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Abstract
We study the behavior of solutions of the Cauchy problem for a semilinear heat equa-
tion with supercritical and critical nonlinearity in the sense of Joseph and Lundgren.
It is known that if two solutions are initially close enough near the spatial infinity,
then these solutions approach each other in the above cases. In this paper, for the
supercritical case, we give a lower bound of a convergence rate that leads to the exact
convergence rate together with our previous result. Also for the critical case, we give
the exact convergence rate of solutions depending on two approaching initial data
near spatial infinity again by using a different function than the previous results. For
the critical case, this rate contains a logarithmic factor which is not contained in the
supercritical nonlinearity case. Proofs are given by a comparison method based on
matched asymptotic expansion.

Keywords Cauchy problem · Semilinear heat equation · Stationary solution ·
Convergence · Critical exponent

Mathematics Subject Classification 35K15 · 35B35 · 35B40 · 35B33

1 Introduction and results

In this paper, we investigate the behavior of solutions of the Cauchy problem

{
ut = �u + |u|p−1u, x ∈ R

N , t > 0,
u(x, 0) = u0(x), x ∈ R

N ,
(1.1)
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330 M. Hoshino

where u = u(x, t), � is the Laplace operator with respect to x , p > 1, and u0 �≡ 0
is a given continuous function on R

N that decays to zero as |x | → ∞. The problem
(1.1) has been studied in many papers, since Fujita studied the blow-up problem [10].
Among them, the stability problem of stationary solutions is one of the most important
problems and we study the problem (1.1) along this line.

It is known that there exist critical exponents p that govern the structure of solutions.
The exponent

pS =
{

N+2
N−2 N > 2,

∞ N ≤ 2,

is well known as the Sobolev exponent that is critical for the existence of positive
stationary solution of (1.1). Namely, there exists a classical positive radial solution ϕ

of

�ϕ + ϕ p = 0, x ∈ R
N ,

if and only if p ≥ pS [1, 2, 12]. We denote the solution by ϕ = ϕα(r), r = |x |, α > 0,
where ϕα(0) = α. Then ϕα(r) satisfies the initial value problem

{
ϕα,rr + N−1

r ϕα,r + ϕ
p
α = 0,

ϕα(0) = α, ϕα,r (0) = 0.
(1.2)

For each α > 0, the solution ϕα is strictly decreasing in |x | and satisfies

ϕα → 0 as |x | → ∞.

We extend the solution by setting ϕα = −ϕ−α for α < 0 and ϕ0 = 0. Then the set
{ϕα;α ∈ R} forms a one-parameter family of radial stationary solutions.

The exponent

pc =
{

(N−2)2−4N+8
√
N−1

(N−2)(N−10) N > 10,

∞ N ≤ 10,

is another important exponent which appeared first in [15]. It is known that for pS ≤
p < pc, any pair of positive stationary solutions intersects each other. For p ≥ pc,
Wang [20] showed that the family of stationary solutions for (1.2) forms a simply
ordered set, that is, ϕα is strictly increasing in α for each x . We call it the ordering
property of {ϕα}. Moreover, ϕα satisfies

lim
α→0

ϕα(|x |) = 0, lim
α→∞ ϕα(|x |) = ϕ∞(|x |),

for each x , where ϕ∞(|x |) is a singular stationary solution given by

ϕ∞(|x |) = L|x |−m, x ∈ R
N \ {0},
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Exact convergence rate of solutions for a semilinear heat… 331

with

m = 2

p − 1
, L = {m(N − 2 − m)}1/(p−1). (1.3)

It was also shown in [13] that each positive stationary solution has the expansion

ϕα(|x |) =
{
L|x |−m − aα|x |−m−λ1 + h.o.t. p > pc,

L|x |−m − aα|x |−m−λ log |x | + h.o.t. p = pc,
(1.4)

as |x | → ∞, where for p ≥ pc, λ1, λ is a positive constant. λ1 is given by

λ1 = λ1(N , p) := N − 2 − 2m − √
(N − 2 − 2m)2 − 8(N − 2 − m)

2
,

λ is given later and aα = a(α) is a positive number that is monotone decreasing in α.
Note that λ1 is a smaller root of the quadratic equation

h(λ) := λ2 − (N − 2 − 2m)λ + 2(N − 2 − m) = 0. (1.5)

We define for p > pc by

λ2 = λ2(N , p) := N − 2 − 2m + √
(N − 2 − 2m)2 − 8(N − 2 − m)

2
,

a larger root of the quadratic equation (1.5).
For the stability problem, Gui et al. [13, 14] proved that any regular positive radial

stationary solution is unstable in any reasonable sense if pS < p < pc and “weakly
asymptotically stable" in a weighted L∞ norm if p ≥ pc. For p > pc, Poláčik and
Yanagida [17, 18] improved the above results and proved that the solutions approach
a set of stationary solutions for a wide class of the initial data. As a by-product, they
also showed the existence of global unbounded solutions. We note that the study of
global unbounded solutions of (1.1) [3, 4] is closely related to our problem on bounded
solutions mentioned later.

Later, Fila et al. [5] studied the convergence of solutions of (1.1). They considered
the following more general problem: Let u and ũ denote solutions of (1.1) with initial
data u0, ũ0 respectively. Where, u0 and ũ0 are continuous functions and we always
assume this assumption In the following. They studied how fast these two solutions
approach each other as t → ∞. In particular, in the case of ũ0 = ϕα(|x |), then the
rate of approach corresponds to the convergence rate to the stationary solution. More
precisely, they showed that if p > pc, m + λ1 < l < m + λ2 and initial functions
are under some stationary solution and approaches the decay rate of t−l near spatial
infinity then the difference between the values of the two solutions decays in time the
exact rate t−(l−m−λ1)/2.

The above result is no longer valid for large l and in fact they found a universal lower
bound for the rate of approach which applies to any initial data. More precisely, they
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showed that if p ≥ pc and 0 ≤ ũ0(x) < u0(x) ≤ ϕ∞(|x |) then difference between
the values of the two solutions decays more slowly in time than the rate t−(N−m−λ1)/2.
We note that there exists a gap of the convergence rate between the rate t−(λ2−λ1)/2

which is obtained for the case l = m + λ2 and a universal lower bound of the rate
t−(N−m−λ1)/2.

On the other hand, for the grow-up problem which can be regarded as a stability
problem of singular stationary solution, a sharp universal upper bound of the grow-up
rate was found by Mizoguchi [16], and optimal lower bound of the grow-up rate was
found by Fila et al. [4]. The results on the grow-up problem strongly suggest that the
above result of the convergence rate is not optimal.

For p > pc, We obtain a sharp bound of the convergence rate in the case of
m + λ1 < l < m + λ2 + 2 which leads to its optimal convergence rate in [7]. In
fact, we improve the results in [5]. More precisely, we had already proved following
Theorems in [7].

Theorem A Let p > pc. Suppose that |u0|, |ũ0| ≤ ϕα(|x |) with some α. If m + λ1 <

l < m + λ2 + 2, and satisfy

|u0(x) − ũ0(x)| ≤ m1(1 + |x |)−l

with some m1 > 0. Then there exists constant M1 > 0 such that

‖u(·, t) − ũ(·, t)‖L∞ ≤ M1(t + 3)(l−m−λ1)/2

for all t > 0.

After, Stinner studied a similar problem in [19] with the critical exponent p = pc
in the case of m + λ < l < m + λ + 2 and shows the exact convergence rate of the
solution that approaches a stationary solution ϕα(|x |). In this case, the equation (1.5)
has the double root

λ := N − 2 − 2m

2
.

