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Abstract
In this paper we study the stochastic homogenization of reaction–diffusion problems
whose the diffusion terms are gradients of random nonlocal convex and Fréchet-
differentiable functionals and the reaction terms are random CP-structured reaction
functionals as introduced in Anza Hafsa et al. (Asymptot Anal 115(3–4):169–221,
2019). We provide an application to spatial population dynamics.
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1 Introduction

Let (�,F ,P) be a complete probability space, let T > 0 and let O ⊂ Rd be a
bounded open domain with Lipschitz boundary. In this paper we study the stochastic
homogenization of reaction–diffusion problems of the form:

(Pε,ω)

⎧
⎪⎨

⎪⎩

duω
ε

dt
(t) + ∇Eε(ω, uω

ε (t)) = Fε(ω, t, uω
ε (t)) forL 1-a.a. t ∈ [0, T ]

uω
ε (0) = uω

0,ε ∈ L2(O),

(1.1)
where, for each ε > 0, the diffusion term is the gradient of a random nonlocal func-
tional Eε : � × L2(O) → [0,∞[ of type:

Eε(ω, u) = 1

4εd

∫

O

∫

O
J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)(
u(x) − u(y)

ε

)2

dxdy + Dε(ω, u)

(1.2)
with J : Rd × Rd × Rd → [0,∞[ and Dε : � × L2(O) → R a nonlocal func-
tional characterizing the fact that (Pε,ω) is of Neumann–Cauchy nonhomogenous
or Dirichlet–Cauchy type, and the reaction term is a random CP-structured reaction
functional Fε : � × [0, T ] × L2(O) → L2(O), see Definition 2.9.

Roughly, our main result (see Theorem 3.19) is to prove that as ε → 0, (Pε,ω)

converges almost surely, in a variational sense, to

(Phom,ω)

⎧
⎪⎨

⎪⎩

duω

dt
(t) + ∇Ehom(ω, uω(t)) = Gω(t, uω(t)) forL 1-a.a. t ∈ [0, T ]

uω(0) = uω
0 ∈ dom(Ehom(ω, ·)),

(1.3)
where uω

0,ε⇀uω
0 in L2(O), Fε(ω, ·, uω

ε )⇀Gω(·, uω) in L2([0, T ]; L2(O))withGω ∈
F(R1)-(R2) (see the definition inSect. 2.1). The functionalEhom : �×L2(O) → [0,∞]

123



Stochastic homogenization of nonlocal reaction… 417

is the almost sure Mosco-limit of Eε (see Theorem 4.8) and is given in its domain by

Ehom(ω, u) =
∫

O
fhom(ω,∇u(x))dx

with fhom : � × Rd → [0,∞[ a quadratic function defined as the limit of a suitable
subadditive process (see Propositions 3.14 and 3.17).

To our knowledge, in a deterministic framework, the convergence of problems of
type (1.1) without reaction term and with J depending only on the third variable
has been firstly addressed by Andreu, Mazón, Rossi and Toledo in [6, 7] (see also
[8]) using semi-group theory and the convergence of their resolvents. They prove
the convergence to a local Cauchy problem. In the scope of homogenization, the
convergence of nonlocal energies of type (1.2) has been recently studied by Braides
and Piatnitski in [13] in the periodic case (see also [22]), and in [12] in a stochastic
case (see also [23]). For a general�-convergence approach to non-local to local limits,
we refer to the book [1] (see, in particular, [1, Chapter 9] which is devoted to non-local
to local parabolic problems).

In ourwork, under a stationarity hypothesis on J butwithout ergodicity assumption,
we establish the almost sure Mosco convergence of such nonlocal functionals (see
Theorem 4.8) yielding, as a consequence, the almost sure convergence of (Pε,ω)

to (Phom,ω) with Neumann–Cauchy homogeneous or Dirichlet–Cauchy boundary
conditions (see Theorem 3.19).

Nonlocal problems of type (1.1) are well adapted for spatial population dynamics
where the density J in (1.2) accounts for the number of individuals at time t in O
which jump from y to x . The nonlocal diffusion term can be explained for example by
the dispersion of population of species (seeds, larvae) by wind or water, the population
can be transported over long distances which increases their survival and reproduction
(see [20, 21, 24]). In Sect. 5 we consider such a population dynamics model with a
reaction term of the form:

Fε(ω, t, u)(x) = r
(
ω, t,

x

ε

)
u(x)

(

1 − u(x)

K
(
ω, t, x

ε

)

)

− hu(x),

with h ≥ 0 and r , K ∈ L∞(�×[0, T ]×Rd) such that r > 0 and K ≥ γ > 0, where
r is the growth rate, K is the carrying capacity and h the percentage of harversting.
By applying our convergence result, we show (see Corollary 5.8) that as ε → 0,
the nonlocal reaction–diffusion problems (Pε,ω) almost surely converge to a local
reaction–diffusion problem of type (1.3) with Gω = Fhom(ω, ·, ·) where

Fhom(ω, t, u)(x) := rhom(ω, t)u(x)

(

1 − u(x)

Khom(ω, t)

)

− hu(x),
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where rhom(ω, ·) : [0, T ] → [0,∞[ and Khom(ω, ·) : [0, T ] → [0,∞[ are given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

rhom(ω, t) = E
I
(∫

]0,1[d r(·, t, y)dy
)

(ω)

Khom(ω, t) =
E
I
(∫

]0,1[d r(·, t, y)dy
)

(ω)

E
I
(∫

]0,1[d
r(·,t,y)
K (·,t,y)dy

)
(ω)

with E
I being the conditional mathematical expectation with respect to σ -algebra

J of invariant sets with respect to the dynamical system (�,F ,P, {Tz}z∈Zd ) (see
Sect. 3.1 for more details). The distinguishing feature here is that in the formula of the
homogenized reaction functional, the homogenized carrying capacity Khom is given
by a mixture between carrying capacity and growth rate.

1.1 Plan of the paper

Section 2 is devoted to existence, uniqueness for nonlocal reaction diffusion prob-
lems of gradient flow type, and boundedness of the solutions when the reaction term
is a CP-structured reaction functional (see Definition 2.9 and Corollary 2.11). For
this, we develop the nonlocal framework for dealing with Neumann–Cauchy homo-
geneous (see Sect. 2.1.1), nonhomogeneous (see Sect. 2.1.2) and Dirichlet–Cauchy
(see 2.1.3) nonlocal reaction–diffusion problems. In addition, in Sect. 2.2 we treat the
invasion property for for nonlocal problems with CP-structured autonomous reaction
functionals.

Section 3 is devoted to the statement of the main result. In Sect. 3.1 we precise the
probability setting and recall some tools from ergodic theory (see Definitions 3.1–3.2
and 3.5–3.6 and Theorem 3.7). By applying Corollary 2.11 we obtain existence and
uniqueness of bounded solutions for random Neumann–Cauchy homogeneous and
Dirichlet–Cauchy nonlocal reaction–diffusion problems: this is discribed in Sect. 3.2.
The main result of the paper is stated in Sect. 3.3 (see Theorem 3.19). To identify the
homogenized diffusion term we need a suitable subadditive theorem that we state and
prove in Sect. 3.3 (see Proposition 3.17). Note that we do not deal with the conver-
gence of Neumann–Cauchy nonhomogeneous nonlocal reaction–diffusion problems.
Indeed, the mathematical analysis seems technically more tricky but we hope to cover
this case in the future.

Section 4 is devoted to the proof of Theorem 3.19. Its proof, which is given in
Sect. 4.4, follows from two theorems. The first one (see Theorem 4.1) is an abstract
convergence result for passing fromnonlocal to local: it is stated andproved inSect. 4.1.
The second one (see Theorem 4.8) establishes the almost sure Mosco-convergence of
the energies corresponding to the diffusion term: it is stated and proved in Sect. 4.3.
The proof of Theorem 4.8 uses Proposition 3.17 together with some lemmas. These
lemmas are stated and proved in Sect. 4.2.

Section 5 is devoted to the application of the results to spatial population dynamics.
In Sect. 5.1 we begin by giving a heuristic derivation of the model. Then, in Sect. 5.1,
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we precise the mathematical description of the model in showing that it can studied
in the general framework developed in Sects. 2–3. Finally, by applying Theorem 3.19,
in Sect. 5.3 we obtain the homogenized model (see Corollary 5.8). Besides popula-
tion dynamics, another example of field of application (not adressed in our paper) is
peridynamics, for which we refer to [11, 18].

For convenience of the reader, in the appendix we recall some classical definitions
and results that we use in the paper.

Notation. Throughout the paper we will use the following notation.

• Given x0 ∈ Rd we denote the open (resp. closed) ball of radius r > 0 centered at
x0 by Br (x0) (resp. Br (x0)).

• The closure (resp. interior) of a set A ⊂ Rd is denoted by A (resp. int(A)).
• The Lebesgue measure on Rd with d ∈ N∗ is denoted byL d and for each Borel
set A ⊂ Rd , the measure of A with respect toL d is denoted by L d(A).

• The class of bounded Borel subsets of Rd is denoted byBb(R
d).

• The space of continuous piecewise affine functions from O to R is denoted by
Aff(O).

• Given (a, b) ∈ R2 with a ≤ b, the space of u ∈ L2(O) such that a ≤ u ≤ b is
denoted by L2(O; [a, b]).

• The space of continuous functions from [0, T ] to L2(O) is denoted by
C([0, T ]; L2(O)).

• The space of absolutely continuous functions from [0, T ] to L2(O) is denoted by
AC([0, T ]; L2(O)).

• The class of reaction functionals F : [0, T ]× L2(O) → L2(O) satisfying R1–R1
is denoted byF(R1)-(R2).

• The class of CP-structured reaction functionals F : [0, T ] × L2(O) → L2(O) is
denoted byFCP.

• Given {un}n ⊂ C([0, T ]; L2(O)), by un → u in C([0, T ]; L2(O)) we mean
that lim

n→∞ supt∈[0,T ] ‖un(t) − u(t)‖L2(O) = 0. By dun
dt ⇀ du

dt in L2([0, T ]; L2(O))

we mean that for every v ∈ L2([0, T ]; L2(O)),
∫ T
0 〈 dundt (t), v(t)〉dt →

∫ T
0 〈 dudt (t), v(t)〉dt as n → ∞, where 〈·, ·〉 denotes the scalar product in L2(O).

2 Nonlocal reaction–diffusion problems of gradient flow type

2.1 Existence and uniqueness of bounded solutions for nonlocal problems with
CP-structured reaction functionals

Given T > 0 and E : L2(O) → [0,∞[ a convex and Fréchet-differentiable function,
we consider the following reaction–diffusion problem of gradient flow type:

(Pu0,F
E )

⎧
⎪⎨

⎪⎩

du

dt
(t) + ∇E (u(t)) = F(t, u(t)) forL 1-a.a. t ∈ [0, T ]

u(0) = u0 ∈ L2(O),
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420 O. Anza Hafsa et al.

where the reaction term F : [0, T ] × L2(O) → L2(O) is a Borel measurable map
satisfying the following two conditions:

(R1) there exists L ∈ L2([0, T ]) such that for every (u, v) ∈ L2(O) × L2(O) and
every t ∈ [0, T ],

‖F(t, u) − F(t, v)‖L2(O) ≤ L(t)‖u − v‖L2(O);

(R2) ‖F(·, 0)‖L2(O) ∈ L2([0, T ]).
From now on, the class of Borel measurable maps F : [0, T ] × L2(O) → L2(O)

verifying (R1)–(R2) is denoted byF(R1)-(R2). The following result is a straightforward
consequence of [4, Theorem 2.2, p. 16].

Theorem 2.1 If u0 ∈ L2(O) and F ∈ F(R1)-(R2) then (Pu0,F
E ) admits a unique

solution u ∈ AC([0, T ]; L2(O)). Moreover, if F(·, u(·)) ∈ AC([0, T ]; L2(O))

then u admits a right derivative d+u
dt (t) at every t ∈]0, T [ which satisfies d+u

dt (t) +
∇E (u(t)) = F(t, u(t)).

In this paper we consider reaction–diffusion problems with nonlocal diffusion
terms, i.e. when E : L2(O) → [0,∞[ is a nonlocal functional.

2.1.1 Neumann–Cauchy homogeneous nonlocal problems

Let J : Rd × Rd × Rd → [0,∞[ be a Borel measurable function satisfying the
following conditions:

(NL1) J is symmetric, i.e. for every (x, y) ∈ Rd × Rd ,

J (x, y, x − y) = J (y, x, y − x);

(NL2) there exists a (B(Rd),B(R))-measurable function J : Rd → [0,∞[ with
supp(J ) = BRJ (0) for some RJ > 0 and

∫

Rd J (ξ)dξ = 1 such that for every
(x, y, ξ) ∈ Rd × Rd × Rd ,

0 ≤ J (x, y, ξ) ≤ J (ξ).

Remark 2.2 The function J is assumed to be compactly supported for simplifying
certain calculations. Without major difficulties, by using a truncation argument, we
could take J growing as 1

1+|ξ |d+2+κ with κ > 0.

Let O ⊂ Rd be a bounded open set and letJ : L2(O) → [0,∞[ be defined by

J (u) := 1

4

∫

O

∫

O
J (x, y, x − y)(u(x) − u(y))2dxdy.
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Stochastic homogenization of nonlocal reaction… 421

It is easy to see that J is convex and Fréchet-differentiable, and by the Riesz repre-
sentation theorem, for each u ∈ L2(O), the gradient ofJ at u, denoted by ∇J (u),
is such that

J ′(u)(v) = 〈∇J (u), v〉 =
∫

O
∇J (u)(x)v(x)dx for all v ∈ L2(O),

where ∇J (u) ∈ L2(O) and is given by

∇J (u)(x) = −
∫

O
J (x, y, x − y)(u(y) − u(x))dy.

The problem (Pu0,F
J ), which corresponds to (Pu0,F

E ) with E = J , is a nonlo-
cal reaction–diffusion problem of gradient flow type that is called “Neumann–Cauchy
homogeneous nonlocal reaction–diffusion problem”. Note that (Pu0,F

J ) can be rewrit-
ten as follows:

(Pu0,F
J )

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
(t, x) −

∫

O
J (x, y, x − y)(u(t, y) − u(t, x))dy = F(t, u(t, x)) in [0, T ] × O

u(0, ·) = u0 ∈ L2(O).

Remark 2.3 The term “Neumann–Cauchy homogeneous nonlocal problem” refers to
homogeneous Neumann–Cauchy boundary conditions for local reaction–diffusion
problems. Indeed, by suitably rescaling J and K , it can be established that the solutions
of the rescaled corresponding problems converges to the solution of a “standard” local
reaction–diffusion problem with the homogeneous Neumann boundary condition (see
[8, Chapter 3, Sect. 3.1, p. 41] for J = J and F = 0).

2.1.2 Neumann–Cauchy nonhomogeneous nonlocal problems

Let h ∈ L1(Rd\O), let K ∈ L∞(O × Rd) and let Nh,K : L2(O) → R be defined
by

Nh,K (u) :=
∫

O

(∫

Rd\O
K (x, x − y)h(y)dy

)

u(x)dx .

It is easy to see that Nh,K is a continuous linear form and for every u ∈ L2(O),
∇Nh,K (u) ∈ L2(O) and is given by

∇Nh,K (u)(x) =
∫

Rd\O
K (x, x − y)h(y)dy.

The problem (Pu0,F
J−Nh,K

), which corresponds to (Pu0,F
E ) with E = J −

Nh,K , is a nonlocal reaction–diffusion problem of gradient flow type that is called

123



422 O. Anza Hafsa et al.

“Neumann–Cauchynonhomogeneous nonlocal reaction–diffusionproblem”.Note that
(Pu0,F

J−Nh,K
) can be rewritten as follows:

(Pu0,F
J−Nh,K

)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) −

∫

O
J (x, y, x − y)(u(t, y) − u(t, x))dy

−
∫

Rd\O
K (x, x − y)h(y)dy = F(t, u(t, x)) in [0, T ] × O

u(0, ·) = u0 ∈ L2(O).

Remark 2.4 The term “Neumann–Cauchy nonhomogeneous nonlocal problem” refers
to nonhomogeneous Neumann–Cauchy boundary conditions for local reaction–
diffusion problems. Indeed, by suitably rescaling J and K , it can be established that
the solutions of the rescaled corresponding problems converges to the solution of
a “standard” local reaction–diffusion problem with the nonhomogeneous Neumann
boundary condition du

dn = h where n denotes the unit outward normal to ∂� (see [8,
Chapter 3, Sect. 3.2, p. 45] for J = J and F = 0).

