we take v = u−

n in (3.2), where s− = min(s, 0), the assumption (2.1) and the
positivity of the right hand side of (3.1) lead to

inf{−n≤s≤0} b(s)
∫

�

|∇u−
n |p ≤

∫

�

an(x, un,∇un)∇u−
n

≤
∫

�

fn

(
1 + 1

(|un| + 1
n )γ

)
u−

n ≤ 0,

from where we deduce that u−
n = 0, so that un ≥ 0.

In order to achieve our existence results stated in Theorem 2.3, the proof needs to be
split into 5 steps.
� Step 1. We give some a priori estimates and pointwise convergence results related
to the approximate solutions un . To this end, let ε > 0, with ε < 1

n and taking
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(Tk(un) + ε)γ − εγ as a test function in (3.1), by (2.1), we obtain

γ

∫

�

bn(un)
|∇Tk(un)|p

(Tk(un) + ε)1−γ
≤ ‖ f ‖L1(�)(k + ε)γ +

∫

�

fn
(Tk(un) + ε)γ

(un + 1
n )γ

≤ ‖ f ‖L1(�)(k + ε)γ + ‖ f ‖L1(�). (3.3)

On the other hand, using the continuity of the function b and the definition of T n
m− 1

n
,

one gets

∫

�

bn(un)
|∇Tk(un)|p

(Tk(un) + ε)1−γ
≥ inf

{0≤s≤m− 1
n }

b(s)
∫

�

|∇Tk(un)|p

(Tk(un) + ε)1−γ
,

so, from (3.3) one obtains

∫

�

|∇Tk(un)|p ≤ C
(
(k + ε) + (k + ε)1−γ

)
. (3.4)

Thus, letting ε goes to zero in (3.4), it follows that

∫

�

|∇Tk(un)|p ≤ C(k + k1−γ ), (3.5)

whereC is a constant which does not depend on the index n of the sequence.Moreover,
by (3.5), we deduce from a classical argument (see, e.g. [29]) that, up to a subsequence
still indexed by n,

un → u a.e. in �. (3.6)

Tk(un)⇀Tk(u) weakly in W 1,p
0 (�), (3.7)

where u is a measurable function which is finite almost everywhere in �. Indeed,
using (3.5) and Poincaré inequality, we get

meas{un ≥ k} ≤ C
( 1

k p−1 + 1

k p−1+γ

)
,

then, letting k goes to infinity leads to

lim
k→+∞ sup

n
meas{un ≥ k} = 0.

Hence, by (3.6) and Fatou’s lemma, we deduce that u is finite almost everywhere in
�.
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Next, we use Tk(vn) as test function in (3.1), where vn =
∫ un

0
bn(s)

1
p−1 ds, by the

assumption (2.1), we obtain

∫

�

|∇Tk(vn)|p ≤ k‖ f ‖L1(�) +
∫

�

fn
Tk(vn)

(un + 1
n )γ

. (3.8)

As regards the second term in the right-hand side of (3.8), we have

∫

�

fn
Tk(vn)

(un + 1
n )γ

=
∫

{un≤m− 1
n }

fn
Tk(vn)

(un + 1
n )γ

+
∫

{un≥m− 1
n }

fn
Tk(vn)

(un + 1
n )γ

.

Thanks to Hôpital rule, it is easy to see, since γ ≤ 1 that
1

sγ

∫ s

0
b

1
p−1

n (r) dr is bounded

near to zero, then from (3.8), we deduce that

∫

�

|∇Tk(vn)|p ≤ C
(
1 + k

)
, (3.9)

where C is a constant independent of n. So, by virtue of the classical arguments, we
deduce that for a subsequence still indexed by n

vn → v =
∫ u

0
b(s)

1
p−1 ds a.e. in �. (3.10)

Tk(vn)⇀Tk(v) weakly in W 1,p
0 (�). (3.11)

In view of (3.9) and by means of Poincaré inequality, we get

meas{vn ≥ k} ≤ C
( 1

k p
+ 1

k p−1

)
,

then, letting k goes to infinity leads to

lim
k→+∞ sup

n
meas{vn ≥ k} = 0,

so, by using (3.10) and Fatou’s lemma, it follows that v is almost everywhere finite.

In the following, we are going to prove that
fn

(un + 1
n )γ

is bounded in L1
loc(�) inde-

pendently of n. Let 0 ≤ ϕ ∈ W 1,p
0 (�)∩ L∞(�) and for some k < m

2 we take Sk(un)ϕ

as test function in (3.1), by dropping the positive terms, we obtain

∫

�

fn

(un + 1
n )γ

χ{un≤k}ϕ ≤
∫

�

Sk(un)an(x, un,∇un)∇ϕ,
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then by (3.5) and the assumptions (2.4), it yields that

∫

�

fn

(un + 1
n )γ

χ{un≤k}ϕ ≤
∫

�

|a(x, T2k(un),∇T2k(un))||∇ϕ| ≤ Ck, (3.12)

where Ck is a constant which depends on k and not on the index n of the sequence.
Then, by choosing for example k = m

3 and observing that

∫

�

fn

(un + 1
n )γ

ϕ =
∫

�

fn

(un + 1
n )γ

ϕχ{un≤ m
3 } +

∫

�

fn

(un + 1
n )γ

ϕχ{un> m
3 },

using (3.12), it follows that

∫

�

fn

(un + 1
n )γ

ϕ ≤ C, (3.13)

for every 0 ≤ ϕ ∈ W 1,p
0 (�) ∩ L∞(�) and where the constant C is independent of n.