Actually, the sharp convergence rate t−(l−m−λ)/2(log t)−1 is obtained in [19]. The char-
acteristic point is that the convergence rate contains a logarithmic factor. We remark
that our result in [7] Theorem 1.4 and [9] Theorem 1.1 shows that the convergence
rate can not be extended in the case of l > m + λ2 + 2 for p > pc and l > m + λ + 2
for p = pc.

Our purpose of this paper is to show there exists the exact estimate of the conver-
gence rate with the approaching solutions which applies an approaching two initial
data for p > pc and p = pc by using partially different function in [19] mentioned
later. In fact, with the supercritical exponent p > pc, we prove a lower estimate of the
convergence rate of the solutions and with the critical exponent p = pc, we can prove
again the same results in [19] as follows. Our results also show that a logarithmic
factor appears for the critical case.
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Exact convergence rate of solutions for a semilinear heat… 333

Theorem 1.1 Let p > pc. Suppose that |u0|, |ũ0| ≤ ϕα(|x |) with some α. If m+λ1 <

l < m + λ2 + 2, and satisfy

|u0(x) − ũ0(x)| ≥ c1(1 + |x |)−l

with some c1 > 0. Then there exists constant C1 > 0 such that

‖u(·, t) − ũ(·, t)‖L∞ ≥ C1(t + 3)−(l−m−λ1)/2

for all t > 0.

Theorem 1.2 Let p = pc. Suppose that |u0|, |ũ0| ≤ ϕα(|x |) with some α. If m + λ <

l < m + λ + 2, and satisfy

|u0(x) − ũ0(x)| ≤ c2(1 + |x |)−l

with some c2 > 0. Then there exists constant C2 > 0 such that

‖u(·, t) − ũ(·, t)‖L∞ ≤ C2(t + 3)−(l−m−λ)/2(log(t + 3)1/2)−1

for all t > 0.

Theorem 1.3 Let p = pc. Suppose that |u0|, |ũ0| ≤ ϕα(|x |) with some α If m + λ <

l < m + λ + 2, and satisfy

|u0(x) − ũ0(x)| ≥ c3(1 + |x |)−l

with some c3 > 0. Then there exists constant C3 > 0 such that

‖u(·, t) − ũ(·, t)‖L∞ ≥ C3(t + 3)−(l−m−λ)/2(log(t + 3)1/2)−1

for all t > 0.

Proofs of the above theorems are obtained by a comparison technique that is based
on matched asymptotic expansion. For the critical case, the inner expansion is the
same as in [19] and the difference of our proof is the careful description of the outer
expansion by differential equation. More precisely with the critical exponent, for the
upper bound Stiner uses Kummer’s function as in [6] and for the lower bound, the same
technical function as used in [5], Although we do not use these methods. In fact, we
will use the solutions of a differential equations which behaves in a self-similar way
near the spatial infinity and make super and sub-solutions by using these solutions in
the outer region. Then we construct super and sub-solutions by matching these inner
and outer solutions.

This paper is organized as follows. In Sect. 2, we recall preliminary results in [4]
and [5]. We note that the result of this section imply the reason why logarithmic factor
appear for the critical case. The formal analysis in this section will give the idea of
constructing super and sub-solutions, and a matching condition of these expansion
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implies the convergence rate. In Sect. 3, we prove Theorem 1.1 and note that the result
together with our result TheoremA shows that the exact convergence rate are obtained.
In Sect. 4, we prove Theorem 1.2, and in Sect. 5, we prove Theorem 1.3.

2 Preliminary results on the linearized equation

In this section, we summarize previous results on the linear equation that are needed
in subsequent sections. For proofs of the results, see [4, 5, 8].

We consider radial solutions u = U (r , t), r = |x |, of the linearized equation of
(1.1) at ϕα . Namely, let Pα be the linearized operator defined by

PαU := Urr + N − 1

r
Ur + pϕα

p−1U

and let U (r , t) be a solution of

⎧⎨
⎩
Ut = PαU , r > 0, t > 0,
Ur (0, t) = 0, t > 0,
U (r , 0) = U0(r), r ≥ 0,

(2.1)

whereU0 is a continuous function that decays to zero as r → ∞. From the maximum
principle, we see thatU (·, t) > 0 for all t > 0 ifU0 ≥ 0 andU0 �≡ 0.We will describe
some fundamental properties for the solution of (2.1).

2.1 Comparison principle

Let u and ũ be solutions of (1.1) with initial data u0 and ũ0 respectively. We recall
some comparison results for u − ũ and the solutionU of (2.1), which comes from the
ordering property and the convexity of nonlinearity.

Lemma 2.1 ([5] Lemma 2.1) Let p ≥ pc. Suppose that u0 and ũ0 satisfy (H1). If

|u0(x) − ũ0(x)| ≤ U0(|x |), x ∈ R
N ,

then

|u(x, t) − ũ(x, t)| ≤ U (|x |, t), x ∈ R
N

for all t > 0.

Lemma 2.2 ([5] Lemma 2.2) Let p ≥ pc. Suppose that u0 and ũ0 satisfy

ϕα(|x |) ≤ ũ0(x) ≤ u0(x) ≤ ϕ∞(|x |), x ∈ R
N \ {0}

with some α > 0. If

0 ≤ U0(|x |) ≤ u0(x) − ũ0(x), x ∈ R
N ,
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then

0 ≤ U (|x |, t) ≤ u(x, t) − ũ(x, t), x ∈ R
N

for all t > 0.

2.2 Formal matched asymptotics

By the above comparison results, we may only consider the convergence of radial
solution of the linearized equation (2.1). In the following, we recall the asymptotic
analysis, which is only formal but will be useful in the rigorous analysis in subsequent
sections.

First, following Fila et al. [5], the formal expansion of a solution of (2.1) near the
origin is given by

U (r , t) = σ(t)ψ(r) + σt (t)�(r) + h.o.t., (2.2)

where, σ(t) = U (0, t), ψ and � satisfy

{Pαψ = 0, r > 0,
ψ(0) = 1, ψr (0) = 0

(2.3)

and
{Pα� = ψ, r > 0,

�(0) = 0, �r (0) = 0,
(2.4)

respectively (see also [5] and [11] for details). We recall some results in [5] on the
above linear differential equations (2.3) and (2.4) in the following.

Lemma 2.3 ([5] Lemma 2.3, [8] Lemma 2.3) For all α > 0 and r ≥ 0, α �→ ϕα(r)
is differentiable and

ψ(r) := ∂

∂α
ϕα

satisfies (2.3). Moreover, if p = pc, then ψ(r) is positive and satisfies

ψ(r) = cαr
−m−λ log r + o(r−m−λ log r) as r → ∞,

and if if p > pc, then ψ(r) is positive and satisfies

ψ(r) = cαr
−m−λ + o(r−m−λ) as r → ∞,

where cα is a constant given by cα = a1λ
m α−m+λ

m and a1 = a(1) is a constant inde-
pendent of α.
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Remark 2.1 The function ψ defined in Lemma 2.3 satisfies ψr < 0 for all r > 0.
Indeed, we see from (2.3) that ψ does not attain a positive local minimum by the
positivity of ϕα and ψ .

Lemma 2.4 ([5] Lemma 2.4, [8] Lemma 2.5) If p ≥ pc, then the solution � of (2.4)
has the following properties:
(i) �/ψ is strictly increasing in r > 0. In particular, � is positive for all r > 0.
(ii) If p = pc, then � satisfies

�(r) = Cαr
−m−λ+2 log r + o(r−m−λ+2 log r) as r → ∞,

and if p > pc, then � satisfies

�(r) = Cαr
−m−λ+2 + o(r−m−λ+2) as r → ∞,

where

Cα = cα

g(m + λ − 2)
> 0, g(μ) := h(μ − m).