2.1.3 Dirichlet–Cauchy nonlocal problems

Set OJ := O+supp(J ) = O+BRJ (0), let g ∈ L2(OJ\O) and letDg : L2(O) → R

be defined by

Dg(u) := 1

2

∫

O

∫

OJ \O
J (x, y, x − y)(g(y) − u(x))2dxdy.

It is easy to see that Dg is convex and Fréchet-differentiable, and for every u ∈
L2(O), ∇Dg(u) ∈ L2(O) and is given by

∇Dg(u)(x) = −
∫

OJ \O
J (x, y, x − y)(g(y) − u(x))dy.

The problem (Pu0,F
J+Dg

), which corresponds to (Pu0,F
E ) with E = J + Dg , is a

nonlocal reaction–diffusion problem of gradient flow type that is called “Dirichlet–
Cauchy nonlocal reaction–diffusion problem”. Note that (Pu0,F

J+Dg
) can be rewritten

as follows:
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Stochastic homogenization of nonlocal reaction… 423

(Pu0,F
J +Dg

)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) −

∫

O
J (x, y, x − y)(u(t, y) − u(t, x))dy

−
∫

OJ \O
J (x, y, x − y)(g(y) − u(t, x))dy = F(t, u(t, x)) in [0, T ] × O

u(0, ·) = u0 ∈ L2(O).

Remark 2.5 In the spirit of Remarks 2.3–2.4, the term “Dirichlet–Cauchy nonlocal
problem” refers to Dirichlet–Cauchy boundary conditions for local reaction–diffusion
problems (see [8, Chapter 2, Sect. 2.1, p. 31] for J = J and F = 0).

From the above it is clear thatJ ,J −Nh,K andJ +Dg are convex and Fréchet-
differentiable. Hence, as a direct consequence of Theorem 2.1 we have the folowing
result.

Corollary 2.6 Under the hypotheses of Theorem 2.1, the same conclusions hold for
E ∈ {J ,J − Nh,K ,J + Dg}.

We are going to establish that the solutions are bounded, then possibly signed
according to the initial conditions. We begin by establishing comparison principles.
For each u0 ∈ L2(O) and each F ∈ F(R1)-(R2), we consider the following two
problems:

(Pu0,F
E ,≤ )

⎧
⎪⎨

⎪⎩

du

dt
(t) + ∇E (u(t)) ≤ F(t, u(t)) for L 1-a.a. t ∈ [0, T ]

u(0) = u0 ∈ L2(O);

(Pu0,F
E ,≥ )

⎧
⎪⎨

⎪⎩

du

dt
(t) + ∇E (u(t)) ≥ F(t, u(t)) for L 1-a.a. t ∈ [0, T ]

u(0) = u0 ∈ L2(O).

Definition 2.7 A solution u ∈ C([0, T ]; L2(O)) of (Pu0,F
E ,≤ ) (resp. (Pu0,F

E ,≥ )) is called

a sub-solution (resp. super-solution) of (Pu0,F
E ). (If u is both a sub-solution and a

super-solution of (Pu0,F
E ) then u is solution of (Pu0,F

E ).)

Proposition 2.8 Let u0,1, u0,2 ∈ L2(O) and let F1, F2 ∈ F(R1)-(R2) be such

{
F1(t, u)(x) = f1(t, x, u(x))
F2(t, u)(x) = f2(t, x, u(x))

for all (t, u, x) ∈ [0, T ] × L2(O) × O, where f1, f2 : [0, T ] × Rd × R → R are
two Borel measurable functions with f2 Lipschitz continuous uniformly with respect
to (t, x), i.e. there exists L > 0 such that for every (ξ, ξ ′) ∈ R × R,

| f2(·, ·, ξ) − f2(·, ·, ξ ′)| ≤ L|ξ − ξ ′|. (2.1)
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424 O. Anza Hafsa et al.

Let K ∈ L∞(O ×Rd; [0,∞[), let h1, h2 ∈ L1(Rd\O) and let g1, g2 ∈ L2(OJ\O).

If u1 is a sub-solution of (P
u0,1,F1
J−Nh1,K

) (resp. (P
u0,1,F1
J+Dg1

)) and if u2 is a super-solution

of (P
u0,2,F2
J−Nh2,K

) (resp. (P
u0,2,F2
J+Dg2

)) then

u0,1 ≤ u0,2
h1 ≤ h2(resp.g1 ≤ g2)
F1 ≤ F2

⎫
⎬

⎭
�⇒ u1(t) ≤ u2(t) for all t ∈ [0, T ].

Proof of Proposition 2.8 We only give the proof in the Neumann–Cauchy case. (In the
Dirichlet–Cauchy case, the proof follows by similar arguments.) Set u := u2 − u1,
u+ := max(u, 0) and u− := max(−u, 0). To prove that u2(t) ≤ u1(t) for all t ∈
[0, T ], it suffices to show that

u−(t) = 0 for all t ∈ [0, T ]. (2.2)

First of all, it is clear that forL 1 ⊗ L d -a.e. (t, x) ∈ [0, T ] × O ,

∂u

∂t
(t, x) −

∫

O
J (x, y, x − y)(u(t, y) − u(t, x))dy

−
∫

Rd\O
K (x, x − y)(h2(y) − h1(y))dy

≥ f2(t, x, u2(t, x)) − f1(t, x, u1(t, x)).

Then, by taking u− ∈ L2(O) as a test function and by integrating over O ,

∫

O

∂u

∂t
(t, x)u−(t, x)dx −

∫

O

(∫

O
J (x, y, x − y)(u(t, y) − u(t, x))dy

)

u−(t, x)dx

−
∫

O

(∫

Rd\O
K (x, x − y)(h2(y) − h1(y))dy

)

u−(t, x)dx

≥
∫

O
( f2(t, x, u2(t, x)) − f1(t, x, u1(t, x)))u

−(t, x)dx .

But, taking (NL1) into account, by an easy computation we see that

−
∫

O

(∫

O
J (x, y, x − y)(u(t, y) − u(t, x))dy

)

u−(t, x)dx

= 1

2

∫

O

∫

O
J (x, y, x − y)(u(t, y) − u(t, x))(u−(t, y) − u−(t, x))dxdy,
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and consequently, since f2 ≥ f1,

∫

O

∂u

∂t
(t, x)u−(t, x)dx + 1

2

∫

O

∫

O
J (x, y, x − y)(u(t, y) − u(t, x))

×(u−(t, y) − u−(t, x))dxdy

−
∫

O

(∫

Rd\O
K (x, x − y)(h2(y) − h1(y))dy

)

u−(t, x)dx

≥
∫

O
( f2(t, x, u2(t, x)) − f2(t, x, u1(t, x)))u

−(t, x)dx .

Noticing that:

• u = u+ − u−;
• u+u− = ∂u+

∂t u− = 0;
• −u+(·, x)u−(·, y) ≤ 0 for all (x, y) ∈ O × O ,

and using (2.1) we deduce that

−
∫

O

∂u

∂t
(t, x)u−(t, x)dx − 1

2

∫

O

∫

O
J (x, y, x − y)(u−(t, y) − u−(t, x))2dxdy

−
∫

O

(∫

Rd\O
K (x, x − y)(h2(y) − h1(y))dy

)

u−(t, x)dx

≥ −L
∫

O

∣
∣u−(t, x)

∣
∣2dx

with L > 0 given by (2.1). As h2 ≥ h1 it follows that forL 1-a.e. t ∈ [0, T ],
1

2

d

dt

∫

O
|u−(t, x)

∣
∣2dx =

∫

O

∂u

∂t
(t, x)u−(t, x)dx ≤ L

∫

O

∣
∣u−(t, x)

∣
∣2dx,

and so, by integrating over s ∈ [0, T ],
∫

O
|u−(s, x)

∣
∣2dx ≤

∫

O
|u−(0, x)

∣
∣2dx + 2L

∫ t

0

(∫

O
|u−(t, x)

∣
∣2dx

)

dt for all s ∈ [0, T ].

Noticing that, since u− ∈ C([0, T ]; L2(O)), the function [0, T ] � s �→
∫

O |u−(s, x)
∣
∣2dx is continuous, from Grönwall’s lemma (see Lemma C.1 that we

apply with φ(s) = ∫

O |u−(s, x)
∣
∣2dx , a = ∫

O |u−(0, x)
∣
∣2dx and m(t) = 2L) we see

that ∫

O
|u−(s, x)

∣
∣2dx ≤ e2Ls

∫

O
|u−(0, x)

∣
∣2dx for all s ∈ [0, T ], (2.3)

and (2.2) follows since u−(0) = 0. ��
The following class of reaction functionals, called the class of CP-structured

reaction functionals and denoted by FCP, was introduced in [3] (see also [4,
Sect. 2.2.2, p. 27]).
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Definition 2.9 Amap F : [0, T ]×L2(O) → L2(O) is called a CP-structured reaction
functional if

F(t, u)(x) = f (t, x, u(x))

for all (t, u, x) ∈ [0, T ] × L2(O) × O , where f : [0, T ] × Rd × R → R is a Borel
measurable function satisfying the following three properties:

(CP1) f (t, x, ζ ) is locally Lipschitz continuous in ζ uniformlywith respect to (t, x) ∈
[0, T ] × Rd ;

(CP2) f (·, ·, 0) ∈ L2([0, T ]; L2(O));
(CP3) there exist f , f : [0, T ] × R → R with f ≤ 0 ≤ f and (ρ, ρ) ∈ R2 with

ρ ≤ ρ such that each of the two following ordinary differential equations

(ODE)

{
y′(t) = f (t, y(t)) forL 1-a.a. t ∈ [0, T ]
y(0) = ρ

(ODE)

{
y′(t) = f (t, y(t)) forL 1-a.a. t ∈ [0, T ]
y(0) = ρ

admits at least a solution, y for (ODE) and y for (ODE), satisfying

{
f (t, y(t)) ≤ f (t, x, y(t))
f (t, y(t)) ≥ f (t, x, y(t))

(2.4)

forL 1 ⊗ L 1-a.a. (t, x) ∈ [0, T ] × R.

Remark 2.10 Note thatFCP ⊂ F(R1)-(R2). From (CP3)we see that y and y are decreas-
ing and increasing respectively, and so y(T ) ≤ y(t) ≤ y(0) = ρ ≤ ρ ≤ y(0) ≤
y(t) ≤ y(T ) for all t ∈ [0, T ].

For each (a, b) ∈ R2 with a ≤ b, we consider the following problem:

(Pu0,F
E ,[a,b])

⎧
⎪⎨

⎪⎩

du

dt
(t) + ∇E (u(t)) = F(t, u(t)) for L 1-a.a. t ∈ [0, T ]

u(0) = u0 ∈ L2(O; [a, b]).

From Corollary 2.6 and Proposition 2.8 we can establish the existence and
uniqueness of bounded solutions for nonlocal problems with CP-structured reaction
functionals.
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Corollary 2.11 Let F ∈ FCP with ( f , f ), (ρ, ρ) and (y, y) given by (CP3), let u0 ∈
L2(O; [ρ, ρ]) and let g ∈ L2(OJ\O) be such that:

Ig := ess inf
x∈OJ \O

∫

OJ \O J (x, y, x − y)g(y)dy
∫

OJ \O J (x, y, x − y)dy
> −∞;

Sg := ess sup
x∈OJ \O

∫

OJ \O J (x, y, x − y)g(y)dy
∫

OJ \O J (x, y, x − y)dy
< ∞;

ρ ≤ Ig and ρ ≥ Sg. (2.5)

Then (Pu0,F
J ,[ρ,ρ]) (resp. (P

u0,F
J+Dg,[ρ,ρ])) admits aunique solutionu ∈ AC([0, T ]; L2(O))

such that
y(T ) ≤ y(t) ≤ u(t) ≤ y(t) ≤ y(T ) for all t ∈ [0, T ].

Moreover, if F(·, u(·)) ∈ AC([0, T ]; L2(O)) then u admits a right derivative d+u
dt (t)

at every t ∈ [0, T [ which satisfies d+u
dt (t) + ∇E (u(t)) = F(t, u(t)) with E = J

(resp. E = J + Dg).

Proof of Corollary 2.11 We only give the proof in the Neumann–Cauchy case. (In the
Dirichlet–Cauchy case, the proof follows by similar arguments, where in addition
the inequalities in (2.5) are used for dealing with the concept of sub-solution and
super-solution.) The proof is adapted from [3, Theorem 3.1] (see also [4, Corol-
lary 2.1, p. 39]).

Firstly, let f : [0, T ] × Rd × R → R be given by Definition 2.9. Taking (CP1)
into account, from McShane extension’s theorem we can assert that there exists f̂ :
[0, T ] × Rd × R → R such that:

• f̂ (t, x, ζ ) = f (t, x, ζ ) for all (t, x, ζ ) ∈ [0, T ] × Rd × [y(T ), y(T )];
• f̂ (t, x, ζ ) is Lipschitz continuous in ζ uniformly with respect to

(t, x) ∈ [0, T ] × Rd . (2.6)

Let F̂ : [0, T ] × L2(O) → L2(O) be given by F̂(t, u)(x) := f̂ (t, x, u(x)). Then,

it is clear that F̂ ∈ F(R1)-(R2). Hence, by Theorem 2.1, (Pu0,F̂
J ,[ρ,ρ]) admits a unique

solution û ∈ AC([0, T ]; L2(O)).
Secondly, by (CP3) we see that y and y are decreasing and increasing respectively,

so that, since y(0) = ρ ≤ ρ = y(0),

[y(t), y(t)] ⊂ [y(T ), y(T )] for all t ∈ [0, T ]. (2.7)

As y does not depend on the space variable we have ∇J (y(t)) = 0 for all t ∈ [0, T ].
Then, by using (2.4) and (ODE) in (CP3), F̂(t, y(t)) = F(t, y(t)) = f (t, ·, y(t)) ≥
f (t, y(t)) = y′(t) + ∇J (y(t)) for L 1-a.a. t ∈ [0, T ], and consequently, since

y(0) = ρ, y is sub-solution of (P
ρ,F̂

J ). But, û is a solution (and so a super-solution)
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of (Pu0,F̂
J ) and ρ ≤ u0, hence from Proposition 2.8 (that we apply with u0,1 = ρ,

u0,2 = u0, h1 = h2 = 0 and F1 = F2 = F̂) it follows that

y(t) ≤ û(t) for all t ∈ [0, T ]. (2.8)

In the same manner we can see that

y(t) ≥ û(t) for all t ∈ [0, T ]. (2.9)

From (2.7), (2.8) and (2.9) we deduce that

û(t) ∈ [y(t), y(t)] ⊂ [y(T ), y(T )] for all t ∈ [0, T ]. (2.10)

Finally, from (2.6) and (2.10) we see that F̂(t, û(t)) = F(t, û(t)) for all t ∈ [0, T ] so
that û is the unique solution of (Pu0,F

J ,[ρ,ρ]), and the proof is complete. ��

Remark 2.12 Under additional assumptions on the structure of F , we automatically
have F(·, u) ∈ AC([0, T ]; L2(O)) (see [3] or [4, Sect. 2.2.2, p. 27] and the example
treated in Sect. 5).

Remark 2.13 Roughly, the inequalities in (2.5)mean that ρ and ρ bound the proportion
of g with respect to the density J in a neighborhood of the boundary ∂�. Physically,
this implies that there is no dissipation of the energy along the trajectories y and y.

Indeed, we can show that ∇E(y(t)) ≤ 0 (resp. ∇E(y(t)) ≥ 0) so that d
dt E(y(t)) =

∇E(y(t)) dydt ≥ 0 (resp. d
dt E(y(t)) = ∇E(y(t)) dydt ≥ 0) because y is decreasing (resp.

y is increasing).

2.2 Invasion property for nonlocal problems with CP-structured autonomous
reaction functionals

Let F : L2(O) → L2(O) be such that F ∈ FCP with ( f , f ), (ρ, ρ) and (y, y) given

by (CP3), let u0 ∈ L2(O; [ρ, ρ]) and let g ∈ L2(OJ\O) be such that (2.5) holds.

From Corollary 2.11 we can assert that (Pu0,F
J ,[ρ,ρ]) (resp. (P

u0,F
J+Dg,[ρ,ρ])) admits a

unique solution u ∈ AC([0, T ]; L2(O)) such that

y(T ) ≤ y(t) ≤ u(t) ≤ y(t) ≤ y(T ) for all t ∈ [0, T ].