To verify that (2.8) of the Definition 2.1 holds, we will argue as in [1, 2]. Indeed, by
taking T2m(un)− Tm(un) as test function in (3.1) and in view of the approximation of
b, a and (2.2), we obtain

αb

(

m − 1

n

) ∫

�

|∇(T2m(un) − Tm(un))|p

≤
∫

{un>m}
fn

(
1 + 1

(un + 1
n )γ

)
(T2m(un) − Tm(un)),

since |T2m(s) − Tm(s)| ≤ m for every s ∈ R, we obtain

αb

(

m − 1

n

) ∫

�

|∇(T2m(un) − Tm(un))|p

≤
∫

{un>m}
f
(
1 + 1

mγ

)
m ≤ (m + m1−γ )‖ f ‖L1(�),

from where with the help of Poincaré inequality, we get

∫

�

|T2m(un) − Tm(un)|p ≤ C

b(m − 1
n )

‖ f ‖L1(�).

So, in view of (3.6), Fatou’s lemma together with the fact that b(m − 1

n
) goes to

infinity as n → +∞, we deduce that

T2m(u) − Tm(u) = 0 a.e. in �,

As a consequence, (2.8) of the Definition 2.1 holds.
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Now for j >

∫ m

0
b

1
p−1 (r) dr , we choose 1 − S j (vn) as test function in (3.1), which

gives

1

j

∫

{ j≤vn≤2 j}
b

1
p−1

n (un)an(x, un,∇un)∇un

≤
∫

{vn≥ j,un≤m− 1
n }

f
(
1 + 1

(un + 1
n )γ

)
(1 − S j (vn))

+
∫

{vn≥ j,un≥m− 1
n }

f
(
1 + 1

(un + 1
n )γ

)
(1 − S j (vn)), (3.14)

since j >

∫ m

0
b

1
p−1 (r) dr implies that the first term in the right hand side of (3.14) is

equal to zero, one has

1

j

∫

{ j≤vn≤2 j}
b

1
p−1

n (un)an(x, un,∇un)∇un ≤
(
1 + 1

mγ

) ∫

{vn≥ j}
f (3.15)

so, letting n tends to +∞ and then j tends to +∞ in (3.15), using (3.6) and the
equi-integrability of f , it follows that

1

j

∫

{ j≤vn≤2 j}
b

1
p−1

n (un)an(x, un,∇un)∇un = ω(n, j). (3.16)

� Step 2. We have now all the ingredients to show that the sequence Tk(vn) converges
to Tk(v) strongly in W 1,p

0 (�), for all k > 0. For any given j ≥ 1 and k > 0, we
choose S j (vn)(Tk(vn) − Tk(v)) as test function in (3.1), it results

∫

�

S j (vn)an(x, un,∇un)∇(Tk(vn) − Tk(v))

= 1

j

∫

{ j≤vn≤2 j}
an(x, un,∇un)∇vn(Tk(vn) − Tk(v))

+
∫

�

fn

(
1 + 1

(un + 1
n )γ

)
S j (vn)(Tk(vn) − Tk(v)). (3.17)

For the first term in the left hand side of (3.17), let us remark, that for j, k >∫ m

0
b

1
p−1 (r) dr , one has 0 ≤ vn ≤ j is equivalent to 0 ≤ un ≤ j and 0 ≤ vn ≤ k

is equivalent to 0 ≤ un ≤ k respectively. So, choosing j > k, n > k and by the
assumption (2.3), one can write

∫

�

S j (vn)an(x, un,∇un)∇(Tk(vn) − Tk(v))

=
∫

{0≤vn≤k}
S j (vn)an(x, un,∇un)∇(Tk(vn) − Tk(v))
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+
∫

{k≤vn≤2 j}
S j (vn)an(x, un,∇un)∇(Tk(vn) − Tk(v))

=
∫

�

(a(x, Tk(un),∇Tk(vn)) − a(x, Tk(un),∇Tk(v)))∇(Tk(vn) − Tk(v))

+
∫

{k≤vn≤2 j}
S j (vn)a(x, Tj (un),∇vn)∇(Tk(vn) − Tk(v))

+
∫

�

a(x, Tj (un),∇Tk(v))∇(Tk(vn) − Tk(v)).

Then, we can rewrite (3.17) as follows

∫

�

(a(x, Tk(un),∇Tk(vn)) − a(x, Tk(un),∇Tk(v)))∇(Tk(vn) − Tk(v))

= −
∫

{k≤vn≤2 j}
S j (vn)a(x, Tj (un),∇vn)∇(Tk(vn) − Tk(v))

−
∫

�

a(x, Tj (un),∇Tk(v))∇(Tk(vn) − Tk(v))

+1

j

∫

{ j≤vn≤2 j}
a(x, un,∇un)∇vn(Tk(vn) − Tk(v))

+
∫

�

fn S j (vn)(Tk(vn) − Tk(v)) +
∫

�

fn

(un + 1
n )γ

S j (vn)(Tk(vn) − Tk(v)).

(3.18)

Let us now analysis each terms on the right hand side of (3.18), for the first term, in
view of (3.9) and the assumption (2.4), one has a(x, Tj (un),∇Tj (vn)) is bounded in

(L p′
(�))N uniformly in n, and then

a(x, Tj (un),∇Tj (vn))⇀σ j weakly in (L p′
(�))N . (3.19)

So, by (3.11), letting n → +∞, it yields

∫

{k≤vn≤2 j}
S j (vn)a(x, Tj (un),∇vn)∇(Tk(vn) − Tk(v))

= −
∫

{k≤vn≤2 j}
S j (vn)a(x, Tj (un),∇vn)∇Tk(v)

= −
∫

{k≤v≤2 j}
S j (v)σ j∇Tk(v) + ω(n) = ω(n).

For the second term in the right hand side of (3.18), due to (2.4), (3.6), (3.11) and
Lebesgue’s convergence theorem, we obtain

a(x, Tj (un),∇Tk(v)) → a(x, Tj (u),∇Tk(v)) strongly in (L p′
(�))N ,
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and by (3.11), it results

∫

�

a(x, Tj (un),∇Tk(v))∇(Tk(vn) − Tk(v)) = ω(n).