Next, let us consider the expansion of a solution of (2.1) near r = ∞. By the
expansion of ϕα(r) near r = ∞, U (r , t) satisfies approximately

Ut = Urr + N − 1

r
Ur + pL p−1

r2
U , r � ∞. (2.5)

Following [3, 4], we assume that U is of a self-similar form for r 
 1

U (r , t) = t−l/2F(η), η = t−1/2r . (2.6)

so that the specific scaling for r 
 1 corresponding to the outer region is in fact
r = O(t1/2) as t → ∞. Substituting this in (2.5), we see that F satisfies

Fηη + N − 1

η
Fη + η

2
Fη + l

2
F + pL p−1

η2
F = 0. (2.7)

In order that the outer expansion matches with the inner solution (2.2), F(η) must
satisfy

lim
η→0

ηm+λF(η) = a0 > 0 (2.8)

in view of the spatial order of Lemma 2.3, where a0 is a constant depending on initial
data.

We will know in the next section that (2.7) has a positive solution satisfying (2.8).
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For p = pc, we show a formal analysis in [8] here again for the reader’s conve-
nience. By matching the inner expansion (2.2) by using Lemmas 2.3, 2.4,

U (r , t) = σ(t)ψ(r) + σt (t)�(r) + h.o.t.

� σ(t)r−m−λ log r + σt (t)r
−m−λ+2 log r + h.o.t.

� σ(t)t−(m+λ)/2η−m−λ(log ηt1/2)

+ σt (t)t
−(m+λ)/2η−m−λ+2(log ηt1/2) + h.o.t.

and the outer expansion (2.6),

U (r , t) = t−l/2F(η),

we obtain

σ(t)t (−m−λ)/2 log t l/2 � t−(l/2).

This implies the convergence rate

σ(t) � t−(l−m−λ)/2(log t1/2)−1

which is the same convergence rate given in Theorems 1.2 and 1.3. We use theses
results, and also obtain

σt � − l − m − λ

2
t−(l−m−λ)/2−1(log t1/2)−1 − 1

2
t−(l−m−λ)/2−1(log t1/2)−2.

We substitute above results in (2.2), then we obtain a formal expansion near the origin
as follows.

U (r , t) = σ(t)ψ(r) + σt (t)�(r) + h.o.t.

� t−q(log t1/2)−1ψ(r) − (qt−q−1(log t1/2)−1

− 1

2
t−q−1(log t1/2)−2)�(r). (2.9)

For p > pc, we also obtain

U (r , t) = σ(t)ψ(r) + σt (t)�(r) + h.o.t.

� t−qψ(r) − qt−q−1�(r),

by a similar argument where q = (l − m − λ)/2 (See [7]).
The above expansions suggest the constructions of inner super and sub-solutions.
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2.3 Properties of self-similar solutions

In this subsection, we recall the behavior of solutions of (2.7) satisfying

lim
η→0

ηm+μF(η) = a0 > 0,

where a0 > 0 is a constant and μ = λ1 or λ. To this end, we set

f (η) = ηm+μF(η).

Substituting this in (2.7), we see that f (η) satisfies

{
fηη + N−1−2(m+μ)

η
fη + η

2 fη + l−m−μ
2 f = 0, η > 0,

f (0) = a0 > 0, fη(0) = 0.
(2.10)

The following lemma characterizes the behavior of f as η → ∞, and explains why
l = m + μ + 2 is critical.

Lemma 2.5 ([4] Lemma 3.1) For p > pc, let f be the solution of (2.10).

(i) If l ∈ (m + λ1,m + λ2 + 2), then f > 0 and fη < 0 for all η > 0. Moreover,
for each η0 > 0, there exist d−(η0) > 0 such that

f (η) ≥ d−(η0)η
−(l−m−λ1) for η ≥ η0,

and d+ > 0 such that

f (η) ≤ d+η−(l−m−λ1) for all η > 0.

(ii) If l = m + λ2 + 2, then f (η) is given explicitly by f (η) = a0 exp(−η2/4).
(iii) If l > m + λ2 + 2, then f (η) vanishes at some finite η.

Lemma 2.6 For p = pc, let f be the solution of (2.10).

(i) If l ∈ (m + λ,m + λ + 2), then f > 0 and fη < 0 for all η > 0. Moreover, for
each η0 > 0, there exist d−(η0) > 0 such that

f (η) ≥ d−(η0)η
−(l−m−λ) for η ≥ η0,

and d+ > 0 such that

f (η) ≤ d+η−(l−m−λ) for all η > 0.

(ii) If l = m + λ + 2, then f (η) is given explicitly by f (η) = a0 exp(−η2/4).
(iii) If l > m + λ + 2, then f (η) vanishes at some finite η.

The proof of Lemma 2.6 is the same as the proof of Lemma 3.1 in [4]. So, we omit
the proof here.
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3 Lower bound for the supercritical exponent

In this section, we prove that a lower bound of the convergence rate exists, which
applies to initial data close at most of the negative polynomial order from above or
below to a stationary solution in the case ũ = ϕα .

3.1 Outer sub-solution

In this subsection, we construct a suitable outer sub-solution of (2.1).
First, we recall that f satisfies

fηη + n − 1

η
fη + η

2
fη + β

2
f = 0, (3.1)

where n = N−2(m+λ1), β = l−m−λ1 and satisfies 0 < β < 2+λ2−λ1. Although
this solution was already used for the construction of super-solution to (2.1) used in
the previous result in [7], we need to modify this solution to construct a sub-solution
of (2.1) in an outer region as follows.

We take δ satisfies 0 < δ < min{2+ λ2 − λ1 − β, 1}, put β̃ = β + δ and define f̃
that satisfies

{
f̃ηη + n−1

η
f̃η + η

2 f̃η + β̃
2 f̃ = 0, η > 0,

f̃ (0) = a0 > 0, f̃η(0) = 0.

Lemma 3.1 For p > pc, define F−(η; b1) := η−m−λ1 f −(η; b1) = η−m−λ1( f (η) −
b1 f̃ (η)) and

U−
out(r , t) :=

{
0 for 0 ≤ η < η1,

(t + τ)− l
2 F−(η; b1) = (t + τ)− l

2 η−m−λ1 f −(η; b1) for η ≥ η1,

where η = (t + τ)−1/2r , b1, τ, η1 > 0 are sufficient large constant determined later.
Then U−

out is a sub-solution of (2.1).

Proof It is trivial that U ≡ 0 is a sub-solution. Then we only check the case where
η ≥ η1.

First, we fix any η0 > 1. We can take positive constant a−
α satisfies

ϕα ≥ Lr−m − a−
α r

−m−λ1 for r ≥ 3, (3.2)

from (1.4) and d+, d̃−(η0) > 0 satisfy

f (η) ≤ d+η−β for all η > 0, (3.3)

f̃ (η) ≥ d̃−(η0)η
−β̃ for η > η0 (3.4)
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from Lemma 2.5 respectively. We take any ε > 0 and sufficiently large τ > 0 satisfies

mp(N − 2 − m)

(
1 −

(
1 − a−

α

L
(η0τ)−1/2λ1

)p−1
)

< ε for η ≥ η0 (3.5)

and

η0τ
1/2 > 3.

We take b1 satisfies

b1δ

2
d̃−(η0)η

2−δ
0 − εd+ > 0 and f (η0) − b1 f̃ (η0) ≤ 0. (3.6)

We define

η1 = inf{η > 1| f −(ρ; b1) = f (ρ) − b1 f̃ (ρ) > 0, for ρ > η}. (3.7)

Then we find η1 ≥ η0 is well defined from Lemma 2.5 and the definition. We note
that F− is positive for η > η1 from (3.7) and η1 ≥ η0 from (3.6).