Moreover, if F(u(·)) ∈ AC([0, T ]; L2(O)) then:

• u admits a right derivative
d+u
dt

(t) at every t ∈ [0, T [; (2.11)

• d+u
dt

(t) + ∇E (u(t)) = F(u(t)) for all t ∈ [0, T [ (2.12)
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with E = J (resp. E = J + Dg). The following theorem shows that under some

conditions on F , the solution u of (Pu0,F
J ,[ρ,ρ]) (resp. (Pu0,F

J+Dg,[ρ,ρ])) satisfies the
invasion property, i.e. u grows over time.

Theorem 2.14 If there exists f : R → R with f ∈ C1([y(T ), y(T )]) such that

F(v)(x) = f (v(x))

for all (v, x) ∈ L2(O) × O and if

∇J (u0) ≤ F(u0) (resp. ∇(J + Dg)(u0) ≤ F(u0)),

then u is differentiable at every t ∈]0, T [ and

du

dt
(t) ≥ 0 for all t ∈ [0, T [

(

with
du

dt
(0) = d+u

dt
(0)

)

. (2.13)

Proof of Theorem 2.14 We only give the proof in the Neumann–Cauchy case (in the
Dirichlet–Cauchy case, the proof follows by similar arguments). By assumption, we
see that F(u(·)) ∈ AC([0, T ]; L2(O)) and so (2.11) and (2.12) hold. LetGu : [0, T ]×
L2(O) → L2(O) be given by

Gu(t, v(t)) := f ′(u(t))v(t)

for all (t, v) ∈ [0, T ] × L2(O) and consider the following problem:

(Pu
J )

⎧
⎪⎪⎨

⎪⎪⎩

dv

dt
(t) + ∇J (v(t)) = Gu(t, v(t)) forL 1-a.a. t ∈ [0, T ]

v(0) = d+u
dt (0).

It is easy to show that G ∈ F(R1)-(R2). By Theorem 2.1 it follows that (Pu
J ) admits a

unique solution v ∈ AC([0, T ]; L2(O)). But, by taking time derivative in (2.12) with
E = J we see that d

+u
dt is a solution of (Pu

J ), hence v = d+u
dt ∈ AC([0, T ]; L2(O)),

and consequently u is differentiable at every t ∈]0, T [ by [14, Proposition 3.3, p. 68],
i.e.

v(t) = du

dt
(t) for all t ∈ [0, T [

(

with
du

dt
(0) = d+u

dt
(0)

)

. (2.14)

Set v+ := max(v, 0) and v− := max(−v, 0). Taking (2.14) into account, to prove
(2.13) it suffices to show that

v−(t) = 0 for all t ∈ [0, T [. (2.15)
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By taking v− as a test function in (Pu
J ) and by integrating over O , we see that

∫

O

∂v

dt
(t, x)v−(t, x)dx −

∫

O

(∫

O
J (x, y, x − y)(v(t, y) − v(t, x))dy

)

v−(t, x)dx

=
∫

O
f ′(u(t, x))v(t, x)v−(t, x)dx in [0, T ].

But, taking (NL1) into account, by an easy computation we have

−
∫

O

(∫

O
J (x, y, x − y)(v(t, y) − v(t, x))dy

)

v−(t, x)dx

= 1

2

∫

O

∫

O
J (x, y, x − y)(v(t, y) − v(t, x))(v−(t, y) − v−(t, x))dxdy,

hence
∫

O

∂v

∂t
(t, x)v−(t, x)dx + 1

2

∫

O

∫

O
J (x, y, x − y)(v(t, y)

−v(t, x))(v−(t, y) − v−(t, x))dxdy

=
∫

O
f ′(u(t, x))v(t, x)v−(t, x)dx in [0, T ]. (2.16)

Noticing that:

• v = v+ − v−;
• v+v− = ∂v+

∂t v− = 0;
• −v+(·, x)v−(·, y) ≤ 0 for all (x, y) ∈ O × O ,

we see that

∫

O

∂v

∂t
(t, x)v−(t, x)dx = −

∫

O

∂v−

∂t
(t, x)v−(t, x)dx = −1

2

d

dt

∫

O
|v−(x, t)|2dx;

1

2

∫

O

∫

O
J (x, y, x − y)(v(t, y) − v(t, x))(v−(t, y) − v−(t, x))dxdy ≤ 0;

∫

O
f ′(u(t, x))v(t, x)v−(t, x)dx = −

∫

O
f ′(u(t, x))|v−(t, x)|2dx,

and, recalling that f ∈ C1([y(T ), y(T )]), from (2.16) we deduce that

1

2

d

dt

∫

O
|v−(x, t)|2dx ≤ C

∫

O
|v−(t, x)|2dx in [0, T ]

with C := sup{| f ′(ξ)| : ξ ∈ [y(T ), y(T )]}. Consequently, by integrating over s ∈
[0, T ],
∫

O
|v−(s, x)

∣
∣2dx ≤

∫

O
|v−(0, x)

∣
∣2dx + 2C

∫ t

0

(∫

O
|v−(t, x)

∣
∣2dx

)

dt for all s ∈ [0, T ].
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From Grönwall’s lemma we obtain
∫

O
|v−(s, x)

∣
∣2dx ≤ e2Cs

∫

O
|v−(0, x)

∣
∣2dx for all s ∈ [0, T ]. (2.17)

But v(0) = d+u
dt (0) hence, by using (2.12) with E = J and the fact that ∇J (u0) ≤

F(u0), we see that v−(0) ≥ −∇J (u0) + F(u0) ≥ 0. Thus (2.15) follows from
(2.17). ��

3 Main result

3.1 Probability setting and ergodic theory

Let (�,F ,P) be a complete probability space and let {Tz}z∈Zd be satisfying the
following three properties:

• (mesurability) Tz : � → � isF -measurable for all z ∈ Zd ;
• (group property) Tz ◦ Tz′ = Tz+z′ and T−z = T−1

z for all z, z′ ∈ Zd ;
• (mass invariance) P(Tz A) = P(A) for all A ∈ F and all z ∈ Zd .

Definition 3.1 Such a {Tz}z∈Zd is said to be a (discrete) group of P-preserving trans-
formation on (�,F ,P) and the quadruplet (�,F ,P, {Tz}z∈Zd ) is called a (discrete)
dynamical system.

Let I := {A ∈ F : P(Tz A�A) = 0 for all z ∈ Zd} be the σ -algebra of invariant
sets with respect to (�,F ,P, {Tz}z∈Zd ).

Definition 3.2 When P(A) ∈ {0, 1} for all A ∈ I , the measurable dynamical system
(�,F ,P, {Tz}z∈Zd ) is said to be ergodic.

Remark 3.3 A sufficient condition to ensure the ergodicity of (�,F ,P, {Tz}z∈Zd ) is
the so-called mixing condition, i.e. for every (E, F) ∈ F × F ,

lim|z|→∞P(TzE ∩ F) = P(E)P(F).

For each X ∈ L1
P
(�), let EI (X) be the conditional mathematical expectation of

X with respect to I , i.e. the unique (I ,B(R))-measurable function in L1
P
(�) such

that for every E ∈ I ,

∫

E
E
I (X)(ω)dP(ω) =

∫

E
X(ω)dP(ω).

Remark 3.4 If (�,F ,P, {Tz}z∈Zd ) is ergodic then E
I (X) is constant and equal to

the mathematical expectation E(X) of X , i.e. EI (X) = E(X) := ∫

�
X(ω)dP(ω).

Let Bb(R
d) be the class of bounded Borel subsets of Rd and let I (Zd) be the

class of half-open intervals [a, b[ with (a, b) ∈ Zd × Zd .
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Definition 3.5 We say that S : Bb(R
d) → L1

P
(�) is a subadditive process covariant

(or stationary) with respect to {Tz}z∈Zd if the following four conditions hold:

• (subadditivity) for every (A, B) ∈ Bb(R
d) × Bb(R

d), if A ∩ B = ∅ and
L d(∂A) = L d(∂B) = 0 then

SA∪B ≤ SA + SB;

• (covariance or stationarity) for every A ∈ Bb(R
d) and every z ∈ Zd ,

SA+z = SA ◦ Tz;

• (domination) there exists � ∈ L1
P
(�; [0,∞]) such that for every A ∈ B(Rd),

SA ≤ �L d(A);

• (spatial constant property) γ (S) := inf

{∫

�

SI

L d(I )
dP : I ∈ I (Zd)

}

> −∞.

In order to study the pointwise convergence of subadditive processes introduced in
the paper, we need the following notion of regularity for sequences of sets inBb(R

d).

Definition 3.6 We say that {Aε}ε>0 ⊂ Bb(R
d) is regular if there exists {Iε}ε>0 ⊂

I (Zd) with Iε ⊂ Iε′ if ε > ε′ and C > 0 such that:

• Aε ⊂ Iε for all ε > 0;

• sup
ε>0

L d(Iε)

L d(Aε)
≤ C .

For each A ∈ Bb(R
d), we set

ρ(A) := sup
{
r ≥ 0 : Br (0) ⊂ A

}
.

The following theorem can be found in [2, Theorem 12.4.3, p. 514] (see also [5, 17]).

Theorem 3.7 Let S : Bb(R
d) → L1

P
(�) be a subadditive process covariant with

respect to {Tz}z∈Zd and let {Aε}ε>0 ⊂ Bb(R
d) be such that

⎧
⎪⎨

⎪⎩

{Aε}ε>0 is regular
Aε is convex for all ε > 0
lim
ε→0

ρ(Aε) = ∞.

Then, for P-a.e. ω ∈ �,

lim
ε→0

SAε (ω)

L d(Aε)
= inf

k∈N∗ E
I
(S[0,k[d

kd

)

(ω).
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If moreover (�,F ,P, {Tz}z∈Zd ) is ergodic then, for P-a.e. ω ∈ �,

lim
ε→0

SAε (ω)

L d(Aε)
= inf

k∈N∗ E

(S[0,k[d
kd

)

= γ (S).

3.2 Random nonlocal reaction–diffusion problems of gradient flow type

Let J : �×Rd ×Rd ×Rd → [0,∞[ be a (F ⊗B(Rd)⊗B(Rd)⊗B(Rd),B(R))-
measurable satisfying the following conditions:

(PNL1) J is symmetric, i.e. for every (ω, x, y, ξ),

J (ω, x, y, ξ) = J (ω, y, x, ξ),

and J is bi-stationary with respect to (Tz)z∈Zd , i.e. for every z ∈ Zd and every
(ω, x, y, ξ) ∈ � × Rd × Rd × Rd ,

J (ω, x + z, y + z, ξ) = J (Tzω, x, y, ξ);

(PNL2) there exist J , J : Rd → [0,∞[ with
⎧
⎨

⎩

J �≡ 0
for every (ξ, ζ ) ∈ Rd × Rd , if |ξ | ≤ |ζ | then J (ξ) ≥ J (ζ )

supp(J ) = BRJ (0) is compact with RJ > 0,
(3.1)

such that for every (ω, x, y, ξ) ∈ � × Rd × Rd × Rd ,

J (ξ) ≤ J (ω, x, y, ξ) ≤ J (ξ).

Remark 3.8 The monotony condition (3.1) (firstly introduced in [9, Theorem 4 and
Remark 4]) allows to obtain the strong compactness in L2(O) for sequences of solu-
tions of nonlocal reaction–diffusion problems (see Lemma 4.2). This condition is also
essential to show that �-convergence implies Mosco-convergence of the correspond-
ing nonlocal energies.

Remark 3.9 From (3.1) we see that inf
|ξ |≤ R j

2

J (ξ) ≥ J (
RJ
2 ) �= 0.

Fix any ε > 0. Let O ⊂ Rd be an open set and letJε : � × L2(O) → [0,∞[ be
defined by

Jε(ω, u) := 1

4εd

∫

O

∫

O
J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)(
u(x) − u(y)

ε

)2

dxdy. (3.2)

Given T > 0, let Fε : �×[0, T ]×L2(O) → L2(O) be such that Fε(ω, ·, ·) ∈ FCP
for all ω ∈ �. Given T > 0, for each ω ∈ �, let (ρω

ε
, ρω

ε ) and (yω
ε
, yω

ε ) be given
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by (CP3) with F = Fε(ω, ·, ·), where, taking Remark 2.10 into account, we further
assume that

− ∞ < inf
ε>0

yω

ε
(T ) ≤ sup

ε>0
yω
ε (T ) < ∞, (3.3)

and consider the Neumann–Cauchy homogeneous nonlocal problem (PNH
ε,ω ) :=

(P
uω
0 ,Fε(ω,·,·)

Jε(ω,·),[ρω
ε
,ρω

ε ]), i.e.

(PNH
ε,ω )

⎧
⎪⎨

⎪⎩

duω
ε

dt
(t) + ∇Jε(ω, uω

ε (t)) = Fε(ω, t, uω
ε (t)) forL 1-a.a. t ∈ [0, T ]

uω
ε (0) = uω

0,ε ∈ L2(O; [ρω
ε
, ρω

ε ]).

Let g ∈ H1(OJ\O) with OJ := O + supp(J ) = O + BRJ (0) be such that:

I ε,ω
g := ess inf

x∈OJ \O

∫

OJ \O J
(
ω, x

ε
,
y
ε
,
x−y

ε

)
g(y)dy

∫

OJ \O J
(
ω, x

ε
,
y
ε
,
x−y

ε

)
dy

> −∞;

Sε,ω
g := ess sup

x∈OJ \O

∫

OJ \O J
(
ω, x

ε
,
y
ε
,
x−y

ε

)
g(y)dy

∫

OJ \O J
(
ω, x

ε
,
y
ε
,
x−y

ε

)
dy

< ∞;

ρω

ε
≤ I ε,ω

g and ρω
ε ≥ Sε,ω

g . (3.4)

for all x ∈ O and and all ω ∈ �, let Dε
g : � × L2(O) → [0,∞[ be defined by

Dε
g (ω, u) := 1

2εd

∫

O

∫

OJ \O
J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)(
g(y) − u(x)

ε

)2

dxdy (3.5)

and consider the Dirichlet–Cauchy nonlocal problem (PD
ε,ω) :=

(P
uω
0 ,Fε(ω,·,·)

Jε(ω,·)+Dε
g (ω,·),[ρω

ε
,ρω

ε ]), i.e.

(PD
ε,ω)

⎧
⎪⎨

⎪⎩

duω
ε

dt
(t) + ∇J g

ε (ω, uω
ε (t)) = Fε(ω, t, uω

ε (t)) forL 1-a.a. t ∈ [0, T ]

uω
ε (0) = uω

0,ε ∈ L2(O; [ρω
ε
, ρω

ε ])

with J
g
ε := Jε + Dε

g . The following result is a straightforward consequence of
Corollary 2.11.

Corollary 3.10 For each ω ∈ � and each ε > 0, (PNH
ε,ω ) (resp. (PD

ε,ω)) admits a
unique solution uω

ε ∈ AC([0, T ]; L2(O)) such that

yω

ε
(T ) ≤ yω

ε
(t) ≤ uω

ε (t) ≤ yω
ε (t) ≤ yω

ε (T )
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for all t ∈ [0, T ]. Moreover, if Fε(ω, ·, uω
ε (·)) ∈ AC([0, T ]; L2(O)) then uω

ε

admits a right derivative d+uω
ε

dt (t) at every t ∈ [0, T [ which satisfies d+uω
ε

dt (t) +
∇Jε(ω, uω

ε (t)) = Fε(ω, t, uω
ε (t)) (resp. d

+uω
ε

dt (t)+∇J
g
ε (ω, uω

ε (t)) = Fε(ω, t, uω
ε (t))).

Our purpose is to look for the almost sure limit of (PNH
ε,ω ) and (PD

ε,ω) as ε → 0.
This is the object of the next section.

3.3 Stochastic homogenization theorem

For each θ ∈ Rd , each R > 0 and each A ∈ Bb(R
d), set

L2
loc,θ,R,A(Rd) :=

{
u ∈ L2

loc(R
d) : u = �θ in ∂R(A)

}
, (3.6)

where �θ : Rd → R is the linear map defined by �θ (x) = θx and ∂R(A) denotes the
R-neighborhood of the boundary ∂A of A, i.e.