As regards the third term, thanks to (3.16), it follows that

∣
∣
∣
1

j

∫

{ j≤vn≤2 j}
a(x, un,∇un)∇vn(Tk(vn) − Tk(v))

∣
∣
∣

≤ 2k

j

∫

{ j≤vn≤2 j}
bn(un)a(x, un,∇un)∇un = ω(n, j).

By Lebesgue’s convergence theorem, it is easy to check that

∫

�

fn S j (vn)(Tk(vn) − Tk(v)) = ω(n).

Now, let δ ∈ (0, m) such that δ /∈ {η > 0 : meas({u = η}) > 0}, we split the last term
in the right hand side of (3.18) on the sets {un ≤ δ} and {un > δ}, we have

∫

�

(a(x, Tk(un),∇Tk(vn) − a(x, Tk(un),∇Tk(v)))∇(Tk(vn) − Tk(v))

+
∫

{un≤δ}
fn

(un + 1
n )γ

S j (vn)Tk(v)

=
∫

{un≤δ}
fn

(un + 1
n )γ

S j (vn)Tk(vn)

+
∫

{un>δ}
fn

(un + 1
n )γ

S j (vn)(Tk(vn) − Tk(v)) + ω(n, j)

= (A) + (B) + ω(n, j). (3.20)

By dropping the second term in the left side of (3.20) since it is positive, we will focus
only on the terms (A) and (B). For the term (A), due to (3.6), letting n goes to infinity
and then δ goes to zero in χ{un≤δ}, it gives

χ{un≤δ} → χ{u≤δ} a.e. in �,

and

χ{u≤δ} → 1 a.e. in {u = 0}.

Using the boundedness of the term
1

sγ

∫ s

0
b

1
p−1

n (r) dr near to zero, (3.6) and (3.10) it

follows that
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∫

{un≤δ}
fn

(un + 1
n )γ

S j (vn)Tk(vn) =
∫

{u≤δ}
f

Tk(v)

uγ
S j (v) + ω(n)

=
∫

{u=0}
f

Tk(v)

uγ
+ ω(n, δ).

Note that if γ < 1 one has

∫

{u=0}
f

Tk(v)

uγ
= 0,

and so A = ω(n, δ).

If γ = 1, bymeans of (3.6) and Fatou’s Lemma in (3.13)we obtain that
f

uγ
∈ L1

loc(�),

so that {u = 0} ⊂ { f = 0} up to a set of zero Lebesgue measure, then, we deduce that
A = ω(n, δ).

As regards the term (B), by virtue of the Lebesgue’s convergence theorem, we obtain

∫

{un>δ}
fn

(un + 1
n )γ

S j (vn)(Tk(vn) − Tk(v))

=
∫

{u>δ}
f

uγ
S j (v)(Tk(v) − Tk(v)) + ω(n) = ω(n).

By collecting all the previous convergence results, we arrive at

∫

�

(a(x, Tk(un),∇Tk(vn) − a(x, Tk(un),∇Tk(v)))∇(Tk(vn) − Tk(v)) = ω(n, δ, j).

Hence, thanks to Lemma 5 in [4], we conclude that

Tk(vn) → Tk(v) strongly in W 1,p
0 (�). (3.21)

In particular, there exists a subsequence such that ∇vn converge to ∇v almost every-
where in �. On the other hand, in view of (2.1) and (3.6), one has

1

bn(un)
→ 1

b(u)
a.e. in �,

then, it results

∇un = 1

b
1

p−1
n (un)

∇vn → ∇u a.e. in �, (3.22)

which, in turn, implies that

∇v = b
1

p−1 (u)∇u a.e. in {0 ≤ u < m}.
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Since a is a Carathéodory function, one gets

an(x, un,∇un) → a(x, u,∇v) a.e. in �, (3.23)

σ j = a(x, Tj (u),∇Tj (v)) a.e. in �. (3.24)

Moreover, for � < m, using (3.22) and (2.4), it follows that

a(x, T�(un),∇T�(un))⇀a(x, T�(u),∇T�(u)) weakly in (L p′
(�))N .

On the other hand, by (2.8), we can write

a(x, T�(u),∇T�(u)) = a(x, T�(u),∇T�(u))χ{0≤u<�} + a(x, T�(u),∇T�(u))χ{�≤u≤m},

so, using assumption (2.3), we obtain

a(x, T�(u),∇T�(u))χ{�≤u≤m} = a(x, �, 0) = 0.

Hence,

a(x, T�(u),∇T�(u)) = a(x, u,∇u)χ{0≤u<�} ∈ (L p′
(�))N ,

for every � < m. Since � < m is arbitrary, this allows us to deduce, by letting � → m−
that a(x, u,∇u)χ{0≤u<m} belongs to (L p′

(�))N , so that (2.9) of Definition 2.1 holds.
Moreover, using (2.2) and Hölder inequality, we obtain

∫

�

|∇v|p =
∫

�

b
p

p−1 (u)|∇u|pχ{0≤u<m} ≤ 1

α

∫

�

a(x, u,∇u)χ{0≤u<m}∇v

≤ 1

α

( ∫

�

|a(x, u,∇u)|p′
χ{0≤u<m}

) 1
p′ (

∫

�

|∇TM (v)|p
) 1

p
,

where M =
∫ m

0
b

1
p−1 (s) ds. This means that v belongs to W 1,p

0 (�).