Next, in general setting of our problem, the following differential inequality is
computed the same as in [8].

U−
out,t − PαU

−
out

= −(t + τ)−
l
2−1

(
l

2
F− + η

2
F−

η + F−
ηη + N − 1

η
F−

η + p(t + τ)ϕ p−1
α F−

)

= −(t + τ)−
l
2−1η−m−λ1

(
f −
ηη + N − 1 − 2(m + λ1)

η
f −
η + η

2
f −
η + l − m − λ1

2
f −

+ p(t + τ)ϕ p−1
α f − + η−2 ((m + λ1 + 1)(m + λ1) − (N − 1)(m + λ1)) f −

)

≤ −(t + τ)−
l
2−1η−m−λ1

(
f −
ηη + N − 1 − 2(m + λ1)

η
f −
η + η

2
f −
η

+ l − m − λ1

2
f − + p(t + τ)

(
Lr−m − a−

α r
−m−λ1

)p−1
f −

+ η−2 ((m + λ1 + 1)(m + λ1) − (N − 1)(m + λ1)) f −
)

= −(t + τ)−
l
2−1η−m−λ1

(
f −
ηη + N − 1 − 2(m + λ1)

η
f −
η + η

2
f −
η

+ l − m − λ1

2
f − + p(t + τ)L p−1r−m(p−1)

(
1 − a−

α

L
r−λ1

)p−1

f −

+ η−2 ((m + λ1 + 1)(m + λ1) − (N − 1)(m + λ1)) f −
)
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= −(t + τ)−
l
2−1η−m−λ1

(
f −
ηη + n − 1

η
f −
η + η

2
f −
η + β

2
f −

+ η−2
(
(m + λ1 + 1)(m + λ1) − (N − 1)(m + λ1)

+ pL p−1
(
1 − a−

α

L
r−λ1

)p−1 )
f −

)

= −(t + τ)−
l
2−1η−m−λ1

(
f −
ηη + n − 1

η
f −
η + η

2
f −
η + β

2
f −

+ η−2
(

(m + λ1)
2 + 2(m + λ1) − N (m + λ1)

+ (m + 2)(N − 2 − m)

(
1 − 1 +

(
1 − a−

α

L
r−λ1

)p−1
) )

f −
)

= −(t + τ)−
l
2−1η−m−λ1

(
f −
ηη + n − 1

η
f −
η + η

2
f −
η + β

2
f −

+ η−2
(

λ21 − (N − 2 − m)λ1 + m2 + 2m − Nm

+ (m + 2)(N − 2 − m)

(
1 − 1 +

(
1 − a−

α

L
r−λ1

)p−1
) )

f −
)

= −(t + τ)−
l
2−1η−m−λ1

(
f −
ηη + n − 1

η
f −
η + η

2
f −
η + β

2
f −

+ η−2
(

λ21 − (N − 2 − 2m)λ1 + 2(N − 2 − m)

− (m + 2)(N − 2 − m)

(
1 −

(
1 − a−

α

L
r−λ1

)p−1
) )

f −
)

.

Here we use (1.3), (3.2).
Finally, we substitute f −(η; b1) = f (η) − b1 f̃ (η) with r = (t + τ)1/2η. Then,

we use (1.5), (3.1), (3.2), (3.3), (3.4), (3.5) and there by we can simplify the above
inequality as follows.

U−
out,t − PαU

−
out

≤ −(t + τ)−
l
2−1η−m−λ

(
fηη + n − 1

η
fη + η

2
fη + β

2
f − b1

(
f̃ηη + n − 1

η
f̃η + η

2
f̃η + β̃

2
f̃

)
+ b1δ

2
f̃

− η−2(m + 2)(N − 2 − m)

(
1 −

(
1 − a−

α

L
(η0τ)−λ

)p−1
)

( f − b1 f̃ )

)

≤ −(t + τ)−
l
2−1η−m−λ

(
b1δ

2
f̃ − εη−2 f

)
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≤ −(t + τ)−
l
2−1η−m−λ

(
b1δ

2
d̃−(η0)η

−β̃ − εη−2d+η−β

)

= −(t + τ)−
l
2−1η−m−λ

(
b1δ

2
d̃−(η0)η

2−δ − εd+
)

η−2−β

≤ −(t + τ)−
l
2−1η−m−λ

(
b1δ

2
d̃−(η0)η

2−δ
1 − εd+

)
η−2−β

≤ −(t + τ)−
l
2−1η−m−λ

(
b1δ

2
d̃−(η0)η

2−δ
0 − εd+

)
η−2−β

< 0 for η ≥ η1

from (3.5) and (3.6).We complete the proof. ��

3.2 Inner sub-solution andmatching

We use the same inner sub-solution as in [5] Lemma 4.1.

Lemma 3.2 For any q > 0, we define

U−
in (r , t) := (t + τ)−qψ(r).

If τ is sufficiently large, then there exists a constant B1 > 0 satisfies B1τ
1/2 > 3

and c > 0 such that the following inequalities hold :
(i) U−

in,t < PαU
−
in for all r > 0 and t > 0.

(ii) U−
in (r , t) > 0 for all t > 0 and r ∈ [0, B1(t + τ)

1
2 ].

(iii) cU−
in (r , t) < U−

out(r , t) at r = B1(t + τ)
1
2 for all t > 0.

Proof We compute the same as in [5, 7] and see

U−
in,t − PαU

−
in = −q(t + τ)−q−1ψ(r) − (t + τ)−qPαψ(r)

= −q(t + τ)−q−1ψ(r)

< 0, for r > 0, t > 0,

from Lemma 2.3. Hence U−
in is a sub-solution of (2.1) which proves(i). Next, let us

shows (ii), (iii). We set

q := l − m − λ1

2
,

then by Lemma 2.3, we can choose positive constants c+
α such that

ψ(r) ≤ c+
α r

−m−λ1 for r ≥ 3. (3.8)

First, we fix η0 in Lemma 3.1 and take τ, b1 > 0 as sufficiently large such that the
condition in Lemma 3.1 holds. We found there exists the maximum point of f −(η)
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denote ηM from the construction of f − and Lemma 2.5 then we fix η1 < B1 < ηM .
finally, we take c > 0 satisfies

f −(B1) − cc+
α > 0. (3.9)

It is clear that

U−
in (r , t) > 0, t > 0, r ∈ [0, B1(t + τ)1/2].

Indeed, we recall

U−
in (r , t) := (t + τ)−qψ(r) > 0 for t ≥ 0, r ≥ 0,

which prove (ii) by using positivity of ψ(r).
Next, let us show U−

out(r1, t) − cU−
in (r1, t) > 0 at r1(t) := B1(t + τ)1/2 and

η1 := (t + τ)−1/2r1(t), namely at η1 = B1. We obtain

U−
out(r1(t), t) − cU−

in (r1(t), t)

= (t + τ)−
l
2 F−(η1) − c(t + τ)−qψ(r1)

≥ (t + τ)−
l
2 B−(m+λ)

1 f −(B1)

− c(t + τ)−
l−m−λ

2 c+
α r

−(m+λ)
1

= (t + τ)−
l
2

(
B−(m+λ)
1 f −(B1) − cc+

α B−(m+λ)
1

)

> (t + τ)−
l
2
(
f −(B1) − cc+

α

)
B−(m+λ)
1

> 0, for all t > 0,

by (3.8), (3.9) and B1τ
1/2 > 3, thus (iii) is proved. Then we complete the proof. ��

Proposition 3.3 Suppose that m + λ1 < l < m + λ2 + 2 and

U0(r) ≥ c1(1 + r)−l , r ≥ 0

with some c1 > 0. Then there exists a constant C ′
1, τ > 0 such that the solution of

(2.1) satisfies

‖U (·, t)‖ ≥ C ′
1(t + τ)−(l−m−λ1)/2 for all t > 0.