∂R(A) :=
{
x ∈ Rd : dist(x, ∂A) < R

}
. (3.7)

In what follows, we also set

AR :=
{
x ∈ A : dist(x, ∂A) > R

}
. (3.8)

Let S,S,K : Bb(R
d) × � × Rd → [0,∞[ be defined by:

SA(ω, θ) := inf
{
J (ω, u,Rd , A) : u ∈ L2

loc,θ,RJ ,A(Rd)
}

;
SA(ω, θ) := inf

{
J (ω, u, A, A) : u ∈ L2

loc,θ,RJ ,A(Rd)
}

;
KA(ω, θ) := inf

{
J (ω, u, ARJ , ARJ ) + D�θ (ω, u, ARJ , A\ARJ ) : u ∈ L2

loc,θ,RJ ,A(Rd )
}

,

where RJ > 0 is given by PNL2 andJ ,D�θ : �×L2
loc(R

d)×Bb(R
d)×Bb(R

d) →
[0,∞[ are defined by:

J (ω, u, A, B) := 1

4

∫

A

∫

B
J (ω, x, y, x − y)(u(x) − u(y))2dxdy;

D�θ (ω, u, A, B) := 1

2

∫

A

∫

B
J (ω, x, y, x − y)(�θ (y) − u(x))2dxdy.

Remark 3.11 The randomvariational nonlocal functional (u, A) �→J (·, u,ARJ ,ARJ )+
D�θ (·, u, ARJ , A\ARJ ) arising in the definition of the process A �→ KA(·, θ) is
the energy of the Dirichlet–Cauchy nonlocal problem introduced in Sect. 2.1.3 with
g = �θ , OJ = A and O = ARJ . Consequently, the process A �→ KA(·, θ) is
the natural nonlocal version of the standard local process whose almost sure limit
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gives the homogenized density in standard stochastic homogenization. The processes
A �→ SA(·, θ) and A �→ SA(·, θ) are introduced for technical reasons.

The following lemma makes clear the link between S, S and K .

Lemma 3.12 For every A ∈ Bb(R
d), every ω ∈ � and every θ ∈ Rd , we have:

0 ≤ SA(ω, θ) − SA(ω, θ) ≤ L d(∂RJ (A))
|θ |2
4

∫

Rd
|ξ |2 J (ξ)dξ ; (3.9)

0 ≤ SA(ω, θ) − KA(ω, θ) ≤ L d(∂RJ (A))
|θ |2
4

∫

Rd
|ξ |2 J (ξ)dξ. (3.10)

Proof of Lemma 3.12 Fix A ∈ Bb(R
d), ω ∈ � and θ ∈ Rd .

Proof of (3.9). Fix any ε > 0. Let uε ∈ L2
loc,θ,RJ ,A

(Rd) be such that SA(ω, A) >

J (ω, uε, A, A) − ε. Then, by using PNL2,

SA(ω, θ) − KA(ω, θ) ≤ J (ω, uε,R
d , A) − J (ω, uε, A, A) + ε

= J (ω, uε,R
d\A, A) + ε

≤ 1

4

∫

Rd\A

∫

A
J (x − y)(uε(x) − uε(y))

2dxdy + ε.

But supp(J ) = BRJ (0) and uε = �θ in ∂RJ (A), hence

SA(ω, θ) − KA(ω, θ) ≤ |θ |2
4

∫

∂RJ (A)

∫

∂RJ (A)

J (x − y)|x − y|2dxdy + ε

≤ L d(∂RJ (A))
|θ |2
4

∫

Rd
|ξ |2 J (ξ)dξ + ε,

and (3.9) follows by letting ε → 0.
Proof of (3.10). Fix any ε > 0. Let uε ∈ L2

loc,θ,RJ ,A
(Rd) be such that KA(ω, θ) >

J (ω, uε, ARJ , ARJ ) + D�θ (ω, uε, ARJ , A\ARJ ) − ε. Then, by using PNL2,

SA(ω, θ) − KA(ω, θ) ≤ J (ω, uε, A, A) − J (ω, uε, ARJ , ARJ )

−D�θ (ω, uε, ARJ , A\ARJ ) + ε

≤ J (ω, uε, A\ARJ , A\ARJ ) + ε

≤ 1

4

∫

A\ARJ

∫

A\ARJ

J (x − y)(uε(x) − uε(y))
2dxdy + ε.

But A\ARJ ⊂ ∂RJ (A) and uε = �θ in ∂RJ (A), hence...

SA(ω, θ) − KA(ω, θ) ≤ |θ |2
4

∫

∂RJ (A)

∫

∂RJ (A)

J (x − y)|x − y|2dxdy + ε

≤ L d(∂RJ (A))
|θ |2
4

∫

Rd
|ξ |2 J (ξ)dξ + ε,
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and (3.10) follows by letting ε → 0. ��
Remark 3.13 When A is a cube of size L it is easy to see that L d(∂RJ (A)) ∼
2RJH d−1(∂A) for large L .

Proposition 3.14 Let {Aε}ε>0 ⊂ Bb(R
d) be such that:

⎧
⎪⎨

⎪⎩

{Aε}ε>0 is regular
Aε is convex for all ε > 0
lim
ε→0

ρ(Aε) = ∞;
(3.11)

lim
ε→0

L d(∂RJ (Aε))

L d(Aε)
= 0. (3.12)

Then, for every θ ∈ Rd there exists �θ ∈ F with P(�θ ) = 1 such that for every
ω ∈ �θ ,

lim
ε→0

KAε (ω, θ)

L d(Aε)
= lim

ε→0

SAε (ω, θ)

L d(Aε)
= lim

ε→0

SAε (ω, θ)

L d(Aε)
= inf

k∈N∗ E
I
(S[0,k[d (·, θ)

kd

)

(ω).

Remark 3.15 Let Qρ(x0) be the cube of size ρ > 0 centered at x0 ∈ Rd . Then, it is
easily seen that { 1

ε
Qρ(x0)}ε>0 satisfies (3.11)–(3.12).

Proof of Proposition 3.14 Let θ ∈ Rd . As A �→ SA(·, θ) is clearly a subadditive
process covariant with respect to {Tz}z∈Zd , taking (3.11) into account, from Theorem
3.7 we can assert that there exists �θ ∈ F with P(�θ ) = 1 such that

lim
ε→0

SAε (ω, θ)

L d(Aε)
= inf

k∈N∗ E
I
(S[0,k[d (·, θ)

kd

)

(ω) for all ω ∈ �θ . (3.13)

On the other hand, by Lemma 3.12, for every ε > 0 and every ω ∈ �, we have:

0 ≤ SAε (ω, θ)

L d(Aε)
− SAε (ω, θ)

L d(Aε)
≤ L d(∂RJ (Aε))

L d(Aε)

|θ |2
4

∫

Rd
|ξ |2 J (ξ)dξ ; (3.14)

0 ≤ SAε (ω, θ)

L d(Aε)
− KAε (ω, θ)

L d(Aε)
≤ L d(∂RJ (Aε))

L d(Aε)

|θ |2
4

∫

Rd
|ξ |2 J (ξ)dξ. (3.15)

Consequently, from (3.12) and (3.13) we deduce that

lim
ε→0

KAε (ω, θ)

L d(Aε)
= lim

ε→0

SAε (ω, θ)

L d(Aε)
= inf

k∈N∗ E
I
(S[0,k[d (·, θ)

kd

)

(ω) for all ω ∈ �θ,

and the proof is complete. ��
Now, we can define the homogenized density. First of all, it is not difficult to

establish that for every A ∈ Bb(R
d), every ω ∈ � and every (θ, θ ′) ∈ Rd × Rd ,

∣
∣
∣
∣
SA(ω, θ)

L d(A)
− SA(ω, θ ′)

L d(A)

∣
∣
∣
∣ ≤ C

∣
∣θ − θ ′∣∣ (|θ | + |θ ′|) (3.16)
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with C := 1
4

∫

Rd |ξ |2 J (ξ)dξ . Set

�′ := ∩
θ∈Qd

�θ (3.17)

with�θ given byProposition 3.14. Then�′ ∈ F andP(�′) = 1. By using Proposition
3.14, from (3.16) we deduce that for every ω ∈ �′ and every (θ, θ ′) ∈ Qd × Qd ,

∣
∣
∣
∣ infk∈N∗ E

I
(S[0,k[d (·, θ)

kd

)

(ω) − inf
k∈N∗ E

I
(S[0,k[d (·, θ ′)

kd

)

(ω)

∣
∣
∣
∣ ≤ C

∣
∣θ − θ ′∣∣ (|θ |+|θ ′|),

which allows to define fhom : �′ × Rd → [0,∞[ by

fhom(ω, θ) :=

⎧
⎪⎪⎨

⎪⎪⎩

inf
k∈N∗ E

I
(S[0,k[d (·, θ)

kd

)

(ω) if θ ∈ Qd

lim
Qd�ζ→θ

inf
k∈N∗ E

I
(S[0,k[d (·, ζ )

kd

)

(ω) if θ /∈ Qd .

Remark 3.16 It is easy to see that for every ω ∈ �′, fhom(ω, ·) is quadratic, i.e. for
every ω ∈ �′, there exists a symmetric d ×d matrix Aω

hom such that for every θ ∈ Rd ,

fhom(ω, θ) = 1

2
〈Aω

homθ, θ〉, (3.18)

where 〈·, ·〉 denotes the scalar product in Rd .

Proposition 3.17 Let {Aε}ε>0 ⊂ Bb(R
d) be such that (3.11) and (3.12) hold. Then,

for every ω ∈ �′, where �′ is given by (3.17), and every θ ∈ Rd ,

lim
ε→0

KAε (ω, θ)

L d(Aε)
= lim

ε→0

SAε (ω, θ)

L d(Aε)
= lim

ε→0

SAε (ω, θ)

L d(Aε)
= fhom(ω, θ).

Proof of Proposition 3.17 Let ω ∈ �′ and let θ ∈ Rd . By density, there exists
{θn}n≥1 ⊂ Qd such that

lim
n→∞ |θ − θn| = 0. (3.19)

(In particular supn≥1 |θn| < ∞.) Setting C ′ := C(|θ | + supn≥1 |θn|), by (3.16) we
have

SAε (ω, θn)

L d(Aε)
− C ′ |θ − θn| ≤ SAε (ω, θ)

L d(Aε)
≤ SAε (ω, θn)

L d(Aε)
+ C ′ |θ − θn| (3.20)

for all ε > 0 and all n ≥ 1. As ω ∈ �′ and {θn}n≥1 ⊂ Qd we have ω ∈ �θn for all
n ≥ 1, and so, by using Proposition 3.14,

lim
ε→0

SAε (ω, θn)

L d(Aε)
= inf

k∈N∗ E
I
(S[0,k[d (·, θn)

kd

)

(ω) for all n ≥ 1.
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Letting ε → 0 in (3.20) we deduce that:

inf
k∈N∗ E

I (
S[0,k[d (·, θn)

kd
)(ω) − C ′ |θ − θn| ≤ lim

ε→0

SAε (ω, θ)

L d(Aε)

lim
ε→0

SAε (ω, θ)

L d(Aε)
≤ inf

k∈N∗ E
I
(S[0,k[d (·, θn)

kd

)

(ω) + C ′ |θ − θn| ,

and consequently, by letting n → ∞ and using (3.19),

lim
ε→0

SAε (ω, θ)

L d(Aε)
= lim

n→∞ inf
k∈N∗ E

I
(S[0,k[d (·, θn)

kd

)

(ω) = fhom(ω, θ).

On the other hand, by Lemma 3.12, (3.14) and (3.15) hold for all ε > 0, and so, taking
(3.12) into account, we have:

lim
ε→0

SAε (ω, θ)

L d(Aε)
= lim

ε→0

SAε (ω, θ)

L d(Aε)
;

lim
ε→0

KAε (ω, θ)

L d(Aε)
= lim

ε→0

SAε (ω, θ)

L d(Aε)
,

which completes the proof. ��
Let Jhom,J

g
hom : �′ × L2(O) → [0,∞] be defined by:

Jhom(ω, u) :=
⎧
⎨

⎩

∫

O
fhom(ω,∇u(x))dx if u ∈ H1(O)

∞ if u ∈ L2(O)\H1(O);
(3.21)

J
g
hom(ω, u) :=

⎧
⎨

⎩

∫

O
fhom(ω,∇u(x))dx if u ∈ H1

g (O)

∞ if L2(O)\H1
g (O)

(3.22)

with H1
g (O) := {

u ∈ H1(O) : γ (u) = γJ (g)
}
, where γ (resp. γJ ) is the trace oper-

ator γ : H1(O) → L2(∂O) (resp. γJ : H1(OJ\O) → L2(∂O)).

Remark 3.18 By Remark 3.16 we see that for P-a.e. ω ∈ �, Jhom(ω, ·) (resp.
J

g
hom(ω, ·)) is proper, convex and lower semicontinuous, and Fréchet-differentiable

on dom(∂Jhom(ω, ·)) (resp. dom(∂J
g
hom(ω, ·))).

ForP-a.e.ω ∈ �, letGω : [0, T ]×L2(O) → L2(O) be such thatGω ∈ F(R1)-(R2)

and consider the following Neumann–Cauchy homogeneous local problem:

(PNH
hom,ω)

⎧
⎪⎨

⎪⎩

duω

dt
(t) + ∇Jhom(ω, uω(t)) = Gω(t, uω(t)) forL 1-a.a. t ∈ [0, T ]

uω(0) = uω
0 ∈ dom(Jhom(ω, ·))
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and the following Dirichlet–Cauchy local problem:

(PD
hom,ω)

⎧
⎪⎨

⎪⎩

duω

dt
(t) + ∇J

g
hom(ω, uω(t)) = Gω(t, uω(t)) forL 1-a.a. t ∈ [0, T ]

uω(0) = uω
0 ∈ dom(J

g
hom(ω, ·)).

Here is the main result of the paper.

Theorem 3.19 For P-a.e. ω ∈ � and every ε > 0, let uω
ε be the unique solution of

(PNH
ε,ω ) (resp. (PD

ε,ω)), see Corollary 3.10, and assume that:

(Hω
1 ) sup

ε>0
Jε(ω, uω

0,ε) < ∞ (resp. sup
ε>0

J
g
ε (ω, uω

0,ε) < ∞);

(Hω
2 ) uω

0,ε⇀uω
0 in L2(O);

(Hω
3 ) sup

ε>0

∥
∥Fε(ω, ·, uω

ε )
∥
∥
L2([0,T ];L2(O))

< ∞.

Then, there exists �̂ ∈ F with P(�̂) = 1 such that for every ω ∈ �̂ there exists
uω ∈ C([0, T ]; L2(O)) such that up to a subsequence:

uω
ε → uω in C([0, T ]; L2(O)); (3.23)
duω

ε

dt
⇀

duω

dt
in L2([0, T ]; L2(O)). (3.24)

Moreover, we have

inf
ε>0

yω

ε
(T ) ≤ uω(t) ≤ sup

ε>0
yω
ε (T ) for all t ∈ [0, T ].

Assume furthermore that

(Hω
4 ) for every v ∈ C([0, T ]; L2(O)),

uω
ε → v in C([0, T ]; L2(O)) �⇒ Fε(ω, ·, uω

ε )⇀Gω(·, v) in L2([0, T ]; L2(O)).

Then, (3.23)–(3.24) hold for the whole sequence ε and

uω is the unique solution of (PNH
hom,ω)( resp. (PD

hom,ω)).

Moreover, uω
0 ∈ H1(O)∩L2(O; [ρω, ρω]) (resp. uω

0 ∈ H1
g (O)∩L2(O; [ρω, ρω]))

where ρω := infε>0 ρω
ε
and ρω := supε>0 ρω

ε .

Remark 3.20 If (CP1) is satisfied uniformly with respect to ε then a sufficient con-
dition to ensure (Hω

3 ) is that supε>0 ‖Fε(ω, ·, 0)‖L2([0,T ];L2(O)) < ∞. It is indeed a
straightforward consequence of the uniform boundedness of uω

ε together with the local
Lipschitz hypothesis on Fε.
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Remark 3.21 Taking (3.18) into account, for P-a.e. ω ∈ �, we have:

⎧
⎪⎨

⎪⎩

dom(∂Jhom(ω, ·)) =
{
v ∈ H1(O) : div(Aω

hom∇v) ∈ L2(O) and Aω
hom∇v · n = 0 on ∂O

}

∇Jhom(ω, ·)(v) = −div(Aω
hom∇v) for all v ∈ dom(∂Jhom(ω, ·));

⎧
⎪⎨

⎪⎩

dom(∂J
g
hom(ω, ·)) =

{
v ∈ H1

g (O) : div(Aω
hom∇v) ∈ L2(O)

}

∇J
g
hom(ω, ·)(v) = −div(Aω

hom∇v) for all v ∈ dom(∂J
g
hom(ω, ·)),

where n denotes the unit outward normal to ∂O . So, (PNH
hom,ω) and (PD

hom,ω) can be
rewritten as follows:

(PNH
hom,ω)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

duω

dt
(t) − div(Aω

hom∇uω(t)) = Gω(t) for L 1-a.a. t ∈ [0, T ]

uω(0) = uω
0 ∈ H1(O) ∩ L2(O; [ρω, ρω])

uω(t) ∈ H1(O) and div(Aω
hom∇uω(t)) ∈ L2(O) for L 1-a.a. t ∈ [0, T ]

Aω
hom∇uω(t) · n = 0 on ∂O for L 1-a.a. t ∈ [0, T ];

(PD
hom,ω)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

duω

dt
(t) − div(Aω

hom∇uω(t)) = Gω(t) for L 1-a.a. t ∈ [0, T ]

uω(0) = uω
0 ∈ H1

g (O) ∩ L2(O; [ρω, ρω])

uω(t) ∈ H1(O) and div(Aω
hom∇uω(t)) ∈ L2(O) for L 1-a.a. t ∈ [0, T ]

γ (uω(t)) = γJ (g) on ∂O forL 1-a.a. t ∈ [0, T ].