� Step 3. Wewill prove that (2.10) of Definition 2.1 holds. Let ϕ ∈ W 1,p(�)∩ L∞(�)

such that ∇ϕ = 0 almost everywhere in {x ∈ �, u(x) = m} with ϕ ≥ 0. Let us take
1

σ
(Tm−σ (un) − Tm−2σ (un))S j (vn)ϕ as test function in (3.1) which gives

∫

�

S j (vn)an(x, un,∇un)∇ϕ
1

σ
(Tm−σ (un) − Tm−2σ (un))

+
∫

�

S′
j (vn)an(x, un,∇un)∇vnϕ

1

σ
(Tm−σ (un) − Tm−2σ (un))

+ 1

σ

∫

{m−2σ≤un≤m−σ }
S j (vn)an(x, un,∇un)∇unϕ

=
∫

�

fn

(
1 + 1

(un + 1
n )γ

) 1

σ
(Tm−σ (un) − Tm−2σ (un))ϕS j (vn). (3.25)
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To study each term of (3.25). Let j >

∫ m

0
b

1
p−1 (r) dr , so that 0 ≤ vn ≤ j implies that

0 ≤ un ≤ j . Then, by taking n > j and in view of (3.6), (3.10), (3.19) and (3.24), we
obtain

∫

�

S j (vn)an(x, un,∇un)∇ϕ
1

σ
(Tm−σ (un) − Tm−2σ (un))

=
∫

�

S j (vn)a(x, Tj (un),∇T2 j (vn))∇ϕ
1

σ
(Tm−σ (un) − Tm−2σ (un))

=
∫

�

S j (v)a(x, Tj (u),∇T2 j (v))∇ϕ
1

σ
(Tm−σ (u) − Tm−2σ (u)) + ω(n)

=
∫

{u=m}
S j (v)a(x, Tj (u),∇T2 j (v))∇ϕ + ω(n, σ ) = ω(n, σ ).

Due to, (3.6), (3.10), (3.21), (3.24) and the assumptions on b, it yields that

1

σ

∫

{m−2σ≤un≤m−σ }
S j (vn)

1

b
1

p−1
n (un)

a(x, Tj (un),∇T2 j (vn))∇T2 j (vn)ϕ

= 1

σ

∫

{m−2σ≤u≤m−σ }
a(x, u,∇u)∇uϕ + ω(n, j).

By (3.16), it is easy to check that

∣
∣
∣

∫

�

S′
j (vn)an(x, un,∇vn)∇vnϕ

1

σ
(Tm−σ (un) − Tm−2σ (un))

∣
∣
∣

≤ ‖ϕ‖L∞(�)

1

j

∫

{ j≤vn≤2 j}
an(x, un,∇un)∇vn = ω(n, j).

For the last term,with the help of (3.6), (3.10) and theLebesgue’s convergence theorem,
we obtain

∫

�

fn

(
1 + 1

(un + 1
n )γ

) 1

σ
(Tm−σ (un) − Tm−2σ (un))ϕS j (vn)

=
∫

{un≥m−σ }
fn

(
1 + 1

(un + 1
n )γ

) 1

σ
(Tm−σ (un) − Tm−2σ (un))ϕS j (vn)

=
∫

{u≥m−σ }
fn

(
1 + 1

uγ

) 1

σ
(Tm−σ (u) − Tm−2σ (u))ϕS j (v) + ω(n)

=
∫

{u=m}
f
(
1 + 1

uγ

)
ϕ + ω(n, σ ).

Where we have used the fact that
1

σ
(Tm−σ (u) − Tm−2σ (u)) → χ{u=m}. Therefore,

we deduce that (2.10) holds true for every ϕ ∈ W 1,p(�) ∩ L∞(�) such that ∇ϕ = 0
almost everywhere on {x ∈ �, u(x) = m} with ϕ ≥ 0.
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� Step 4. Now we will show that

lim
n→+∞

∫

�

fn

(un + 1
n )γ

ϕ =
∫

�

f

uγ
ϕ,

for every ϕ ∈ W 1,p
0 (�) ∩ L∞(�), ϕ ≥ 0. Having in mind (3.13) and using Fatou’s

Lemma, we deduce that
f

uγ
ϕ belongs to L1(�), for every ϕ ∈ W 1,p

0 (�) ∩ L∞(�),

ϕ ≥ 0.
Nowas inStep2,Let δ < m

2 < n such that δ /∈ {η > 0 : meas({u = η}) > 0}which
is at most countable, we split the term

∫

�

fn

(un + 1
n )γ

ϕ (0 ≤ ϕ ∈ W 1,p
0 (�) ∩ L∞(�))

as follows

∫

�

fn

(un + 1
n )γ

ϕ =
∫

{un>δ}
fn

(un + 1
n )γ

ϕ +
∫

{un≤δ}
fn

(un + 1
n )γ

ϕ. (3.26)

We want to pass to the limit as n tends to infinity and δ goes to zero in (3.26). For the
first term in the right hand side of (3.26), since we can check that

fn

(un + 1
n )γ

ϕχ{un>δ} ≤ 1

δγ
f ϕ ∈ L1(�),

one can apply Lebesgue convergence theorem to obtain (as n → ∞)

lim
n→+∞

∫

{un>δ}
fn

(un + 1
n )γ

ϕ =
∫

{u>δ}
f

uγ
ϕ.

Moreover, since
f

uγ
belongs to L1(�), we pass to the limit as δ goes to zero to deduce

that

lim
δ→0

lim
n→+∞

∫

{un>δ}
fn

(un + 1
n )γ

ϕ =
∫

{u>0}
f

uγ
ϕ.

On the other hand, since
f

uγ
ϕ ∈ L1(�) implies that {u = 0} ⊂ { f = 0} up to a set of

zero Lebesgue measure, we deduce that

∫

{u>0}
f

uγ
ϕ =

∫

�

f

uγ
ϕ.

Next, we deal with the second term in the right hand side of (3.26) as n tends to infinity
and δ goes to zero. We choose Sδ(un)ϕ as test function in (3.1), dropping the positive
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terms we have
∫

�

fn

(un + 1
n )γ

Sδ(un)ϕ ≤
∫

�

Sδ(un)an(x, un,∇un)∇ϕ

≤
∫

�

Sδ(un)a(x, T2δ(un),∇T2δ(un))∇ϕ. (3.27)

Since Sδ(un)b(T2δ(un)) converges to Sδ(u)b(T2δ(u)) *-weakly in L∞(�) as n →
+∞, using (3.19) and (3.24), we obtain

∫

�

Sδ(un)a(x, T2δ(un),∇T2δ(un))∇ϕ =
∫

�

Sδ(u)a(x, u,∇u)∇ϕ + ω(n).