Proof Recall c > 0 satisfies f −(B1) − cc+
α > 0. Let U−

out(r , t) and U
−
in (r , t) be as in

Lemmas 3.1 and 3.2 respectively, and define

U−(r , t) :=
{
cU−

in (r , t) for r < r∗(t),
U−
out(r , t) for r ≥ r∗(t),
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where r∗(t) is defined

r∗(t) := sup{r > 0|cU−
in (ρ, t) > U−

out(ρ, t) for ρ ∈ [0, r)}.

From Lemma 3.2 (iii), we obtain

0 < r∗(t) < r1(t) < ∞ for all t > 0.

We note that r∗(t) ∈ (0,∞] is well defined since 0 < r∗(t) < ∞.
From the construction of U−, it attains the exact decay rate at the origin. Thus it is

shown that U−(r , t) is a sub-solution of (2.1) which satisfies

U−(0, t) = cU−
in (0, t)

= c(t + τ)−(l−m−λ1)/2ψ(0)

= c(t + τ)−(l−m−λ1)/2

for all t > 0.
We will show that the C−U−(r , 0) lies below the initial data U0(r) if we take a

constant C− > 0 sufficiently small. In fact, we can take a constant C− > 0 small
enough to hold that

C−U−(r , 0) ≤ U0(r), r ≥ 0.

Indeed, if we take C− > 0 so small that

C−cτ−(l−m−λ1)/2 ≤ c1 (3.10)

and

c1 − C−d+ > 0 (3.11)

Then we find

C−cU−
in (r , 0) ≤ C−cU−

in (0, 0)

≤ C−cτ−(l−m−λ1)/2ψ(0)

= C−cτ−(l−m−λ1)/2

≤ c1 ≤ U0(r) for 0 ≤ r ≤ r∗(0)

from (3.10) and

U0(r) − C−U−
out(r , 0)

≥ c1(1 + r)−l − C−U−
out(r , 0)

= c1(1 + r)−l − C−τ− l
2 F−(η)
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= c1(1 + r)−l − C−τ− l
2 η−m−λ1( f (η) − b f̃ (η))

> c1(1 + r)−l − C−τ− l
2 η−m−λ1 f (η)

≥ c1(1 + r)−l − C−τ− l
2 η−m−λ1d+η−(l−m−λ1)

= c1(1 + r)−l − C−d+τ− l
2 (τ−1/2r)−l

= c1(1 + r)−l − C−d+r−l

> (c1 − C−d+)r−l

≥ 0 for r ≥ r∗(0)

by using (3.3) and (3.11). Then the initial condition is satisfied by the above argument,
and by the comparison principle, we obtain

C−U−(r , t) ≤ U (r , t) for r > 0, t > 0.

We obtain

‖U (·, t)‖L∞ ≥ ‖C−U−(·, t)‖L∞ ≥ C−cU−(0, t) = C−c(t + τ)−(l−m−λ1)/2

Then, we replace C−c with C ′
1, we finish the proof. ��

Proof of Theorem 1.1 We take

U0(r) := min|x |=r
(u0(x) − ũ0(x)), r ≥ 0.

Then by Lemma 2.2, Proposition 3.3, we have

‖u(·, t) − ũ(·, t)‖L∞ ≥ C1(t + 3)−(l−m−λ1)/2

for all t > 0 with some constant C1 > 0. ��

4 Upper bound for the critical nonlinearity

In the following sections, we always assume the critical case p = pc.
In this section, we prove that there exists a upper bound of the convergence rate

which applies to an initial data close from above or below to a stationary solution in
the case ũ = ϕα . First, we recall the initial value problem (2.10):

{
fηη + n−1

η
fη + η

2 fη + β
2 f = 0, η > 0,

f (0) = a0 > 0, fη(0) = 0,

where n = N − 2(m + λ), β = l − m − λ,m + λ < l < m + λ + 2.
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4.1 Outer super-solution

In this subsection, we will construct a suitable super-solution of (2.1) in the same way
as that in [7, 8].

Lemma 4.1 We define

U+
out(r , t) := (t + τ)−

l
2 F+(η) = (t + τ)−

l
2 η−m−λ f (η),

where τ is a positive constant determined later.Then U+
out is a super-solution of (2.1).

Proof Although the proof proceeds the same as in [7, 8] Lemma 3.1, we show it here
for the reader’s convenience. We note that F+(η) satisfies

F+
ηη + N − 1

η
F+

η + η

2
F+

η + l

2
F+ + pL p−1

η2
F+ = 0.

Then we have

U+
out,t − PαU

+
out

= −(t + τ)−
l
2−1

(
l

2
F + η

2
F+

η + F+
ηη + N − 1

η
F+

η + p(t + τ)ϕ p−1
α F+

)

= −(t + τ)−
l
2−1

(
− pL p−1

η2
F+(η) + p(t + τ)ϕ p−1

α F+(η)

)

= (t + τ)−
l
2−1

(
p(t + τ)(ϕ

p−1∞ (r) − ϕ p−1
α (r))

)
F+(η)

= (t + τ)−
l
2−1

(
p(t + τ)(ϕ

p−1∞ (r) − ϕ p−1
α (r))

)
η−m−λ f (η).

Then the ordering property of {ϕα} and the positivity of f (η), we have

U+
out,t − PαU

+
out > 0

for all r , t > 0. ��

4.2 Inner super-solution andmatching

We use the same inner super-solution in [19] Lemma 3.2 which is appeared in the
formal analysis from (2.9).

Lemma 4.2 For q > 0. We define

U+
in (r , t) := (t + τ)−q(log(B3(t + τ)1/2))−1ψ(r)

− (t + τ)−q−1
(
q(log(B3(t + τ)1/2))−1 + 1

2
(log(B3(t + τ)1/2))−2

)
�(r),
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where q = (l − m − λ)/2. If τ > 0 is sufficiently large, then there exist constants
B3 > 0 satisfies B3τ

1/2 > 3 and c > 0 such that the following inequalities hold.

(i) U+
in,t ≥ PαU

+
in for all r > 0 and t > 0.

(ii) U+
in (r , t) > 0 for all t > 0 and r ∈ [0, B3(t + τ)

1
2 ].

(iii) U+
in (r , t) > cU+

out(r , t) at r = B3(t + τ)
1
2 for all t > 0.

Proof Although proof is similar manner in [19] Lemma 3.2, we prove the Lemma here
for the reader’s convenience. First, we prove (i) for any B3 > 0 determined later.