Remark 3.22 By imposing additional structural conditions on Fε(ω, ·, ·), the hypoth-
esis (Hω

4 ) is automatically fulfilled with a complete description of the limit Gω (see
Sect. 5 for an example in spatial population dynamics and also [3, Theorem 5.1], [4,
Theorem 7.1, p. 205] for other general examples).

4 Proof of themain result

In this section we prove Theorem 3.19.

4.1 Convergence of reaction–diffusion problems of gradient flow type

Let T > 0, let {(aε, aε)}ε>0 ⊂ R × R with aε ≤ aε for all ε > 0 and

−∞ < inf
ε>0

aε ≤ sup
ε>0

aε < ∞,
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let {(z
ε
, zε)}ε>0 ⊂ C([0, T ];R) × C([0, T ];R) be such that z

ε
(T ) ≤ z

ε
≤ zε ≤

zε(T ) for all ε > 0 and

− ∞ < inf
ε>0

z
ε
(T ) ≤ sup

ε>0
zε(T ) < ∞. (4.1)

For each ε > 0, let Eε : L2(O) → [0,∞[ be a convex and Fréchet-differentiable
functional, let Fε : [0, T ] × L2(O) → L2(O) and consider the following reaction–
diffusion problem of gradient flow type:

(Pε)

⎧
⎪⎨

⎪⎩

duε

dt
(t) + ∇Eε(uε(t)) = Fε(t, uε(t)) forL 1-a.a. t ∈ [0, T ]

uε(0) = u0,ε ∈ L2(O; [aε, aε]).

Let E0 : L2(O) → [0,∞] be a proper, convex and lower semicontinuous func-
tional, let G : [0, T ] × L2(O) → L2(O) be such that G ∈ F(R1)-(R2) and consider
the following problem of gradient flow type:

(P0)

⎧
⎪⎨

⎪⎩

du

dt
(t) + ∂E0(u(t)) � G(t, u(t)) forL 1-a.a. t ∈ [0, T ]

u(0) = u0 ∈ dom(E0).

To establish the following result, which gives sufficient conditions for the convergence
of (Pε) to (P0) as ε → 0, we do not need the existence but only the uniqueness of
the solution of (P0), which is straightforward because G ∈ F(R1)-(R2).

Theorem 4.1 Assume that:

(C1) sup
ε>0

Eε(u0,ε) < ∞;
(C2) u0,ε⇀u0 in L2(O);
(C3) for each ε > 0, (Pε) admits a solution uε ∈ AC([0, T ]; L2(O)) with z

ε
(T ) ≤

z
ε

≤ uε ≤ zε ≤ zε(T ) and supε>0 ‖Fε(·, uε)‖L2([0,T ];L2(O)) < ∞;
(C4) for every {vε}ε>0 ⊂ L2(O), if sup

ε>0
Eε(vε) < ∞ then {vε}ε>0 is relatively com-

pact in L2(O).

Then, there exists u ∈ C([0, T ]; L2(O)) such that up to a subsequence:

uε → u in C([0, T ]; L2(O)); (4.2)
duε

dt
⇀

du

dt
in L2([0, T ]; L2(O)). (4.3)

Moreover, we have

inf
ε>0

z
ε
(T ) ≤ u(t) ≤ sup

ε>0
zε(T ) for all t ∈ [0, T ].
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Assume furthermore that:

(C5) for every v ∈ C([0, T ]; L2(O)),

uε → v in C([0, T ]; L2(O)) �⇒ Fε(·, uε)⇀G(·, v) in L2([0, T ]; L2(O));

(C6) Eε
M−→ E01

Then, (4.2)–(4.3) hold for the whole sequence ε and

uω is the unique solution of (P0).

Moreover, u0 ∈ dom(E0) ∩ L2(O; [a, a]) where a := infε>0 aε and a := supε>0 aε.

Proof of Theorem 4.1 In what follows the scalar product in L2(O) is denoted by 〈·, ·〉.
The proof is divided into three steps.
Step 1: Bounds. First of all, from (C3) and (4.1) we see that

− ∞ < inf
ε>0

z
ε
(T ) ≤ uε ≤ sup

ε>0
zε(T ) < ∞. (4.4)

Hence
sup
ε>0

‖uε‖C([0,T ];L2(O)) < ∞. (4.5)

Fix any ε > 0. From (C3) and (Pε) we deduce that forL 1-a.e. t ∈ [0, T ],
∥
∥
∥
∥
duε

dt
(t)

∥
∥
∥
∥

2

L2(O)

+
〈

∇Eε(uε(t)),
duε

dt
(t)

〉

=
〈

Fε(t, uε(t)),
duε

dt
(t)

〉

,

and so, by integrating over [0, T ],
∫ T

0

∥
∥
∥
∥
duε

dt
(t)

∥
∥
∥
∥

2

L2(O)

dt +
∫ T

0

〈

∇Eε(uε(t)),
duε

dt
(t)

〉

dt =
∫ T

0

〈

Fε(t, uε(t)),
duε

dt
(t)

〉

dt .

But d
dt Eε(uε(t)) =

〈
∇Eε(uε(t)),

duε

dt (t)
〉
for L 1-a.a. t ∈ [0, T ] and uε(0) = u0,ε by

(Pε), hence

∫ T

0

〈

∇Eε(uε(t)),
duε

dt
(t)

〉

dt =
∫ T

0

d

dt
Eε(uε(t))dt = Eε(uε(T )) − Eε(u0,ε),

1 By Eε
M−→ E0 we mean that {Eε}ε>0 Mosco-converges to E0, see B. for more details.
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and consequently

∥
∥
∥
∥
duε

dt

∥
∥
∥
∥

2

L2([0,T ];L2(O))

=
∫ T

0

〈

Fε(t, uε(t)),
duε

dt
(t)

〉

dt + Eε(u0,ε) − Eε(uε(T ))

≤ ‖Fε(·, uε)‖L2([0,T ];L2(O))

∥
∥
∥
∥
duε

dt

∥
∥
∥
∥
L2([0,T ];L2(O))

+ Eε(u0,ε) − Eε(uε(T ))

≤ ‖Fε(·, uε)‖L2([0,T ];L2(O))

∥
∥
∥
∥
duε

dt

∥
∥
∥
∥
L2([0,T ];L2(O))

+ Eε(u0,ε). (4.6)

Noticing that by (C1) and (C3) we have:

c1 := sup
ε>0

Eε(u0,ε) < ∞;
c2 := sup

ε>0
‖Fε(·, uε)‖L2([0,T ];L2(O)) < ∞, (4.7)

it follows that for every ε > 0,

∥
∥
∥
∥
duε

dt

∥
∥
∥
∥

2

L2([0,T ];L2(O))

≤ C

(∥
∥
∥
∥
duε

dt

∥
∥
∥
∥
L2([0,T ];L2(O))

+ 1

)

with C := max(c1, c2), which implies that

sup
ε>0

∥
∥
∥
∥
duε

dt

∥
∥
∥
∥
L2([0,T ];L2(O))

< ∞. (4.8)

Step 2: Compactness. By (4.5), {uε}ε>0 is bounded in C([0, T ]; L2(O)). Moreover,
For every (s1, s2) ∈ [0, T ] × [0, T ] with s1 < s2,

‖uε(s1) − uε(s2)‖L2(O) ≤
∫ s2

s1

∥
∥
∥
∥
duε

dt
(t)

∥
∥
∥
∥
L2(O)

dt

≤ (s2 − s1)
1
2 sup

ε>0

∥
∥
∥
∥
duε

dt

∥
∥
∥
∥
L2([0,T ];L2(O))

,

which, by (4.8), implies the equi-continuity of {uε}ε>0. On the other hand, from (C1)
and (C4) it is clear {uε(0)}ε>0 = {u0,ε}ε>0 is relatively compact in L2(O). Morever,
if s ∈]0, T ] then, by replacing T by s in (4.6), we have

Eε(uε(s)) ≤
∥
∥
∥
∥
duε

dt

∥
∥
∥
∥
L2([0,T ];L2(O))

(‖Fε(·, uε)‖L2([0,T ];L2(O)) −
∥
∥
∥
∥
duε

dt

∥
∥
∥
∥
L2([0,T ];L2(O))

) + Eε(u0,ε).

From (C1), (4.8) and (4.7), it follows that supε>0 Eε(uε(s)) < ∞. Hence, by (C4),
{uε(s)}ε>0 is relatively compact in L2(O). Consequently, by Arzelà-Ascoli’s com-
pactness theorem there exists u ∈ C([0, T ]; L2(O)) such that, up to a subsequence,

uε → u in C([0, T ]; L2(O)). (4.9)
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From (4.8) we deduce that

duε

dt
⇀

du

dt
in L2([0, T ]; L2(O)) (4.10)

and from (C3) and (4.9) it follows that infε>0 zε(T ) ≤ u(t) ≤ supε>0 zε(T ) for all
t ∈ [0, T ].
Step 3: Convergence to the solution of (P0). We are going to prove that u is a
solution of (P0).
Step 3-1: Legendre–Fenchel transform of (Pε). Fix any ε > 0 and denote the
Legendre–Fenchel conjugates of Eε and E0 by E ∗

ε and E ∗
0 respectively. FromFenchel’s

extremality relation (see Proposition A.4(b)) we see that (Pε) is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

Eε(uε(t)) + E ∗
ε (Gε(t) − duε

dt
(t)) +

〈
duε

dt
(t) − Gε(t), uε(t)

〉

= 0 forL 1-a.a. t ∈ [0, T ]

uε(0) = u0,ε ∈ L2(O; [aε, aε])

with Gε := Fε(·, uε). Using Legendre–Fenchel’s inequality (see Theorem A.2(b)) it
follows that

(Pε) ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

∫ T

0

[

Eε(uε(t)) + E ∗
ε (Gε(t) − duε

dt
(t)) +

〈
duε

dt
(t) − Gε(t), uε(t)

〉]

dt = 0

uε(0) = u0,ε ∈ L2(O; [aε, aε]).

On the other hand, we have

∫ T

0

〈
duε

dt
(t) − Gε(t), uε(t)

〉

dt =
∫ T

0

[
d

dt
(
1

2
‖uε‖2)(t) − 〈Gε(t), uε(t)〉

]

dt

= 1

2
(‖uε(T )‖2 − ‖u0,ε‖2) −

∫ T

0
〈Gε(t), uε(t)〉 dt .

Hence, for every ε > 0,

(Pε) ⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ T

0

[

Eε(uε(t)) + E ∗
ε (Gε(t) − duε

dt
(t))

]

dt + 1

2
(‖uε(T )‖2 − ‖u0,ε‖2)

−
∫ T

0
〈Gε(t), uε(t)〉 dt = 0

uε(0) = u0,ε ∈ L2(O; [aε, aε]).

(4.11)

Step 3-2: Passing to the limit. First of all, by (4.9) we have

uε(0) → u(0) in L2(O).

From (C1)–(C2) and (C4) we see that

uε(0) = u0,ε → u0 in L2(O). (4.12)
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Hence:

u(0) = u0; (4.13)

lim
ε→0

‖u0,ε‖2L2(O)
= ‖u0‖2L2(O)

. (4.14)

Since u0,ε ∈ L2(O; [aε, aε]) for all ε > 0, u0 ∈ L2(O; [a, a]) by (4.12). Moreover,
from (C1), (4.12) and (C6) we have E0(u0) ≤ limε→0 Eε(u0,ε) ≤ supε>0 Eε(u0,ε) <

∞, hence u0 ∈ dom(E0) and consequently

u0 ∈ dom(E0) ∩ L2(O; [a, a]). (4.15)

Since uε(T ) = uε(0) + ∫ T
0

duε

dt (t)dt and u(T ) = u(0) + ∫ T
0

du
dt (t)dt , from (4.10),

(4.12) and (4.13) we deduce that

lim
ε→0

‖uε(T )‖2L2(O)
≥ ‖u(T )‖2L2(O)

. (4.16)

Let E0, E∗
0 : L2([0, T ]; L2(O)) → [0,∞] be defined by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E0(u) :=
∫ T

0
E0(u(t))dt

E∗
0 (u) :=

∫ T

0
E ∗
0 (u(t))dt

and, for each ε > 0, let Let Eε : L2([0, T ]; L2(O)) → [0,∞] be defined by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Eε(u) :=
∫ T

0
Eε(u(t))dt

E∗
ε (u) :=

∫ T

0
E ∗

ε (u(t))dt .

From (C6) and Theorem B.4 we have E ∗
ε

M−→ E ∗
0 . Hence Eε

M−→ E0 and E∗
ε

M−→ E∗
0

by Theorem B.5. From (4.9), (C5) and (4.10) it follows that:

lim
ε→0

Eε(uε) ≥ E0(u), i.e.

lim
ε→0

∫ T

0
Eε(uε(t))dt ≥

∫ T

0
E0(u(t))dt; (4.17)

lim
ε→0

E∗
ε (Gε − duε

dt
) ≥ E∗

0 (G0 − du

dt
), i.e.

lim
ε→0

∫ T

0
E ∗

ε (Gε(t) − duε

dt
(t))dt ≥

∫ T

0
E ∗
0 (G0(t) − du

dt
(t))dt (4.18)
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with G0 := G(·, u). Taking (4.12), (4.13), (4.14), (4.15), (4.16), (4.17) and (4.18) into
account, letting ε → 0 in (4.11) we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0

[

E0(u(t)) + E ∗
0 (G0(t) − du

dt
(t))

]

dt + 1

2
(‖u(T )‖2 − ‖u0‖2)

−
∫ T

0
〈G0(t), u(t)〉 dt ≤ 0

u(0) = u0 ∈ dom(E0) ∩ L2(O; [a, a]),

i.e.

⎧
⎪⎨

⎪⎩

∫ T

0

[

E0(u(t)) + E ∗
0 (G0(t) − du

dt
(t)) +

〈
du

dt
(t) − G0(t), u(t)

〉]

dt ≤ 0

u(0) = u0 ∈ dom(E0) ∩ L2(O; [a, a])

But, by using again Legendre–Fenchel’s inequality (see Theorem A.2(b)), we have

E0(u(t)) + E ∗
0 (G0(t) − du

dt
(t)) +

〈
du

dt
(t) − G0(t), u(t)

〉

≥ 0 forL 1-a.a. t ∈ [0, T ],

hence

⎧
⎪⎪⎨

⎪⎪⎩

∫ T

0

[

E0(u(t)) + E ∗
0 (G0(t) − du

dt
(t)) +

〈
du

dt
(t) − G0(t), u(t)

〉]

dt = 0

u(0) = u0 ∈ dom(E0) ∩ L2(O; [a, a]).
(4.19)

Using again Fenchel’s extremality relation (see Proposition A.4(b)) we see that (4.19)
is equivalent to

⎧
⎪⎨

⎪⎩

du

dt
(t) + ∂E0(u(t)) � G0(t) forL 1-a.a. t ∈ [0, T ]

u(0) = u0 ∈ dom(E0) ∩ L2(O; [a, a]),

which shows that u is a solution of (P0), and the proof is complete because of the
uniqueness of the solution of (P0). ��

4.2 Auxiliary lemmas

To prove almost sure Mosco-convergence of the energies (see Sect. 4.3), we will need
the following lemmas. We begin with two compactness results.
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Lemma 4.2 Let λ : Rd → [0,∞[ be such that

⎧
⎨

⎩

λ �≡ 0
for every (ξ, ζ ) ∈ Rd × Rd , if |ξ | ≤ |ζ | then λ(ξ) ≥ λ(ζ )

supp(λ) is compact

and, for each ε > 0, let λε : Rd → [0,∞[ be defined by

λε(ξ) := 1

εd
λ

(
ξ

ε

)

.