Then, letting n tends to infinity in (3.27), we obtain

lim sup
n→+∞

∫

�

fn

(un + 1
n )γ

Sδ(un)ϕ ≤
∫

�

Sδ(u)a(x, u,∇u)∇ϕ,

Moreover, since δ is chosen smaller enough, for � ∈ (2δ, m), one has

|Sδ(u)a(x, u,∇u)| ≤ |a(x, T�(u),∇T�(u))| ∈ L p′
(�),

so, by means of Lebesgue’s convergence theorem, letting δ goes to zero and since
∇u = 0 almost everywhere in {u = 0} ( thanks to Stampacchia’s result because u
belongs to W 1,p

0 (�)) and since a(x, s, 0) = 0 a.e. x ∈ �, for every s ∈ R), we
obtain

lim
δ→0

lim sup
n→+∞

∫

{un≤δ}

( fn

(un + 1
n )γ

)
ϕ ≤

∫

{u=0}
a(x, u,∇u)∇ϕ = 0.

Hence, we conclude that

lim
n→+∞

∫

�

fn

(un + 1
n )γ

ϕ =
∫

�

f

uγ
ϕ, (3.28)

for every ϕ ∈ W 1,p
0 (�) ∩ L∞(�) with ϕ ≥ 0. In particular, u satisfies (2.11) of

Definition 2.1.
� Step 5. End of the proof. In this step, we are in position to show that u satisfies (2.12)
of the Definition 2.1. Let ϕ ∈ W 1,p

0 (�) ∩ L∞(�) with ϕ ≥ 0 and let S ∈ W 1,∞(R)

such that the support of S is compact with S(m) = 0. By choosing S j (vn)S(un)ϕ as
test function in (3.1), it results

∫

�

S j (vn) an(x, un,∇un)∇(S(un)ϕ) =
∫

�

fn S j (vn)S(un)ϕ

+
∫

�

fn

(un + 1
n )γ

S j (vn)S(un)ϕ (3.29)
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Now we pass to the limit in each term of (3.29) as n goes to infinity and then as j

tends to infinity. Since for j >

∫ m

0
b

1
p−1 (r) dr , 0 ≤ vn ≤ j implies that 0 ≤ un ≤ j .

For n > j , using (3.6), (3.10), (3.19), (3.21) and (3.24), we obtain
∫

�

S j (vn) an(x, un,∇un)∇(S(u)ϕ)

=
∫

�

S j (v) a(x, Tj (u),∇T2 j (v))∇(S(u)ϕ) + ω(n)

=
∫

�

a(x, u,∇u)χ{0≤u<m}∇(S(u)ϕ) + ω(n, j). (3.30)

Now using (3.16), one has
∣
∣
∣
1

j

∫

{ j≤vn≤2 j}
S(un) an(x, un,∇un)∇vnϕ

∣
∣
∣

≤ ‖S‖L∞(R)‖ϕ‖L∞(�)

1

j

∫

{ j≤vn≤2 j}
an(x, un,∇un)∇vn = ω(n, j). (3.31)

By means of Lebesgue’s convergence theorem, one can check that
∫

�

fn S j (vn)S(un)ϕ =
∫

�

f S(u)ϕ + ω(n). (3.32)

To deal with the second term in the right hand side of (3.29). Let us split it in two
terms

∫

�

fn

(un + 1
n )γ

S j (vn)S(un)ϕ

=
∫

�

fn

(un + 1
n )γ

S j (vn)S+(un)ϕ −
∫

�

fn

(un + 1
n )γ

S j (vn)S−(un)ϕ. (3.33)

Now we follow the approach of the Step 4. Let δ ∈ (0, m
2 ), we split the first term on

the right hand side of (3.33) as

∫

�

fn

(un + 1
n )γ

S j (vn)S+(un)ϕ =
∫

{un>δ}
f

uγ
S j (vn)S+(un)ϕ

+
∫

{un≤δ}
f

uγ
S j (vn)S+(un)ϕ. (3.34)

To deal with the second term on the right hand side of (3.34), we take Sδ(un)S+(un)ϕ

as test function in (3.1), dropping the positive terms, we obtain

∫

{un≤δ}
fn

(un + 1
n )γ

S+(un) Sδ(un)ϕ ≤
∫

�

Sδ(un)an(x, un,∇un)∇(S+(un)ϕ)

=
∫

�

Sδ(un)a(x, T2δ(un),∇T2δ(un))∇(S+(un)ϕ),
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by raisoning as in step 4 above, one can pass to the limit as n goes to +∞ in the above
inequality to deduce that

lim sup
n→+∞

∫

{un≤δ}
fn

(un + 1
n )γ

Sδ(un)ϕ ≤
∫

�

Sδ(u)a(x, T2δ(u),∇T2δ(u))∇(S+(u)ϕ),

For the first term on the right hand side of (3.34), we follow again the proof of the
Step 4 to deduce that

lim
n→+∞

∫

�

fn

(un + 1
n )γ

S+(un)ϕ =
∫

�

f

uγ
S+(u)ϕ.

Similarly, one has also

lim
n→+∞

∫

�

fn

(un + 1
n )γ

S−(un)ϕ =
∫

�

f

uγ
S−(u)ϕ.

This allows us to conclude that (recall that S j (s) → 1 as j → +∞)

∫

�

fn

(
1 + 1

(un + 1
n )γ

)
S j (vn)S(un)ϕ =

∫

�

f
(
1 + 1

uγ

)
S(u)ϕ + ω(n, j).