U+
in,t − PαU

+
in = −q(t + τ)−q−1(log B3(t + τ)1/2)−1ψ(r)

+ (q + 1)(t + τ)−q−2
(
q(log(B3(t + τ)1/2))−1 + 1

2
(log(B3(t + τ)1/2))−2

)
�(r)

− (t + τ)−q
(
(log(B3(t + τ)1/2))−2B−1

3 (t + τ)−1/2B3/2(t + τ)−1/2
)

ψ(r)

+ (t + τ)−q−1
(
q(log(B3(t + τ)1/2))−2B−1

3 (t + τ)−1/2B3/2(t + τ)−1/2
)

�(r)

+ (t + τ)−q−1
(
(log(B3(t + τ)1/2))−3B−1

3 (t + τ)−1/2B3/2(t + τ)−1/2
)

�(r)

− (t + τ)−q(log(B3(t + τ)1/2))−1Pαψ(r)

+ (t + τ)−q−1
(
q(log(B3(t + τ)1/2))−1 + 1

2
(log(B3(t + τ)1/2))−2

)
Pα�(r)

= −q(t + τ)−q−1(log B3(t + τ)1/2)−1ψ(r)

+ (q + 1)(t + τ)−q−2
(
q(log(B3(t + τ)1/2))−1 + 1

2
(log(B3(t + τ)1/2))−2

)
�(r)

− 1

2
(t + τ)−q−1 (

(log(B3(t + τ)1/2))−2) ψ(r)

+ 1

2
(t + τ)−q−2 (

q(log(B3(t + τ)1/2))−2)�(r)

+ 1

2
(t + τ)−q−2 (

(log(B3(t + τ)1/2))−3) �(r)

+ (t + τ)−q−1
(
q(log(B3(t + τ)1/2))−1 + 1

2
(log(B3(t + τ)1/2))−2

)
ψ(r)

= (q + 1)(t + τ)−q−2
(
q(log(B3(t + τ)1/2))−1 + 1

2
(log(B3(t + τ)1/2))−2

)
�(r)

+ 1

2
(t + τ)−q−2 (

q(log(B3(t + τ)1/2))−2 + (log(B3(t + τ)1/2))−3) �(r)

≥ 0, for all r ≥ 0, t > 0,

by Lemma 2.3 and B3τ
1/2 > 3. Hence U+

in is a super-solution of (2.1).
Next, let us show (ii) and (iii). By Lemmas 2.3 and 2.4, we can choose positive

constant c−
α and C+

α such that

ψ(r) ≥ c−
α r

−m−λ log r for r ≥ 3, (4.1)
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and

�(r) ≤ C+
α r

−m−λ+2 log r for r ≥ 3, (4.2)

respectively. Then we fix B3 > 0 such that

c−
α − C+

α

(
q + 1

2

)
B2
3 > 0. (4.3)

Next, we take τ > 1 so large that

B3τ
1
2 > 3 (4.4)

and satisfies

τ −
(
q + 1

2

)
�(3)

ψ(3)
> 0. (4.5)

Finally c > 0 so small such that

c−
α − C+

α

(
q + 1

2

)
B2
3 > c f (B3). (4.6)

Let us nowverify (ii) and (iii). For r ∈ [0, 3], it follows fromdue to themonotonicity
of �/ψ , positivity of ψ(r) (see Lemma 2.4 and Remark 2.1), (4.4) and (4.5) that

U+
in (r , t) = (t + τ)−q(log(B3(t + τ)1/2))−1ψ(r)

− (t + τ)−q−1
(
q(log(B3(t + τ)1/2))−1 + 1

2
(log(B3(t + τ)1/2))−2

)
�(r)

= (t + τ)−q−1(log(B3(t + τ)1/2))−1ψ(r)(
(t + τ) −

(
q + 1

2
(log(B3(t + τ)1/2))−1

)
�(r)

ψ(r)

)

≥ (t + τ)−q−1(log(B3(t + τ)1/2))−1ψ(r)

(
τ −

(
q + 1

2

)
�(r)

ψ(r)

)

≥ (t + τ)−q−1(log(B3(t + τ)1/2))−1ψ(r)

(
τ −

(
q + 1

2

)
�(3)

ψ(3)

)

> 0 for all t > 0.

For r ∈ [3, B3(t + τ)
1
2 ], (4.1), (4.2), (4.3) and (4.4) yield

U+
in (r , t) = (t + τ)−q(log(B3(t + τ)1/2))−1ψ(r)

− (t + τ)−q−1
(
q(log(B3(t + τ)1/2))−1 + 1

2
(log(B3(t + τ)1/2))−2

)
�(r)
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= (t + τ)−q(log(B3(t + τ)1/2))−1

(
ψ(r) −

(
q + 1

2
(log(B3(t + τ)1/2))−1

)
(t + τ)−1�(r)

)

≥ (t + τ)−q(log(B3(t + τ)1/2))−1

(
c−
α − C+

α

(
q + 1

2
(log B3τ

1/2)−1
)
r2(t + τ)−1

)
r−(m+λ) log r

≥ (t + τ)−q(log(B3(t + τ)1/2))−1
(
c−
α − C+

α

(
q + 1

2

)
B2
3

)
r−(m+λ) log r

> 0 for all t > 0,

which proves (ii). This also shows in view of (4.1), (4.2), (4.6) and the definition of q
that

U+
in (r , t) = (t + τ)−q(log(B3(t + τ)1/2))−1ψ(r)

− (t + τ)−q−1
(
q(log(B3(t + τ)1/2))−1 + 1

2
(log(B3(t + τ)1/2))−2

)
�(r)

≥ (t + τ)−q(log(B3(t + τ)1/2))−1
(
c−
α − C+

α

(
q + 1

2

)
B2
3

)
r−(m+λ) log r

= (t + τ)−q(log r)−1
(
c−
α − C+

α

(
q + 1

2

)
B2
3

)
r−(m+λ) log r

= (t + τ)−(l−m−λ)/2
(
c−
α − C+

α

(
q + 1

2

)
B2
3

)
B−(m+λ)
3 (t + τ)−(m+λ)/2

= (t + τ)−l/2
(
c−
α − C+

α

(
q + 1

2

)
B2
3

)
B−(m+λ)
3

> c(t + τ)−l/2B−(m+λ)
3 f (B3)

at r = B3(t + τ)
1
2 . On the other hand, we have at r = B3(t + τ)

1
2 that is to say at

η = B3,

cU+
out(r , t) = c(t + τ)−l/2F+(η)

= c(t + τ)−l/2B−(m+λ)
3 f (B3).

Hence we obtain by (4.6)

cU+
out(r , t) < U+

in (r , t) at r = B3(t + τ)
1
2 , t > 0.

Thus (iii) is proved. ��
Since the super-solution U+

in (r , t) decays too slowly as r → ∞, we shall only use
it in the inner region r ≤ r∗(t)with suitable positive function r∗(t) noted in the above.
In the outer region, we shall work with a different class of super-solutions defined in
Lemma 4.1 is already mentioned.
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Proposition 4.3 Suppose that m + λ < l < m + λ + 2 and

0 < U0(r) ≤ c2(1 + r)−l , r ≥ 0

with some c2 > 0. Then there exist constant C ′
2, τ > 0 such that the solution of (2.1)

satisfies

‖U (·, t)‖L∞ ≤ C ′
2U

+(0, t) = C ′
2(t + τ)(l−m−λ)/2(log(t + τ)1/2)−1 for all t > 0.

Proof Let U+
out and U

+
in be as given in Lemmas 4.1 and 4.2 respectively, and define

U+(r , t) :=
{
U+
in (r , t) for r < r∗(t),

cU+
out(r , t) for r ≥ r∗(t),

where c > 0 is given in Lemma 4.2. Put

r∗(t) := sup{r > 0 |U+
in (ρ, t) < cU+

out(ρ, t) for ρ ∈ [0, r ]}.

We note that r∗(t) ∈ (0,∞] is well defined for each c > 0, in view of Lemma 4.2
(iii). It is clear that

U+
r (0, t) = U+

in,r (0, t) = 0, t > 0.

Wewill show that the initial dataU0(r) lies belowC+U+(r , 0) if we take a constant
C+ > 0 sufficiently large. In fact, we see from Lemma 2.6 that for r ≥ r∗(0),

U+(r , 0) = cU+
out(r , 0)

= cτ− l
2 F+(η)

= cτ− l
2 η−(m+λ) f (η)

= cτ− l
2 τ−(m+λ)/2r−(m+λ) f (τ−1/2r)

Then, we show there exists C+ > 0 so large that

U0 = c1(1 + r)−l ≤ C+U+(r , 0) for r ≥ r∗(0).