Let U ⊂ Rd be a bounded open domain with Lipschitz boundary and let {uε}ε>0 ⊂
L2(U ) be such that

sup
ε>0

1

ε2

∫

U

∫

U
λε(y − x) |uε(x) − uε(y)|2 dxdy < ∞.

Then, there exists u ∈ H1(U ) such that, up to a subsequence, uε → u in L2(U ).

For a proof of Lemma 4.2 we refer to [8, Theorem 6.11, p. 128] (see also [9,
Theorem 4 andRemark 4]). For each ε > 0, letJε : �×L2

loc(R
d)×B(Rd)×B(Rd)

be given by

Jε(ω, u, A, B) := 1

4εd

∫

A

∫

B
J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)(
u(x) − u(y)

ε

)2

dxdy.

(4.20)
Let g ∈ H1(OJ\O) with OJ := O + supp(J ) = O + BRJ (0). For each v ∈ L2(O)

we consider vg ∈ L2(OJ ) defined by

vg(x) :=
{

v(x) if x ∈ O
g(x) if x ∈ OJ\O.

As a consequence of Lemma 4.2 we obtain the second compactness lemma.

Lemma 4.3 Let ω ∈ � and let {uε}ε>0 ⊂ L2(O) be such that

sup
ε>0

Jε(ω, ugε , O
J , OJ ) < ∞.

Then, there exists u ∈ H1
g (O) such that ug ∈ H1(OJ ) and, up to a subsequence,

{
uε → u in L2(O)

ugε → ug in L2(OJ ).

The following two lemmas are Poincaré type inequalities.
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Lemma 4.4 Let R > 0 and let Q be a cube of Rd of size η > 0. Then, there exists
C > 0 such that

∫

Q
|u(x)|2dx ≤ Cη

Rd+2

∫

Q

∫

[
|ξ |≤ R

2

] |u(x + ξ) − u(x)|2dxdξ

for all u ∈ L2
loc(R

d) such that u = 0 in ∂R(Q) and u = 0 in Rd\Q, where ∂R(Q) is
defined in (3.7).

For a proof of Lemma 4.4 we refer to [12, Lemma 4.3] (see also [8, Proposi-
tion 6.25, p. 144]).

Lemma 4.5 Let ω ∈ � and let A ⊂ OJ be an open subset with Lipschitz boundary
and let u ∈ H1(A).

(a) There exists C > 0, which only depends on A, such that for every u ∈ H1(A),

sup
ε>0

Jε(ω, u, A, OJ\O) ≤ C‖u‖2H1(A)

∫

Rd
|ξ |2 J (ξ)dξ.

(b) Assume furthermore that A � OJ and let δ > 0 be such that A + Bδ(0) ⊂ OJ .
Then, for every ε > 0 with εRJ < δ and every u ∈ H1(A + Bδ(0)),

sup
ε>0

Jε(ω, u, A, OJ\O) ≤ 1

4

∫

A+Bδ(0)
|∇u(x)|2dx

∫

Rd
|ξ |2 J (ξ)dξ. (4.21)

Proof of Lemma 4.5 (a) Let P : H1(A) → H1(Rd) be a continuous extension oper-
ator. Then, there exists CA > 0 such that ‖Pu‖H1(Rd ) ≤ CA‖u‖H1(A) for all
u ∈ H1(A). Hence, if we establish

sup
ε>0

Jε(ω, u, A, OJ\O) ≤ 1

4
‖Pu‖2H1(Rd )

∫

Rd
|ξ |2 J (ξ)dξ (4.22)

for all u ∈ H1(A) then (a) will follow with C = 1
4CA. Let u ∈ H1(A) and let ε > 0.

By changing of scale (ξ = x−y
ε

with x fixed) and by using PNL2 and Fubini’s theorem,
we see that

sup
ε>0

Jε(ω, u, A, OJ\O) ≤ 1

4

∫

BR j (0)
J (ξ)

(∫

Rd

∣
∣
∣
∣
Pu(x) − Pu(x + εξ)

ε

∣
∣
∣
∣

2

dx

)

dξ.

(4.23)
On the other hand, for every ξ ∈ Rd and L d -a.e. x ∈ Rd , we have

Pu(x) − Pu(x + εξ)

ε
= |ξ |−

∫ ε|ξ |

0
∇Pu

(

x + t
ξ

|ξ |
)

ξ

|ξ |dt,
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hence, by using Jensen’s inequality,

∣
∣
∣
∣
Pu(x) − Pu(x + εξ)

ε

∣
∣
∣
∣ ≤ |ξ |2−

∫ ε|ξ |

0

∣
∣
∣
∣∇Pu

(

x + t
ξ

|ξ |
)∣
∣
∣
∣

2

dt,

and consequently, by using Fubini’s theorem and by changing of variable (y = x+t ξ
|ξ |

with t fixed),

∫

Rd

∣
∣
∣
∣
Pu(x) − Pu(x + εξ)

ε

∣
∣
∣
∣ dx ≤ |ξ |2

∫

Rd
|∇Pu(y)|2dy

≤ |ξ |2‖Pu‖2H1(Rd )
. (4.24)

From (4.23) and (4.24) we deduce that

sup
ε>0

Jε(ω, u, A, OJ\O) ≤ 1

4
‖Pu‖2H1(Rd )

∫

BR j (0)
|ξ |2 J (ξ)dξ,

and (4.22) follows because supp(J ) = BRJ (0) by PNL2.
(b) In the same way, for every u ∈ H1(A + Bδ(0)), we have

sup
ε>0

Jε(ω, u, A, OJ\O) ≤ 1

4

∫

BR j (0)
J (ξ)

(∫

A

∣
∣
∣
∣
u(x) − u(x + εξ)

ε

∣
∣
∣
∣

2

dx

)

dξ,

where, for every ξ ∈ Rd and L d -a.e. x ∈ A,

∫

A

∣
∣
∣
∣
u(x) − u(x + εξ)

ε

∣
∣
∣
∣ dx ≤ |ξ |2

∫

A+Bδ(0)
|∇u(y)|2dy,

which implies (4.22). ��
For each x0 ∈ O and each u ∈ H1(O), we consider the affine function ux0 : O →

R given by
ux0(x) := u(x0) + ∇u(x0)(x − x0).

By [25, Theorem 3.4.2, p. 129] there exists N1 ⊂ O with L d(N1) = 0 such that for
every x0 ∈ O\N1,

−
∫

Qρ(x0)

∣
∣u(x) − ux0(x)

∣
∣2 dx = o(ρ2) as ρ → 0. (4.25)

By using (4.25) we can establish the following lemma.

Lemma 4.6 Let u ∈ H1(O) and let {uε}ε>0 ⊂ L2(O) be such that uε → u in L2(O)

and, for each x0 ∈ O\N1, each ρ > 0 with Qρ(x0) ⊂ O, each ε > 0 and each

123



Stochastic homogenization of nonlocal reaction… 451

δ ∈]0, 1[, let uρ,δ
ε,x0 ∈ L2(Qρ(x0)) be defined by

uρ,δ
ε,x0(x) :=

{
uε if x ∈ [

Qρ(x0)
]

2ρδ

ux0(x) if x ∈ Qρ(x0)\
[
Qρ(x0)

]

2ρδ

(4.26)

with
[
Qρ(x0)

]

2ρδ
:= {

x ∈ Qρ(x0) : dist(x, ∂Qρ(x0)) > 2ρδ
} = Q2ρδ(x0) (see

(3.8)). Then:

uρ,δ
ε,x0 → u in L2(Qρ(x0)) as ε → 0;

lim
ρ→0

lim
ε→0

[
Jε(ω, uρ,δ

ε,x0 , Qρ(x0), Qρ(x0)) − Jε(ω, uε, Qρ(x0), Qρ(x0))

L d(Qρ(x0))

]

≤ o(1) as δ → 0.

Proof of Lemma 4.6 Arguing as in the proof of [13, Proposition 2.2] we can assert that

lim
ε→0

[
Jε(ω, uρ,δ

ε,x0 , Qρ(x0), Qρ(x0)) − Jε(ω, uε, Qρ(x0), Qρ(x0))

L d(Qρ(x0))

]

≤ CN 2

(δρ)2
−
∫

Qρ(x0)
|u − ux0 |2dx

+Rρ,δ
ε + C

N
,

where C > 0, N is the number of slides of Qρ(x0)\
[
Qρ(x0)

]

2ρδ
and

Rρ,δ
ε := C

(ρε)d

∫

Qρ(x0)\[Qρ(x0)]2ρδ

∫

Qρ(x0)\[Qρ(x0)]2ρδ

J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)

|∇u(x0)|2
∣
∣
∣
∣
x − y

ε

∣
∣
∣
∣

2

dxdy.

But, by changing of scale (ξ = x−y
ε

with x fixed) and by using PNL2,

Rρ,δ
ε ≤ C(1 − (1 − 2δ)d)|∇u(x0)|2

∫

Rd
|ξ |2 J (ξ)dξ = o(1) as δ → 0

and, by using (4.25),

CN 2

(δρ)2
−
∫

Qρ(x0)
|u − ux0 |2dx = N 2

δ2
o(1) as ρ → 0,
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hence

lim
ρ→0

lim
ε→0

[
Jε(ω, uρ,δ

ε,x0 , Qρ(x0), Qρ(x0)) − Jε(ω, uε, Qρ(x0), Qρ(x0))

L d(Qρ(x0))

]

≤ o(1) + C

N
as δ → 0,

and the conclusion follows by letting N → ∞. ��
Finally, the proof of the following lemma can be found in [13, Proposition 2.2].

Lemma 4.7 Let ω ∈ �, let U ⊂ Rd be a bounded open set with Lipschitz boundary,
let u ∈ H1(U ) and let {uε}ε>0 ⊂ L2(U ) be such that uε → u in L2(U ). Then, for
every δ > 0 there exists {uδ

ε}ε>0 ⊂ L2(U ) such that:

•
{
uδ

ε = u in U\Uδ

uδ
ε = uε in U2δ

• uδ
ε → u in L2(U );

• lim
ε→0

(Jε(ω, uδ
ε,U ,U ) − Jε(ω, uε,U ,U )) ≤ o(1) as δ → 0.

4.3 Almost sure Mosco-convergence of the energies

Here, we establish the almost sure Mosco-convergence of {Jε}ε>0 and {J g
ε :=

Jε + Dε
g }ε>0, where Jε : � × L2(O) → [0,∞[ and Dε

g : � × L2(O) → [0,∞[
are defined by (3.2) and (3.5) respectively.

Theorem 4.8 Let �′ ∈ F be such that P(�′) = 1 given by Proposition 3.17.
Then, for every ω ∈ �′, {Jε(ω, ·)}ε>0 (resp. {J g

ε (ω, ·)}ε>0) Mosco-convergence
toJhom(ω, ·) (resp.J g

hom(ω, ·)).
Proof of Theorem 4.8 Let ω ∈ �′. According to Lemma 4.2 (resp. Lemma 4.3) and
Proposition B.3, it is equivalent to prove that {Jε(ω, ·)}ε>0 (resp. {J g

ε (ω, ·)}ε>0)
�-convergen-ce with respect to the strong convergence in L2(O) toJhom(ω, ·) (resp.
J

g
hom(ω, ·)). To do this, the proof is divided into three steps.

Step 1: �-limit inf. We have to prove that:

Jhom(ω, ·) ≤ �- lim
ε→0

Jε(ω, ·); (4.27)

J
g
hom(ω, ·) ≤ �- lim

ε→0
J g

ε (ω, ·). (4.28)

Proof of (4.27). According to Definition B.1 it is equivalent to prove that for every
u ∈ L2(O) and every {uε}ε>0 ⊂ L2(O), if uε → u in L2(O) then

Jhom(ω, u) ≤ lim
ε→0

Jε(ω, uε) (4.29)
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Let u ∈ L2(O) and let {uε}ε>0 ⊂ L2(O) be such that

uε → u in L2(O). (4.30)

Without loss of generalitywecan assume that limε→0 Jε(ω, uε) = limε→0 Jε(ω, uε)

< ∞, and so
sup
ε>0

Jε(ω, uε) < ∞. (4.31)

Taking PNL2 into account, from (4.31) and Lemma 4.2 there exists û ∈ H1(O) such
that, up to a subsequence, uε → û in L2(O). By (4.30) it follows that u ∈ H1(O).
Hence, to prove (4.29) it is sufficient to establish that

∫

O
fhom(ω,∇u(x))dx ≤ lim

ε→0
Jε(ω, uε). (4.32)

For each ε > 0, we define the (positive) Radon measure με on O by

με(A) := 1

4εd

∫

A

∫

A
J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)(
uε(x) − uε(y)

ε

)2

dxdy

= Jε(ω, uε, A, A)

for all A ∈ B(O). From (4.31) we see that supε>0 με(O) < ∞ and so there exists a
(positive) Radon measure μ on O such that, up to a subsequence, με⇀μ weakly in
the sense of measures. By Lebesgue’s decomposition theorem, we have μ = μa +μs

where μa and μs are (positive) Radon measures on O such that μa � L d and
μs ⊥ L d . Thus, to prove (4.32) it suffices to show that

fhom(ω,∇u(·))L d ≤ μa . (4.33)

From Radon–Nikodym’s theorem and Alexandrov’s theorem, there exists N0 ⊂ O
withL d(N0) = 0 such that

⎧
⎪⎪⎨

⎪⎪⎩

μa = gL d with g ∈ L1(O; [0,∞[)

g(x) = lim
ρ→0

lim
ε→0

με(Qρ(x))

L d(Qρ(x))
for all x ∈ O\N0.

Let N1 ⊂ O (with L d(N1) = 0) be given by (4.25) (and used in Lemma 4.6).
From the above we see that to prove (4.33) it is sufficient to establish that for every
x0 ∈ O\(N0 ∪ N1),
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fhom(ω,∇u(x0)) ≤ g(x0),

i.e., by using (4.20),

fhom(ω,∇u(x0)) ≤ lim
ρ→0

lim
ε→0

Jε(ω, uε, Qρ(x0), Qρ(x0))

L d(Qρ(x0))
. (4.34)

Let x0 ∈ O\(N0 ∪ N1). From Lemma 4.6 we deduce as δ → 0,

lim
ρ→0

lim
ε→0

Jε(ω, uε, Qρ(x0), Qρ(x0))

L d(Qρ(x0))
≥ lim

ρ→0
lim
ε→0

Jε(ω, uρ,δ
ε,x0 , Qρ(x0), Qρ(x0))

L d(Qρ(x0))
+o(1)

(4.35)
with uρ,δ

ε,x0 ∈ L2(Qρ(x0)) given by (4.26). AsJε(·, v + c, ·, ·) = Jε(·, v, ·, ·) for all
v ∈ L2

loc(R
d) and all c ∈ R, in (4.35) we can replace uρ,δ

ε,x0 by ũρ,δ
ε,x0 given by

ũρ,δ
ε,x0(x) :=

{
uε if x ∈ [

Qρ(x0)
]

2ρδ

�∇u(x0)(x) if x ∈ Qρ(x0)\
[
Qρ(x0)

]

2ρδ

with �∇u(x0) : Rd → R the linear map defined by �∇u(x0)(x) = ∇u(x0)x , i.e.

Jε(ω, uρ,δ
ε,x0 , Qρ(x0), Qρ(x0))

L d(Qρ(x0))
= J (ω, ũρ,δ

ε,x0 ,
1
ε
Qρ(x0),

1
ε
Qρ(x0))

L d( 1
ε
Qρ(x0))

. (4.36)

On the other hand, by change of scale and function, i.e. (x ′, y′) = ( x
ε
,
y
ε
) and

ûρ,δ
ε,x0(x

′) = 1
ε
ũρ,δ

ε,x0(εx
′), we have:

Jε(ω, ũρ,δ
ε,x0 , Qρ(x0), Qρ(x0))

L d(Qρ(x0))
= J (ω, ûρ,δ

ε,x0 ,
1
ε
Qρ(x0),

1
ε
Qρ(x0))

L d( 1
ε
Qρ(x0))

;

ûρ,δ
ε,x0 = �∇u(x0) in

1

ε
Qρ(x0)\

[
1

ε
Qρ(x0)

]

2ρδ
ε

. (4.37)

For each ρ > 0 there exists ερ > 0 such that 2ρδ
ε

> RJ for all ε ∈]0, ερ] (with RJ > 0
given by PNL2). Hence

ûρ,δ
ε,x0 = �∇u(x0) in

1

ε
Qρ(x0)\

[
1

ε
Qρ(x0)

]

RJ

for all ρ > 0 and all ε ∈]0, ερ],

and so, by extending ûρ,δ
ε,x0 by �∇u(x0) outside

1
ε
Qρ(x0),

ûρ,δ
ε,x0 = �∇u(x0) in ∂R j

(
1

ε
Qρ(x0)

)

for all ρ > 0 and all ε ∈]0, ερ].
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Thus ûρ,δ
ε,x0 ∈ L2

loc,�∇u(x0),R j ,
1
ε
Qρ(x0)

(Rd) for all ρ > 0 and all ε ∈]0, ερ], where
L2
loc,θ,R,A(Rd) is defined by (3.6) with θ = �∇u(x0), R = R j and A = 1

ε
Qρ(x0).