(3.35)

Therefore, putting together (3.30), (3.31), (3.32) and (3.35), it results that u satisfies
(2.12) of Definition 2.1 for every ϕ ∈ W 1,p

0 (�) ∩ L∞(�), ϕ ≥ 0. Since we can write
ϕ = ϕ+ − ϕ−, we conclude the proof of Theorem 2.3.

4 The strongly singular case: � > 1

In this section we deal with the strongly singular case γ > 1. In this case, the a priori
estimates on un derived from the approximation (3.1) hold only locally in W 1,p(�).

However, one can show that T
γ−1+p

p
k (u) belongs to W 1,p

0 (�), which gives a sense to
the solution u on the boundary ∂�. To this end, we choose Tk(un)γ as test function
in (3.1), using assumptions (2.1) and (2.2), we obtain

αγ inf
{0≤s≤m− 1

n }
b(s)

∫

�

|∇Tk(un)
γ−1+p

p |p ≤ αγ

∫

�

bn(un)|∇Tk(un)|pTk(un)γ−1

≤ ‖ f ‖L1(�)(k
γ + 1).

Then, we conclude that

∫

�

|∇Tk(un)
γ−1+p

p |p ≤ C(1 + kγ ).
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By reasoning as in Step 1, we obtain

meas{un ≥ k} ≤ C
( 1 + kγ

kγ−1+p

)
,

and passing to the limit as k goes to infinity, leads to

lim
k→+∞ sup

n
meas{un ≥ k} = 0.

In the following, we prove that Tk(un) is bounded in W 1,p
loc (�). Let ϕ ∈ W 1,p

0 (�) ∩
L∞(�) such that ϕ ≥ 0 and taking (k − vn)+ϕ p as test function in (3.1) to obtain

p
∫

�

an(x, un,∇un)∇ϕϕ p−1(k − vn)+ −
∫

�

an(x, un,∇un)∇Tk(vn)ϕ p

=
∫

�

fn

(
1 + 1

(un + 1
n )γ

)
(k − vn)+ϕ p. (4.1)

Note that for k >

∫ m

0
b

1
p−1 (r) dr , 0 ≤ vn ≤ k implies that 0 ≤ un ≤ k with k is

independente of n. For n > k, since the right hand side of (4.1) is positive, we have

∫

�

an(x, un,∇un)∇Tk(vn)ϕ p ≤ p
∫

�

a(x, Tk(un),∇Tk(vn))∇ϕϕ p−1(k − vn)+,

by using assumptions (2.3), (2.4) and Young inequality, we obtain

∫

�

an(x, un,∇un)∇Tk(vn)ϕ
p ≤ 2kp Ck

∫

�

(L(x) + |∇Tk(vn)|p−1)|∇ϕ|

≤ Ck‖ϕ‖p−1
L∞(�)

(
‖L‖p′

L p′
(�)

+ ‖∇ϕ‖p
L p(�)

)
+ 1

p′

∫

�

|∇Tk(vn)|pϕ p.

So, by to assumption (2.2), we derive

∫

�

|∇Tk(vn)|pϕ p ≤ Ck, (4.2)

for every ϕ ∈ W 1,p
0 (�) ∩ L∞(�) such that ϕ ≥ 0 and where Ck is a constant which

depends on k and not the index n of the sequence. As a consequence, we conclude
that

Tk(vn)⇀Tk(v) weakly in W 1,p
loc (�), (4.3)

vn → v a.e. in �. (4.4)

123



Existence and uniqueness results for an elliptic equation… 537

Next, we choose Tk(vn)γ as test function in (3.1) to obtain

γ

∫

�

Tk(vn)γ−1an(x, un,∇un)∇Tk(vn) =
∫

�

fn

(
1 + 1

(un + 1
n )γ

)
Tk(vn)γ ,

(4.5)

by splitting the right hand side of (4.5) on the sets {un ≤ m − 1
n } and {un > m − 1

n },
recalling that

1

s

∫ s

0
b

1
p−1

n (r) dr is bounded near to zero, we obtain

γ

∫

�

Tk(vn)
γ−1an(x, un,∇un)∇Tk(vn)

≤
∫

{un≤m− 1
n }

fn

( Tk(vn)

un + 1
n

)γ +
∫

{un>m− 1
n }

fn

( Tk(vn)

un + 1
n

)γ +
∫

�

fnTk(vn)γ ,

≤
(

C +
( k

m

)γ + 1
)
‖ f ‖L1(�).

Then, by assumption (2.1), it follows that

∫

�

|∇(Tk(vn))
γ−1+p

p |p ≤ C(kγ + 1)‖ f ‖L1(�).

Moreover, using Poincaré inequality, we get

meas{vn ≥ k} ≤ C(kγ + 1)

kγ−1+p
,

then, letting k goes to infinity leads to

lim
k→+∞ sup

n
meas{vn ≥ k} = 0.

Therefore, by Fatou’s lemma, we conclude that v is almost everywhere finite in �.
Now we are in position to prove that Tk(un) is bounded in W 1,p

loc (�). Let us start by

splitting the integral
∫

�

|∇Tk(un)|pϕ p on the sets {un ≤ m − 1
n } and {un > m − 1

n },
we have

∫

�

|∇Tk(un)|pϕ p =
∫

{un≤m− 1
n }

|∇Tk(un)|pϕ p +
∫

{un>m− 1
n }

|∇Tk(un)|pϕ p.

(4.6)
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Setting L =
∫ m

0
b

1
p−1 (s) ds. For the first term in the right hand side of (4.6), by (2.1)

and (4.2), we obtain

∫

{un≤m− 1
n }

|∇Tk(un)|pϕ p ≤ sup
s∈[0,m− 1

n ]

1

b(s)p′

∫

�

|∇TL(vn)|pϕ p ≤ C .