Indeed, we can take C+ > 0 satisfies

C+d−(η2)ca0τ
m+λ
2 − c1 > 0,

where η2 = τ−1/2r∗(0) then we obtain
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C+U+(r , 0) −U0(r)

= C+ca0τ− l
2 τ (m+λ)/2r−(m+λ) f (η) − c1(1 + r)−l

≥ C+ca0τ− l−m−λ
2 r−(m+λ)d−(η2)η

−(l−m−λ) − c1(1 + r)−l

= C+d−(η2)ca0τ
− l−m−λ

2 (τ−1/2r)−l − c1(1 + r)−l

≥ Cd−(η2)
−ca0τ

m+λ
2 (1 + r)−l − c1(1 + r)−l

≥
(
C+d−(η2)ca0τ

m+λ
2 − c1

)
(1 + r)−l

≥ 0 for r ≥ r∗(0),

On the other hand, for 0 ≤ r ≤ r∗(0), we have

U+(r , 0) = U+
in (r , 0) = τ−q−1(log B3τ

1/2)−1ψ(r)(
τ −

(
q + 1

2
(log B3τ)1/2)−1

)
�(r)

ψ(r)

)
.

This shows thatU+(r , 0) is monotone decreasing in r ∈ [0, r∗(0)], andU+
in attains

its minimum at r = r∗(0) (see Lemma 2.4 and Remark 2.1). Hence it is sufficient to
choose C+ so large that

C+U+
in (r∗(0), 0) ≥ c1.

By taking larger C+ that satisfies the above conditions, we see that U0 satisfies

0 < U0(r) ≤ C+U+(r , 0), r ≥ 0.

Then by the comparison principle, we obtain

0 < U (r , t) ≤ C+U+(r , t), r ≥ 0, t > 0.

Since U+ attains the exact decay rate at the origin we retake C+ with C ′
2. we finish

the proof. ��
Proof of Theorem 1.2 We take

U0(r) := max|x |=r
|u0(x) − ũ0(x)| > 0, r ≥ 0.

Then by Lemma 2.1, Proposition 4.3, then U satisfies

‖U (·, t)‖L∞ ≤ C+U+(0, t) ≤ C(t + 3)−
l−m−λ

2 (log(t + 3)1/2)−1 for all t > 0,

with some constant C > 0. The proof is now complete. ��
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5 Lower bound for the critical exponent

In this section, we prove that there exists a lower bound of the convergence rate for
the critical case. To this end, we proceed to construct a sub-solution as proven in the
preceding section.

5.1 Outer sub-solution

In this subsection, we construct a suitable outer sub-solution of (2.1). First, we recall
that f satisfies

{
fηη + n−1

η
fη + η

2 fη + β
2 f = 0, η > 0,

f (0) = a0 > 0, fη(0) = 0.
(5.1)

where n = N − 2(m + λ), β = l − m − λ and satisfies 0 < β < 2. Although this
solution is used to make a super-solution of (2.1) used in the previous section. Then
we need to modify this solution to construct a sub-solution of (2.1) in an outer region
as follows.

We take δ > 0 satisfies δ < 2 − β and put β̃ = β + δ define f̃ satisfies

{
f̃ηη + n−1

η
f̃η + η

2 f̃η + β̃
2 f̃ = 0, η > 0,

f̃ (0) = a0 > 0, f̃η(0) = 0.
(5.2)

Lemma 5.1 We define

F−(η) := η−m−λ f −(η), f −(η) := f (η) − b2 f̃ (η)

and

U−
out(r , t) :=

{
0 for 0 ≤ η < η2,

(t + τ)− l
2 F−(η) = (t + τ)− l

2 η−m−λ f −(η) for η ≥ η2,

with η = (t + τ)−1/2r , where constants τ, b2, η2 > 0 are determined later. Then U−
out

is a sub-solution of (2.1).

Proof It is trivial that 0 is a sub-solution. Then we only check the case where η ≥ η2.
We fix any η0 > 1 and take any ε > 0 and sufficiently large τ > 0 satisfies

(m + 2)(N − 2 − m)

(
1 −

(
1 − a−

α

L
(η0τ)−1/2λ log(η0τ)

)p−1
)

< ε (5.3)

and

η0τ
1/2 > 3.
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We define

F−(η) := η−m−λ f −(η), f −(η) := f (η) − b2 f̃ (η).

where b2 is a constant determined later. There exist constants d−(η0) > 0 such that

f (η) ≥ d−(η0)η
−(l−m−λ) for η ≥ η0. (5.4)

and d+ > 0 such that

f̃ (η) ≤ d+η−(l−m−λ) for all η > 0 (5.5)

from Lemma 2.6. We take b2 > 0 satisfies

f (η0) − b2 f̃ (η0) ≤ 0 (5.6)

and

b2δ

2
d−(η0)η

2−δ
0 − εd+ > 0. (5.7)

Then we can define η2 ≥ η0 as

η2 := inf{ρ| f (η) − b2 f̃ (η) > 0 for η > ρ > η0} (5.8)

and find η2 is well defined from Lemma 2.6, (5.2) and (5.6).
First, for our problem’s general setting, the following results are obtained in the

same way as in the computation of Lemma 3.1.

U−
out,t − PαU

−
out

= −(t + τ)−
l
2−1

(
l

2
F− + η

2
F−

η + F−
ηη + N − 1

η
F−

η + p(t + τ)ϕ p−1
α F−

)

≤ −(t + τ)−
l
2−1η−m−λ

(
f −
ηη + N − 1 − 2(m + λ)

η
f −
η + η

2
f −
η + l − m − λ

2
f −

+ p(t + τ)
(
Lr−m − a−

α r
−m−λ log r

)p−1
f −

+ η−2 ((m + λ + 1)(m + λ) − (N − 1)(m + λ)) f −
)

= −(t + τ)−
l
2−1η−m−λ

(
f −
ηη + n − 1

η
f −
η + η

2
f −
η + β

2
f −

+ η−2
(

λ2 − (N − 2 − 2m)λ + 2(N − 2 − m)

− (m + 2)(N − 2 − m)

(
1 −

(
1 − a−

α

L
r−λ log r

)p−1
) )

f −
)

.
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Here we use (1.3) and (3.2). Next, we substitute f −(η) = f (η) − b2 f̃ (η) with
r = (t + τ)1/2η, we use m + λ = (N − 2)/2, (1.5), and find we only need to consider
the range η > η2 from (5.8). Thenwe can use (5.1), (5.2), (5.3), (5.4), (5.5) and deduce
the above inequality as follows.

U−
out,t − PαU

−
out

≤ −(t + τ)−
l
2−1η−m−λ

(
fηη + n − 1

η
fη + η

2
fη + β

2
f

− b2

(
f̃ηη + n − 1

η
f̃η + η

2
f̃η + β̃

2
f̃

)
+ b2δ

2
f̃

− η−2(m + 2)(N − 2 − m)

(
1 −

(
1 − a−

α

L
(η0τ)−λ log(η0τ)

)p−1
)

( f − b2 f̃ )

)

≤ −(t + τ)−
l
2−1η−m−λ

(
b2δ

2
f̃ − εη−2 f

)

≤ −(t + τ)−
l
2−1η−m−λ

(
b2δ

2
d−(η0)η

−β̃ − εη−2d+η−β

)

= −(t + τ)−
l
2−1η−m−λ

(
b2δ

2
d−(η0)η

2−δ − εd+
)

η−2−β

≤ −(t + τ)−
l
2−1η−m−λ

(
b2δ

2
d−(η0)η

2−δ
2 − εd+

)
η−2−β

≤ −(t + τ)−
l
2−1η−m−λ

(
b2δ

2
d−(η0)η

2−δ
0 − εd+

)
η−2−β

≤ 0 for η ≥ η2

by (5.7). We complete the proof. ��

5.2 Inner sub-solution andmatching

We use a similar inner sub-solution as in [19] Lemma 4.1.