From (4.35), (4.36) and (4.37) it follows that

lim
ρ→0

lim
ε→0

Jε(ω, uε, Qρ(x0), Qρ(x0))

L d(Qρ(x0))
≥ lim

ρ→0
lim
ε→0

S 1
ε
Qρ(x0)

(ω, �∇u(x0))

L d ( 1
ε
Qρ(x0))

+ o(1) as δ → 0.

Hence, by Proposition 3.17 (and Remark 3.15),

lim
ε→0

S 1
ε
Qρ(x0)

(ω, �∇u(x0))

L d( 1
ε
Qρ(x0))

= fhom(ω,∇u(x0)),

and consequently

lim
ρ→0

lim
ε→0

Jε(ω, uε, Qρ(x0), Qρ(x0))

L d(Qρ(x0))
≥ fhom(ω,∇u(x0)) + o(1) as δ → 0,

which gives (4.34) by letting δ → 0.
Proof of (4.28). As in the proof of (4.27) it is equivalent to prove that for every
u ∈ L2(O) and every {uε}ε>0 ⊂ L2(O), if uε → u in L2(O) then

J
g
hom(ω, u) ≤ lim

ε→0
J g

ε (ω, uε). (4.38)

Let u ∈ L2(O) and let {uε}ε>0 ⊂ L2(O) be such that uε → u in L2(O). Without loss
of generality we can assume that limε→0 J

g
ε (ω, uε) = limε→0 J

g
ε (ω, uε) < ∞,

hence
sup
ε>0

J g
ε (ω, uε) < ∞,

and consequently

sup
ε>0

Jε(ω, uε) < ∞; (4.39)

sup
ε>0

Dε
g (ω, uε) < ∞, (4.40)

whereJε(ω, ·) andDε
g (ω, ·) are defined in (3.2) and (3.5) respectively. Fix any ε > 0

and consider ugε ∈ L2(OJ ) defined by

ugε (x) :=
{
uε(x) if x ∈ O
g(x) if x ∈ OJ\O.
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By using PNL1 and Fubini’s theorem, it is easy to see that

Jε

(
ω, ugε , OJ , OJ

)
= Jε (ω, uε, O, O) + Jε

(
ω, g, OJ\O, OJ\O

)

+ 1

4εd

∫

O

∫

OJ \O
J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)(
u (x) − g (y)

ε

)2

dxdy

+ 1

4εd

∫

OJ \O

∫

O
J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)(
g (x) − u (y)

ε

)2

dxdy

= Jε (ω, uε) + Jε

(
ω, g, OJ\O, OJ\O

)

+ 1

2εd

∫

O

∫

OJ \O
J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)(
u (x) − g (y)

ε

)2

dxdy

= Jε (ω, uε) + Jε

(
ω, g, OJ\O, OJ\O

)
+ Dε

g (ω, uε) .

and so, by using Lemma 4.5(a) (with A = OJ\O),

Jε(ω, ugε , O
J , OJ ) ≤ Jε(ω, uε) + C‖g‖H1(OJ \O)

∫

Rd
|ξ |2 J (ξ)dξ + Dε

g (ω, uε),

where C > 0, which only depends on OJ\O , is given by Lemma 4.5(a). Recalling
that g ∈ H1(OJ\O) and using PNL2, (4.39) and (4.40) we deduce that

sup
ε>0

Jε(ω, ugε , O
J , OJ ) < ∞,

hence, by using Lemma 4.3, there exists û ∈ H1
g (O) such that, up to a subsequence,

uε → û in L2(O), and consequently û = u because uε → u in L2(O). Thus

u ∈ H1
g (O). (4.41)

On the other hand, from (4.27) we have

Jhom(ω, u) ≤ lim
ε→0

Jε(ω, uε). (4.42)

Moreover, it is clear that

lim
ε→0

Jε(ω, uε) ≤ lim
ε→0

J g
ε (ω, uε), (4.43)

and, since H1
g (O) ⊂ H1(O), from (4.41) and the definitions of Jhom(ω, ·) and

J
g
hom(ω, ·) in (3.21) and (3.22) respectively, we see that

Jhom(ω, u) = J
g
hom(ω, u) =

∫

O
fhom(ω,∇u(x))dx . (4.44)
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Consequently, (4.38) follows from (4.42), (4.43) and (4.42).
Step 2: �-limit sup. We have to prove that:

Jhom(ω, ·) ≥ �- lim
ε→0

Jε(ω, ·); (4.45)

J
g
hom(ω, ·) ≥ �- lim

ε→0
J g

ε (ω, ·). (4.46)

Proof of (4.45). According to Definition B.1 it is equivalent to prove that for every
u ∈ L2(O) there exists {uε}ε>0 ⊂ L2(O) such that

⎧
⎨

⎩

uε → u in L2(O)

Jhom(ω, u) ≥ limε→0 Jε(ω, uε).

(4.47)

Let u ∈ L2(O). By definition of Jhom(ω, ·) in (3.21), without loss of generality we
can assume that u ∈ H1(O), and to prove (4.47) it suffices to show that there exists
{uε}ε>0 ⊂ L2(O) such that

⎧
⎪⎪⎨

⎪⎪⎩

uε → u in L2(O)

∫

O
fhom(ω,∇u(x))dx ≥ lim

ε→0
Jε(ω, uε).

(4.48)

As Aff(O) is dense in H1(O) and, since fhom(ω, ·) is quadratic, u �→ ∫

O fhom
(ω,∇u(x))dx is continuous with respect to the norm of H1(O), it is sufficient to
prove (4.48) for u affine, i.e. for u = �θ with θ ∈ Rd there exists {uε}ε>0 ⊂ L2(O)

such that ⎧
⎪⎨

⎪⎩

uε → �θ in L2(O)

fhom(ω, θ)L d(O) ≥ lim
ε→0

Jε(ω, uε).
(4.49)

As O is regular, for every η > 0 there exist two finite sets Iη and Jη with Iη ⊂ Jη and
a family {Qi }i∈Jη of cubes of size η with disjoint interiors such that:

• ∪
i∈Iη

Qi ⊂ O ⊂ ∪
i∈Jη

Qi ; (4.50)

• L d(O\ ∪
i∈Iη

Qi ) = 0; (4.51)

• lim
η→0

L d( ∪
i∈Jη\Iη

Qi ) = 0. (4.52)

Fix any η > 0, any ε > 0 and any i ∈ Jη. Let u
η
i,ε ∈ L2

loc,θ,RJ ,
1
ε
Qi

(Rd) be such

that

J (ω, uη
i,ε,

1

ε
Qi ,

1

ε
Qi ) = S 1

ε
Qi

(ω, θ). (4.53)
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By change of scale and function, i.e. (x ′, y′) = ( x
ε
,
y
ε
) and ûη

i,ε(x
′) = 1

ε
uη
i,ε(εx

′), we
have ûη

i,ε ∈ L2
loc,θ,εRJ ,Qi

(Rd) and, by (4.53),

Jε(ω, ûη
i,ε, Qi , Qi ) = L d(Qi )

S 1
ε
Qi

(ω, θ)

L d( 1
ε
Qi )

. (4.54)

Let uη
ε ∈ L2

loc(R
d) be defined by

uη
ε (x) :=

{
ûη
i,ε(x) if x ∈ Qi with i ∈ Jη

�θ otherwise.

From (4.54) we see that

Jε(ω, uη
ε ) ≤

∑

i∈Jη

L d(Qi )
S 1

ε
Qi

(ω, θ)

L d( 1
ε
Qi )

+ Rε,η (4.55)

with

Rε,η :=
∑

Jη�i �= j∈Jη

∫

Qi

∫

Q j

J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)(
ûη
i,ε (x) − ûη

j,ε (x)

ε

)2

dxdy.

On the other hand, by using PNL2 we have

Rε,η ≤
∑

Jη�i �= j∈Jη

∫

(Qi×Q j)∩[|x−y|≤εRJ ]
J

(
x − y

ε

)(
ûη
i,ε (x) − ûη

j,ε (x)

ε

)2

dxdy,

and noticing that if i �= j and |x − y| ≤ εRJ then:

• x, y ∈ ∂εR j (Qi );
• x − y

ε
∈ BRj (0);

• ûη
i,ε(x) − ûη

j,ε(x)

ε
= θ(x − y)

ε
,

we deduce that

Rε,η ≤
∑

i∈Jη

θ2
∫

∂εR j (Qi )

dx
∑

i �= j∈Jη

∫

Rd
|ξ |2 J (ξ)dξ

≤ L d(∂εR j (]0, η[d))(θcard(Jη))2
∫

Rd
|ξ |2 J (ξ)dξ. (4.56)
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Since L d(∂εR j (]0, η[d)) = o(1) as ε → 0, from (4.54) it follows that

lim
ε→0

Rε,η = 0 for all η > 0. (4.57)

From (4.55), (4.57), Remark 3.15 and Proposition 3.17we deduce that for every η > 0,

lim
ε→0

Jε(ω, uη
ε ) ≤

∑

i∈Jη

L d(Qi ) fhom(ω, θ) = fhom(ω, θ)L d( ∪
i∈Jη

Qi ),

hence, by using (4.50) and (4.51),

lim
ε→0

Jε(ω, uη
ε ) ≤

[

L d( ∪
i∈Iη

Qi ) + L d( ∪
i∈Jη

Qi\ ∪
i∈Iη

Qi )

]

fhom(ω, θ)

=
[

L d( ∪
i∈Iη

Qi ) + L d( ∪
i∈Iη

∂Qi ) + L d( ∪
i∈Jη\Iη

Qi )

]

fhom(ω, θ)

=
[

L d( ∪
i∈Iη

Qi ) + L d( ∪
i∈Jη\Iη

Qi )

]

fhom(ω, θ)

=
[

L d(O) + L d( ∪
i∈Jη\Iη

Qi )

]

fhom(ω, θ).

Consequently, letting η → 0 and using (4.52), we obtain

lim
η→0

lim
ε→0

Jε(ω, uη
ε ) ≤ L d(O) fhom(ω, θ). (4.58)

We are going to establish that

lim
η→0

lim
ε→0

∫

O
|uη

ε − �θ |2dx = 0. (4.59)

Applying Lemma 4.4 with R = εR j , Q = Qi (whose size is η > 0) and u =
(uη

ε − �θ )1Qi (verifying u ∈ L2
loc(R

d), u = 0 in ∂εRJ (Qi ) and u = 0 in Rd\Qi ),
there exists C > 0 such that for each η > 0, each ε > 0 and each i ∈ Iη,

∫

Qi

|uη
ε − �θ |2dx ≤ Cη

Rd+2
J εd

∫

Qi

∫

[
|x−y| εRJ

2

]
∩Qi

((
uη

ε − �θ

)
(x) − (

uη
ε − �θ

)
(y)

ε

)2

dxdy

≤ 2Cη

Rd+2
J εd

∫

Qi

∫

[
|x−y|≤ εRJ

2

]
∩Qi

(
uη

ε (x) − uη
ε (y)

ε

)2

dxdy

+ 2Cηθ2

Rd+2
J εd

∫

Qi

∫

[
|x−y|≤ εRJ

2

]
∩Qi

(
x − y

ε

)2

dxdy. (4.60)
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Taking Remark 3.9, PNL2 and (4.54) into account, we see that

∫

Qi

∫

[
|x−y|≤ εRJ

2

]
∩Qi

(
uη

ε (x) − uη
ε (y)

ε

)2

dxdy

≤ 1

J
(
RJ
2

)

∫

Qi

∫

Qi

J

(
x − y

ε

)(
uη

ε (x) − uη
ε (y)

ε

)2

dxdy

≤ 4εd

J
(
RJ
2

)Jε

(
ω, ûη

i,ε, Qi , Qi

)

= 4εd

J
(
RJ
2

)L d (Qi )
S 1

ε
Qi

(ω, θ)

L d
( 1

ε
Qi

) . (4.61)

Moreover, we have

∫

Qi

∫

[
|x−y|≤ εRJ

2

]
∩Qi

(
x − y

ε

)2

dxdy = εd
∫

Qi

∫

[
|ξ |≤ RJ

2

]
∩Qi

|ξ |2dξ

≤ L d (Qi )
εd Rd+2

J

4
. (4.62)

From (4.60), (4.61) and (4.62) we deduce that for every η > 0, every ε > 0 and every
i ∈ Iη,

∫

Qi

|uη
ε − �θ |2dx ≤ C ′ηL d(Qi )

(
S 1

ε
Qi

(ω, θ)

L d( 1
ε
Qi )

+ 1

)

with C ′ := C max

{
8

Rd+2
J J (

RJ
2 )

, θ2

2

}

. From (4.51) it follows that

∫

O
|uη

ε − �θ |2dx ≤ C ′η
∑

i∈Iη
L d(Qi )

(
S 1

ε
Qi

(ω, θ)

L d( 1
ε
Qi )

+ 1

)

for all η > 0 and ε > 0. Letting ε → 0 and using Proposition 4.56 [(and again (4.51)]
we see that

lim
ε→0

∫

O
|uη

ε −�θ |2dx ≤ C ′η
∑

i∈Iη
L d(Qi )( fhom(ω, θ)+1) = C ′ηL d(O)( fhom(ω, θ)+1)
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for all η > 0, and (4.59) follows. According to (4.58) and (4.59), by diagonalization
there exists a mapping ε �→ η(ε), with η(ε) → 0 as ε → 0, such that

⎧
⎪⎨

⎪⎩

lim
ε→0

Jε(ω, uη(ε)
ε ) ≤ L d(O) fhom(ω, θ)

uη(ε)
ε → �θ in L2(O),

which gives (4.49) with uε := uη(ε)
ε .

Proof of (4.46). As in the proof of (4.45) it is equivalent to prove that for every
u ∈ L2(O) there exists {uε}ε>0 ⊂ L2(O) such that

⎧
⎨

⎩

uε → u in L2(O)

J
g
hom(ω, u) ≥ limε→0 J

g
ε (ω, uε).

Letu ∈ L2(O). BydefinitionofJhom(ω, ·) in (3.22),without loss of generalitywecan
assume that u ∈ H1

g (O), and so we have to prove that there exists {uε}ε>0 ⊂ L2(O)

such that ⎧
⎪⎪⎨

⎪⎪⎩

uε → u in L2(O)

∫

O
fhom(ω,∇u(x))dx ≥ lim

ε→0
J g

ε (ω, uε).

(4.63)

By (4.45) there exists {uε}ε>0 ⊂ L2(O) such that

⎧
⎪⎪⎨

⎪⎪⎩

uε → u in L2(O)

∫

O
fhom(ω,∇u(x))dx ≥ lim

ε→0
Jε(ω, uε).

(4.64)

Fix any δ > 0. From Lemma 4.7 (that we apply with U = O) there exists {uδ
ε}ε>0 ⊂

L2(O) such that:

•
{
uδ

ε = u in O\Oδ

uδ
ε = uε in O2δ

(4.65)

• uδ
ε → u in L2(O); (4.66)

• lim
ε→0

(Jε(ω, uδ
ε) − Jε(ω, uε)) ≤ o(1) as δ → 0. (4.67)

By (4.67) and the inequality in (4.64) we see that

lim
ε→0

Jε(ω, uδ
ε) ≤

∫

O
fhom(ω,∇u(x))dx + o(1) as δ → 0. (4.68)
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Fix any ε ∈ ]
0, δ

R j

[
. Then, taking (4.65) into account, uδ

ε = u in O\OεR j and, noticing

that J
(
ω, x

ε
,
y
ε
,
x−y

ε

) = 0 if |x − y| > εR j , we see that

Dε
g (ω, uδ

ε) = 2Jε(ω, ug, O\OεRJ , O
J\O), (4.69)

where ug ∈ H1(OJ\O2δ) is defined by

ug(x) :=
{
u(x) if x ∈ O\O2δ

g(x) if x ∈ OJ\O.