As regards the second term in the right hand side of (4.6). Let k > m and define for
s ≥ 0 the functionψk,m(s) = k −m + 1

n − (Tk(s)− Tm− 1
n
(s)). By takingψk,m(un)ϕ p

as test function in (3.1) we obtain

−
∫

{m− 1
n ≤un<k}

an(x, un,∇un)∇unϕ p + p
∫

�

an(x, un,∇un)∇ϕϕ p−1ψk,m(un)

=
∫

�

fn

(
1 + 1

(un + 1
n )γ

)
ψk,m(un)ϕ p ≥ 0.

By dropping the positive term and using assumptions (2.1) and (2.2), we get

αb(m − 1

n
)

∫

{m− 1
n ≤un<k}

|∇un|pϕ p

≤ p
∫

{0≤un≤m− 1
n }

an(x, un,∇un)∇ϕϕ p−1(k − m + 1

n
)

+p
∫

{m− 1
n ≤un<k}

an(x, un,∇un)∇ϕϕ p−1ψk,m(un). (4.7)

For the first term in the right of (4.7), by (2.4), Young’s inequality and (4.2), we thus
have

p
∫

{0≤un≤m− 1
n }

an(x, un,∇un)∇ϕϕ p−1(k − m + 1

n
)

= p
∫

{0≤un≤m− 1
n }

a(x, un,∇un)∇ϕϕ p−1(k − m + 1

n
)

= p
∫

{0≤un≤m− 1
n }

an(x, un,∇vn)∇ϕϕ p−1(k − m + 1

n
)

≤ pC(k − m + 1)
( ∫

�

L(x)|∇ϕ|‖ϕ‖p−1
L∞(�) +

∫

�

|∇TL(vn)|p−1ϕ p−1|∇ϕ|
)

≤ Ck

( ∫

�

|∇TL(vn)|pϕ p + |∇ϕ|p + L(x)p′) ≤ Ck,

where Ck is a constant does not depend on n. For the second term in the right hand
side of (4.7), using (2.4) and Young’s inequality, we obtain
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p
∫

{m− 1
n ≤un<k}

an(x, un,∇un)∇ϕϕ p−1ψk,m(un)

≤ α

p
b(m − 1

n
)

∫

{m− 1
n ≤un<k}

|∇un|pϕ p + Ckb(m − 1

n
)
( ∫

�

|∇ϕ|p + L(x)p′
ϕ p

)
.

So, from (4.7), it follows that

∫

{m− 1
n ≤un<k}

|∇un|pϕ p ≤ Ck

( ∫

�

|∇ϕ|p + L(x)p′)
.

Hence, Tk(un) is bounded in W 1,p
loc (�).

Let us mention that the same approach used to establish the existence result stated
in Theorem 2.3 in the case γ ≤ 1 can be adapted to the strongly singular case by
localizing the proof. We have then the following result

Theorem 4.1 Assume that (2.1)–(2.6) hold true. If γ > 1, then, there exists at least

a renormalized solution u of problem (1.1) in the sense that T
γ−1+p

p
k (u) belongs to

W 1,p
0 (�) for any k > 0 and

Tk(u) ∈ W 1,p
loc (�),

0 ≤ u ≤ m, a.e. in �,

a(x, u,∇u)χ{0≤u<m} ∈ (L p′
loc(�))N ,

lim
σ→0

1

σ

∫

{m−2σ≤u≤m−σ }
a(x, u,∇u)∇uϕ =

∫

{u=m}
f
(
1 + 1

uγ

)
ϕ,

for every ϕ ∈ C1
c (�). Moreover, for every function S ∈ W 1,∞(R) such that the support

of S is compact and S(m) = 0, the solution u satisfies

f

uγ
S(u)ϕ ∈ L1(�),

and
∫

�

S(u) a(x, u,∇u)χ{u<m}∇ϕ +
∫

�

S′(u) a(x, u,∇u)∇uχ{u<m}ϕ

=
∫

�

f
(
1 + 1

uγ

)
S(u)ϕ,

for every ϕ ∈ C1
c (�).

5 Uniqueness result of the renormalized solution

In this section, we are going to establish the uniqueness of a renormalized to problem
(1.1) stated in Theorem 2.4.
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Proof of Theorem 2.4 Let us consider two renormalized solutions u1 and u2 to (1.1)
in the sense of Definition 2.1. We choose for any σ > 0 and j ≥ 1, S = h j and

ϕ = 1
σ

Tσ (v1 − v2) in the formulation (2.12) with vi =
∫ ui

0
b

1
p−1 (s) ds, i = 1, 2.

Note that the function 1
σ

Tσ (v1−v2)belongs toW 1,p
0 (�)∩L∞(�) since vi ∈ W 1,p

0 (�).
Then, by taking the difference of the two formulations (2.12) for u1 and u2 and by
setting h(s) = 1 + 1

sγ , s ∈ [0,+∞[, one gets

1

σ

∫

�

(h j (u1)a(x, u1,∇v1) − h j (u2)a(x, u2,∇v2))∇Tσ (v1 − v2)

+ 1

σ

∫

�

(h′
j (u1)a(x, u1,∇u1)∇u1 − h′

j (u2)a(x, u2,∇u2)∇u2)Tσ (v1 − v2)

= 1

σ

∫

�

f (h(u1)h j (u1) − h(u2)h j (u2))Tσ (v1 − v2). (5.1)

Now we investigate the behaviors of each term in (5.1) when σ goes to 0 and then as
j goes to +∞. Let us start by studying the first term in left hand side of (5.1) that can
be rewritten as

1

σ

∫

�

(
h j (u1)a(x, u1,∇v1) − h j (u2)a(x, u2,∇v2)

)
∇Tσ (v1 − v2)

= 1

σ

∫

�

h j (u1)
(

a(x, u1,∇v1) − a(x, u1,∇v2)
)
∇Tσ (v1 − v2)

+ 1

σ

∫

�

h j (u2)
(

a(x, u1,∇v2) − a(x, u2,∇v2)
)
∇Tσ (v1 − v2)

+ 1

σ

∫

�

(h j (u1) − h j (u2))a(x, u1,∇v2)∇Tσ (v1 − v2)

= A j,σ + B j,σ + C j,σ , (5.2)

where

A j,σ = 1

σ

∫

�

h j (u1)(a(x, u1,∇v1) − a(x, u1,∇v2))∇Tσ (v1 − v2),

B j,σ = 1

σ

∫

�

h j (u2)(a(x, u1,∇v2) − a(x, u2,∇v2))∇Tσ (v1 − v2),

and

C j,σ = 1

σ

∫

�

(h j (u1) − h j (u2))a(x, u1,∇v2)∇Tσ (v1 − v2).