Lemma 5.2 For any q > 0, we define

U−
in (r , t) := (t + τ)−q(log(t + τ)1/2)−1ψ(r).

If τ is sufficiently large, then there exist constants B2 > 0 satisfies B2τ
1/2 > 3 and

c > 0 such that the following inequalities hold :
(i) U−

in,t < PαU
−
in for all r > 0 and t > 0.

(ii) U−
in (r , t) > 0 for all t > 0 and r ∈ [0, B2(t + τ)

1
2 ].

(iii) cU−
in (r , t) < U−

out(r , t) at r = B2(t + τ)
1
2 for all t > 0.
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Proof The proof of (i) is computed in the same way as in [19] Lemma 4.1, Although
for the reader’s convenience, we will show it here.

U−
in,t − PαU

−
in = −q(t + τ)−q−1(log(t + τ)1/2)−1ψ(r)

− 1

2
(t + τ)−q−1/2((t + τ)1/2)−1(log(t + τ)1/2)−2ψ(r)

− (t + τ)−q(log(t + τ)1/2)−1Pαψ(r)

= −q(t + τ)−q−1(log(t + τ)1/2)−1ψ(r)

− 1

2
(t + τ)−q−1/2((t + τ)1/2)−1(log(t + τ)1/2)−2ψ(r)

< 0, for r > 0, t > 0,

by Lemma 2.3. Hence U−
in is a sub-solution of (2.1) which proves(i).

Next, let us shows (ii), (iii). We set

q := l − m − λ

2

in Lemma 5.2. By Lemma 2.3, We can choose positive constants c+
α such that

ψ(r) ≤ c+
α r

−m−λ log r for r ≥ 3, (5.9)

We found there exists the maximum point of F−(η) denote ηM from the construction
of F− and Lemma 2.6. First, we fix η2 < B2 < ηM . Next, we take c > 0 satisfies

f −(B2) − cc+
α (log B2 + 1) > 0 (5.10)

Finally, we take τ > 0 is sufficient large such that the condition in Lemma 5.1 holds
and

τ 1/2 > 3 (5.11)

It is clear that

U−
in (r , t) > 0, t > 0, r ∈ [0, B2(t + τ)1/2].

Indeed, we recall

U−
in (r , t) := (t + τ)−q(log(t + τ)1/2)−1ψ(r) > 0 for t ≥ 0, r ≥ 0,

which prove (ii) by using positivity of ψ(r) and (5.11).
Next, let us show U−

out(r2, t) − cU−
in (r2, t) > 0 at r2(t) := B2(t + τ)1/2 and

η3 := (t + τ)−1/2r2(t), namely at η3 = B2. Noting B2 > η2 > 1, we obtain
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U−
out(r2(t), t) − cU−

in (r2(t), t)

= (t + τ)−
l
2 F−(η3) − c(t + τ)−q(log(t + τ)1/2)−1ψ(r2)

≥ (t + τ)−
l
2 B−(m+λ)

2 f −(B2)

− c(t + τ)−
l−m−λ

2 (log(t + τ)1/2)−1c+
α r

−(m+λ)
2 log r2

= (t + τ)−
l
2

(
B−(m+λ)
2 f −(B2) − cc+

α B−(m+λ)
2

log B2(t + τ)1/2

log(t + τ)1/2

)

= (t + τ)−
l
2

(
f −(B2) − cc+

α

log B2 + log(t + τ)1/2

log(t + τ)1/2

)
B−(m+λ)
2

= (t + τ)−
l
2

(
f −(B2) − cc+

α

(
log B2

log(t + τ)1/2
+ 1

))
B−(m+λ)
2

> (t + τ)−
l
2

(
f −(B2) − cc+

α

(
log B2

log τ 1/2
+ 1

))
B−(m+λ)
2

> (t + τ)−
l
2 ( f −(B2) − cc+

α (log B2 + 1))B−(m+λ)
2

> 0, for all t > 0,

by (5.9), (5.10) and (5.11), thus (iii) is proved. Then we complete the proof. ��
Proposition 5.3 Suppose that m + λ < l < m + λ + 2 and

U0(r) ≥ c3(1 + r)−l , r ≥ 0

with some c3 > 0. Then there exist constant C ′
3, τ > 0 such that the solution of (2.1)

satisfies

‖U (·, t)‖L∞ ≥ C ′
3(t + τ)−

l−m−λ
2 (log(t + τ)1/2)−1 for all t > 0.

Proof LetU−
out(r , t) andU

−
in (r , t) be as in Lemmas 5.1 and 5.2 respectively, and define

U−(r , t) :=
{
cU−

in (r , t) for r < r∗(t),
U−
out(r , t) for r ≥ r∗(t),

where r∗(t) is defined

r∗(t) := sup{r > 0|cU−
in (ρ, t) > U−

out(ρ, t) for ρ ∈ [0, r)}.

From Lemma 5.2 (iii), we obtain

0 < r∗(t) < r2(t) < ∞ for all t > 0.

We note that r∗(t) ∈ (0,∞] is well defined since 0 < r∗(t) < ∞. From the construc-
tion of U−, it attains the exact decay rate at the origin. Thus it is shown that U−(r , t)
is a sub-solution of (2.1) which satisfies
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U−(0, t) = cU−
in (0, t)

= c(t + τ)−(l−m−λ)/2(log(t + τ)1/2)−1ψ(0)

= c(t + τ)−(l−m−λ)/2(log(t + τ)1/2)−1

for all t > 0.
We will show that the C−U−(r , 0) lies below the initial data U0(r) if we take a

constant C− > 0 sufficiently small. In fact, we can take a constant C− > 0 small
enough to hold that

C−U−(r , 0) ≤ U0(r), r ≥ 0.

Indeed, if we take C− > 0 so small that

C−cτ−1(log τ 1/2)−1 ≤ c3

and

C−d+r−l ≤ c3(1 + r)−l for r ≥ r∗(0).

Then we see that

C−U−(r , 0) = C−cU−
in (r , 0)

= C−cτ−(l−m−λ)/2(log τ 1/2)−1ψ(0)

= C−cτ−1(log τ 1/2)−1

≤ c3 ≤ U0(r) for 0 ≤ r ≤ r∗(0)

and

U0(r) − C−U−(r , 0)

≥ c3(1 + r)−l − C−U−
out(r , 0)

= c3(1 + r)−l − C−τ− l
2 F−(η)

= c3(1 + r)−l − C−τ− l
2 η−m−λ( f (η) − b2 f̃ (η))

> c3(1 + r)−l − C−τ− l
2 η−m−λ f (η)

≥ c3(1 + r)−l − C−τ− l
2 η−m−λd+η−(l−m−λ)

= c3(1 + r)−l − C−d+τ− l
2 (τ−1/2r)−l

= c3(1 + r)−l − C−d+r−l

≥ 0 for r ≥ r∗(0)
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by using (5.4). Then the initial condition is satisfied by the above argument, and by
the comparison principle, we obtain

C−U−(r , t) ≤ U (r , t) for r > 0, t > 0.

We replace C−c withC ′
3. SinceU

− attains the exact decay rate at the origin, we finish
the proof. ��
Proof of Theorem 1.3 We take

U0(r) := min|x |=r
|u0(x) − ũ0(x)| > 0, r ≥ 0.

Then by Lemma 2.2, Proposition 5.3, we have

‖u(·, t) − ũ(·, t)‖L∞ ≥ C ′
3U

−(0, t) ≥ C3(t + 3)−(l−m−λ)(log(t + 3)1/2)−1

for all t > 0 with some constant C3 > 0. ��
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