Let us observe that, by assumption (2.5), one has

A j,σ ≥ 0. (5.3)
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For the term B j,σ , since the two solutions u1 and u2 belong to [0, m], by the assumption
(2.13), we obtain

|B j,σ | ≤ 1

σ

∫

{0<|v1−v2|<σ }
|u1 − u2|

[
Em(x) + γm |∇v2|p−1

]
|∇(v1 − v2)|.

On the other hand, using the assumption (2.1) on b and the fact that u1 and u2 belong
to [0, m], there exists a constant C > 0 such that

|u1 − u2| ≤ C |v1 − v2|, (5.4)

and since v1 and v2 belong to W 1,p
0 (�), it follows that

[
Em(x) + γm |∇v2|p−1

]
|∇(v1 − v2)| ∈ L1(�).

Then, letting σ goes to zero in B j,σ yielding to

|B j,σ | ≤
∫

{0<|v1−v2|<σ }

[
Em(x) + γm |∇v2|p−1

]
|∇(v1 − v2)| = ω(σ). (5.5)

As regards the term C j,σ , using the lipschitz regularity of h j , the inequality (5.4),

since v1 and v2 belongs to W 1,p
0 (�) and a(x, Tm(u1),∇v2) belongs to (L p′

(�))N we
obtain

|C j,σ | ≤ C j

∫

{0<|v1−v2|<σ }
|a(x, Tm(u1),∇v2)||∇(v1 − v2)| = ω(σ), (5.6)

where C j > 0 is a constant which does not depend on σ . Therefore, from (5.1), (5.2),
(5.3), (5.5) and (5.6) we deduce that

1

σ

∫

�

f (h(u2)h j (u2) − h(u1)h j (u1))Tσ (v1 − v2)

− j

σ

∫

{m− 2
j ≤u1≤m− 1

j }
a(x, u1,∇u1)∇u1Tσ (v1 − v2)

+ j

σ

∫

{m− 2
j ≤u2≤m− 1

j }
a(x, u2,∇u2)∇u2Tσ (v1 − v2) + ω(σ) ≤ 0. (5.7)

Moreover, since the function s ∈ R
+ �→ h(s)h j (s) is nonincreasing, one can pass to

the limit using Fatou’s Lemma as σ goes to zero (recalling that 1
σ

Tσ (s) → sign(s)
as σ → 0) to obtain
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∫

�

f (h(u2)h j (u2) − h(u1)h j (u1))sign(v1 − v2)

− j
∫

{m− 2
j ≤u2≤m− 1

j }
a(x, u2,∇u2)∇u2sign(v1 − v2)

≤ j
∫

{m− 2
j ≤u1≤m− 1

j }
a(x, u1,∇u1)∇u1sign(v1 − v2) + ω(σ),

in view of (2.2) and since −1 ≤ sign(s) ≤ 1 for every s ∈ R, it follows that

∫

�

f (h(u2)h j (u2) − h(u1)h j (u1))sign(v1 − v2)

− j
∫

{m− 2
j ≤u2≤m− 1

j }
a(x, u2,∇u2)∇u2

≤ j
∫

{m− 2
j ≤u1≤m− 1

j }
a(x, u1,∇u1)∇u1 + ω(σ). (5.8)

Applying again Fatou’s Lemma, letting j tends to +∞ in (5.8) (recall that h j (s) →
χ{0≤s<m} as j → +∞ ) and using (2.10) with ϕ = 1, we get

∫

�

f (h(u2)χ{0≤u2<m} − h(u1)χ{0≤u1<m})sign(v1 − v2)

+h(m)

∫

{u1=m}
f sign(v1 − v2)

≤ h(m)

∫

{u1=m}
f + h(m)

∫

{u2=m}
f + ω(σ, j).

Moroever, since we can write

∫

�

f (h(u2)χ{0≤u2<m} − h(u1)χ{0≤u1<m})sign(v1 − v2)

=
∫

�

f |h(u1) − h(u2)| − h(m)

∫

{u2=m}
f sign(v1 − v2)

+h(m)

∫

{u1=m}
f sign(v1 − v2),

we easily obtain

∫

�

f |h(u1) − h(u2)| − h(m)

∫

{u2=m}
f sign(v1 − v2)

+h(m)

∫

{u1=m}
f sign(v1 − v2)

≤ h(m)

∫

{u1=m}
f + h(m)

∫

{u2=m}
f + ω(σ, j). (5.9)
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On the other hand, let us observe that v1 ≤ v2 almost everywhere in {u2 = m}, this
implies that

∫

{u2=m}
f sign(v1 − v2) = −

∫

{u2=m}
f .

Similarly, one has v1 ≥ v2 almost everywhere in {u1 = m}, which leads to

∫

{u1=m}
f sign(v1 − v2) =

∫

{u1=m}
f .

So, by cancelling the equal term in (5.9), we deduce that

∫

�

f |h(u1) − h(u2)| ≤ ω(σ, j).

Since f > 0 almost everywhere in �, the previous inequality leads to u1 = u2 almost
everywhere in �. Therefore, the Theorem 2.4 is then established. ��
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