(Note that ug ∈ H1(OJ\O2δ) because u ∈ H1
g (O).) On the other hand, as δ > εR j

we have O\OεRJ ⊂ O\Oδ , hence

Jε(ω, ug, O\OεRJ , O
J\O) ≤ Jε(ω, ug, O\Oδ, O

J\O).

Moreover, it is easy to see that O\Oδ + Bδ(0) ⊂ OJ\O2δ so that u ∈ H1(O\Oδ +
Bδ(0)). Consequently, taking PNL2 into account, by Lemma 4.5(b) (that we apply
with A = O\Oδ) it follows that for every ε ∈]0, δ

RJ
[,

Jε(ω, ug, O\OεRJ , O
J\O) ≤

∫

O\Oδ+Bδ(0)
|∇ug(x)|2dx

∫

Rd
|ξ |2 J (ξ)dξ

= o(1) as δ → 0.

Hence, by using (4.69),

lim
ε→0

Dε
g (ω, uδ

ε) ≤ o(1) as δ → 0. (4.70)

From (4.66) and (4.68) together with (4.70) we deduce that

⎧
⎪⎪⎨

⎪⎪⎩

lim
δ→0

lim
ε→0

‖uδ
ε − u‖L2(O) = 0

lim
δ→0

lim
ε→0

J g
ε (ω, uδ

ε) ≤
∫

O
fhom(ω,∇u(x))dx .

(4.71)

From (4.71), by diagonalization, there a mapping ε �→ δ(ε), with δ(ε) → 0 as ε → 0,
such that... ⎧

⎪⎪⎨

⎪⎪⎩

uδ(ε)
ε → u in L2(O)

lim
ε→0

J g
ε (ω, uδ(ε)

ε ) ≤
∫

O
fhom(ω,∇u(x))dx,

which gives (4.63) with uε = uδ(ε)
ε .

Step 3: End of the proof. From (4.27) and (4.45) (resp. (4.28) and (4.46)) we deduce
that the �-convergence of {Jε(ω, ·)}ε>0 (resp. {J g

ε (ω, ·)}ε>0) toJhom(ω, ·) (resp.
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J
g
hom(ω, ·)) with respect to the strong convergence in L2(O), which finishes the

proof. ��

4.4 Proof of Theorem 3.19

Let �′′ ∈ F be such that P(�′′) = 1 and (Hω
1 )–(H

ω
4 ) (in Theorem 3.19) hold. Set

�̂ = �′ ∩ �′′ where �′ ∈ F , with P(�′) = 1, is given by Proposition 3.17 and
Theorem 4.8. Then �̂ ∈ F and P(�̂) = 1. Fix ω ∈ �̂. We are going to apply
Theorem 4.1.

Firstly, it is easy to see that (C1)–(C5) hold with u0,ε = uω
0,ε, u0 = uω

0 , uε = uω
ε ,

z
ε

= yω
ε
, zε = yω

ε , aε = ρω
ε
and a = ρω, aε = ρω

ε and a = ρω, Fε = Fε(ω, ·, ·),
G = Gω and Eε = Jε(ω, ·) (resp. Eε = J

g
ε (ω, ·)). Note that (C4) is verified

with Eε = Jε(ω, ·) (resp. Eε = J
g
ε (ω, ·)) by using Lemma 4.2 (resp. Lemma 4.3).

Secondly, by Theorem 4.8, (C6) is satisfied with Eε = Jε(ω, ·) and E0 = Jhom(ω, ·)
(resp. Eε = J

g
ε (ω, ·) and E0 = J

g
hom(ω, ·)), and the conclusion of Theorem 3.19

follows by applying Theorem 4.1 and noticing that ∂Jhom(ω, ·) = {∇Jhom(ω, ·)}
(resp. ∂J g

hom(ω, ·) = {∇J
g
hom(ω, ·)}). ��

5 Application to spatial population dynamics

Here we apply Theorem 3.19 to a model coming from spatial population dynamics.

5.1 Heuristic derivation of themodel

Let T > 0 and let O ⊂ Rd (with d = 1, 2 or 3) be a bounded open domain with
Lipschitz boundary. The state of the population is represented by its density u(t, x) at
time t ∈ [0, T ] and located at x ∈ O . Although, for each x ∈ O , u(·, x) is intrinsically
discrete, as the population is assumed to be very large u(·, x) is considered as a real
function, i.e.

u : [0, T ] × O → R.

To precise the model we need to specify what the population flux is and how the
population growth is regulated.

We assume that the environment in which the population evolves is randomly
heterogeneous and we denote the density of population by uω

ε where ε > 0 represents
the (small) size of the heterogeneities of the environment and ω ∈ � its randomness
with (�,F ,P) a suitable complete probability space.

The population flux at (t, x) is given by

Fω
ε

(
uω

ε (t, x)
) = 1

4εd+2

∫

O
J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)
(
uω

ε (t, y) − uω
ε (t, x)

)
dy

+ 1

2εd+2

∫

OJ \O
J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)
(
g (y) − uω

ε (t, x)
)
dy,(5.1)
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where J : �×Rd×Rd×Rd → [0,∞[ satisfies PNL1–PNL2 andOJ := O+supp(J )

with J given by PNL2. Roughly, the first (resp. second) term in (5.1) accounts for the
number of individuals at time t in O (resp. outside O , i.e. in OJ\O) which jump
from y to x . Note that the scaling 1

εd+2 together with the scaling 1
ε
with respect to

third variable of J is introduced to provide a local limit model of divergence form as
ε → 0.

The regulation of the population growth at (t, x) is governed by

Rω
ε (t, uω

ε (t, x)) = f
(
ω, t,

x

ε
, uω

ε (t, x)
)

,

where f : � × [0, T ] × Rd × R → R is the density of a CP-structured reaction
functional (see Definition 2.9).

Let D ⊂ O be an arbitrary domain. The time rate of change of the number of
individuals in D is equal to the rate that the population is grown in D plus the rate that
the population flows in D, i.e. the balance law for uω

ε is given by

d

dt

∫

D
uω

ε (t, x)dx =
∫

D
Rω

ε (t, uω
ε (t, x))dx +

∫

D
Fω

ε (uω
ε (t, x))dx .

Hence, assuming that uω
ε is sufficiently regular,

∫

D

∂uω
ε

∂t
(t, x)dx −

∫

D
Fω

ε (uω
ε (t, x))dx =

∫

D
Rω

ε (t, uω
ε (t, x))dx .

Then, the arbitrariness of D implies the differential form of the balance law:

∂uω
ε

∂t
(t, x) −Fω

ε (uω
ε (t, x)) = Rω

ε (t, uω
ε (t, x)) for L 1 ⊗L d -a.a. (t, x) ∈ [0, T ] × O.

(5.2)
Noticing that ∇J

g
ε (ω, uω

ε (t))(x) = −Fω
ε (uω

ε (t, x)) with J
g
ε := Jε + Dε

g , where
Jε : � × L2(O) → [0,∞[ and Dε

g : � × L2(O) → [0,∞[ are defined by
(3.2) and (3.5) respectively, and setting Fε(ω, t, uω

ε (t))(x) = Rω
ε (t, uω

ε (t, x)) with
Fε : � × [0, T ] × L2(O) → L2(O), we see that (5.2) can be rewritten as follows:

duω
ε

dt
(t) + ∇J g

ε (ω, uω
ε (t)) = Fε(ω, t, uω

ε (t)) forL 1-a.a. t ∈ [0, T ],

which gives (PD
ε,ω) in Sect. 3.2 by adding a suitable initial condition.

5.2 Mathematical description of themodel

In what follows we consider the logistic model with a growth rate whose environmen-
tal carrying capacity depending on time and in which a percentage of the population
density is subtracted (reflecting a reduction of the population due to hunting or captur-
ing individuals). More precisely, for each ε > 0, Fε : � × [0, T ] × L2(O) → L2(O)
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is given by

Fε(ω, t, u)(x) := f (ω, t,
x

ε
, u(x)), (5.3)

where f : � × [0, T ] × Rd × R → R is defined by

f (ω, t, x, ξ) := r(ω, t, x)ξ

(

1 − ξ

K (ω, t, x)

)

− hξ, (5.4)

with h ≥ 0 and r , K ∈ L∞(� × [0, T ] × Rd) such that r > 0 and K ≥ γ >

0, where r is the growth rate, K is the carrying capacity and h the percentage of
harversting. (In practice, the challenge is to evaluate reasonable values, or at least to
have a good statistical knowledge, for the growth rate r and the carrying capacity K
in heterogeneous environments.)

Remark 5.1 It is easy to see that f : � × [0, T ] × Rd × R → R defined in (5.4) can
be rewritten as follows:

f (ω, t, x, ξ) = 〈a(ω, t, x), b(ξ)〉,

where 〈·, ·〉 denotes the scalar product, with a : � × [0, T ] ×Rd → R3 and b : R →
R3 given by

⎧
⎨

⎩

a(ω, t, x) := (r(ω, t, x),− r(ω,t,x)
K (ω,t,x) ,−h)

b(ξ) := (ξ, ξ2, ξ).

(5.5)

Thus, for every ω ∈ � and every ε > 0, Fε(ω, ·, ·) satisfies the special structure
of CP-structured reaction functionals as introduced in [4, Definition 2.1, p. 27]. This
special structure2 allows to pass to the weak limit in the reaction term (see Lemma
5.6).

In what follows, we consider r , r , K , K ∈ [0,∞[ given by:

• r := ess inf
(ω,t,x)

r(ω, t, x);

• r := ess sup
(ω,t,x)

r(ω, t, x);

• K := ess inf
(ω,t,x)

K (ω, t, x);

• K := ess sup
(ω,t,x)

K (ω, t, x),

2 By the class of special CP-structured reaction functionals we mean the subclass of FCP (see Definition
2.9) forwhich f : [0, T ]×Rd×R → R given by (CP3) is of the form: f (t, x, ξ) = 〈a(t, x), b(ξ)〉+c(t, x)
with a ∈ L∞([0, T ]×Rd ;Rm ), c ∈ L2([0, T ]; L2loc(Rd )) and b : R → Rm locally Lipschitz continuous,
where m ∈ N∗.
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and we assume that ⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g ≥ 0

ess inf
x∈O\ORJ

∫

OJ \O J (x−y)g(y)dy
∫

OJ \O J (x−y)dy
≥ 0

ess sup
x∈O\ORJ

∫

OJ \O J (x−y)g(y)dy
∫

OJ \O J (x−y)dy
< ∞

r > h.

(5.6)

Lemma 5.2 Every Fε(ω, ·, ·) satisfies (CP1)–(CP3) with f (ω, ·, ·
ε
, ·), where f : � ×

[0, T ] × Rd × R → R is given by (5.4), and so Fε(ω, ·, ·) ∈ FCP for all ω ∈ � and
all ε > 0. More precisely, (ρω

ε
, f ω

ε
, yω

ε
) = (0, 0, 0) and (ρω

ε , f
ω

ε , yω
ε ) = (ρ, f , y)

does not depend on (ω, ε). Moreover, (ρω
ε
, ρω

ε ) = (0, ρ) verifies (3.4) and, since
(yω

ε
, yω

ε ) = (0, y) does not depend on ε, it is clear that (3.3) holds.

Proof of Lemma 5.2 Fix ω ∈ � and ε > 0. It is clear that we can take (ρω
ε
, f ω

ε
, yω

ε
) =

(0, 0, 0). Moreover, from (5.6) we see that (3.4) is satisfied. To find a suitable triple
(ρω

ε , f
ω

ε , yω
ε ) we need to consider μ ∈ R given by

μ := ν − ess sup
x∈O\ORJ

∫

OJ \O J (x − y)g(y)dy
∫

OJ \O J (x − y)dy

with ν := (r − h) Kr . If μ ≤ 0 then we can take

ρω
ε ≥ ess sup

x∈O\ORJ

∫

OJ \O J (x − y)g(y)dy
∫

OJ \O J (x − y)dy
,

f
ω

ε = 0 and yω
ε = ρω

ε . Indeed, ρ
ω
ε satisfies (3.4) by (5.6) and, since ρω

ε ≥ ν,

f (ω, t,
x

ε
, yω

ε (t)) = f (ω, t,
x

ε
, ρω

ε ) ≤ − r

K
(ρω

ε )2 + (r − h)ρω
ε ≤ 0 = f

ω

ε (t, yω
ε (t)).

If μ > 0 then we consider ρω
ε such that

ess sup
x∈O\ORJ

∫

OJ \O J (x − y)g(y)dy
∫

OJ \O J (x − y)dy
≤ ρω

ε ≤ ν

and we set f
ω

ε (t, ξ) := − r
K

ξ2 + (r − h)ξ . Then, ρω
ε satisfies (3.4) by (5.6), and by a

standard calculation we see that

yω
ε (t) := 1

( 1
ρω

ε
− 1

ν
)e−t(r−h) + 1

ν
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solves (ODE) in Definition 2.9 with ρ = ρω
ε and f = f

ω

ε . Moreover, yω
ε (t) ≥ 0 for

all t ∈ [0, T ] because ρω
ε ≤ ν, and f (ω, t, x

ε
, yω

ε (t)) ≤ f
ω

ε (t, yω
ε (t)) for all t ∈ [0, T ]

and all x ∈ Rd , which completes the proof. ��

Given {uω
0,ε}ε>0 ⊂ L2(O) we consider the Dirichlet–Cauchy nonlocal reaction–

diffusion problem of gradient flow type:

(PDL
ε,ω)

⎧
⎪⎨

⎪⎩

duω
ε

dt
(t) + ∇J g

ε (ω, uω
ε (t)) = Fε(ω, t, uω

ε (t)) for L 1-a.a. t ∈ [0, T ]

uω
ε (0) = uω

0,ε ∈ L2(O; [0, ρ]).

This problem, which corresponds to the problem (PD
ε,ω) in Sect. 3.2 with Fε :

� × [0, T ] × L2(O) → L2(O) defined by (5.3)–(5.4), is called “Dirichlet–Cauchy
nonlocal reaction–diffusion Logistic growth problem” and can be rewritten as follows:

(PDL
ε,ω)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uω
ε

∂t
(x, t) − 1

4εd+2

∫

O
J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)

(uω
ε (t, y) − uω

ε (t, x))dy

− 1

2εd+2

∫

OJ \O
J

(

ω,
x

ε
,
y

ε
,
x − y

ε

)

(g(y) − uω
ε (t, x))dy

= r
(
ω, t,

x

ε

)
uω

ε (t, x)

(

1 − uω
ε (t, x)

K
(
ω, t, x

ε

)

)

− huω
ε (t, x) in O × [0, T ]

uω
ε (0, ·) = uω

0,ε ∈ L2(O; [0, ρ]).

Taking (5.6) into account, as a consequence of Lemma 5.2 and corollary 2.11 we
obtain the following result.

Corollary 5.3 For every ω ∈ � and every ε > 0, (PDL
ε,ω) admits a unique solution

uω
ε ∈ AC([0, T ]; L2(O)) such that

0 ≤ uω
ε (t) ≤ y(t) ≤ y(T ) for all t ∈ [0, T ].

Moreover, if Fε(ω, ·, uω
ε ) ∈ AC([0, T ]; L2(O)) then uω

ε admits a right deriva-

tive d+uω
ε

dt (t) at every t ∈ [0, T [ which satisfies d+uω
ε

dt (t) + ∇J
g
ε (ω, uω

ε (t)) =
Fε(ω, t, uω

ε (t)).

Remark 5.4 When r(ω, ·) and r(ω,·,·)
K (ω,·,·) are sufficiently regular, i.e, H1 is replaced by

W 1,1 in (A − 2) below, we automatically have Fε(ω, ·, uω
ε ) ∈ AC([0, T ]; L2(O)).

Remark 5.5 From (5.3)–(5.4) it is easy to see that supε>0

∥
∥Fε(ω, ·, uω

ε )
∥
∥
L2([0,T ];L2(O))

< ∞, i.e. the hypothesis (Hω
3 ) of Theorem 3.19 is verified.
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5.3 The homogenizedmodel

Here, by using Theorem 3.19, we study the almost sure limit of (PDL
ε,ω) as ε → 0 (see

Corollary 5.8). To do this we need the following additional assumptions:

(A1) r(ω, t, x+z) = r(Tzω, t, x) and K (ω, t, x+z) = K (Tzω, t, x) for all z ∈ Zd ,
all t ∈ [0,∞[, all x ∈ Rd and all ω ∈ �;

(A2) r(ω, ·, ·) ∈ H1([0, T ]; L2
loc(R

d)) and
r(ω, ·, ·)
K (ω, ·, ·) ∈ H1([0, T ]; L2

loc(R
d)) for

all ω ∈ �;
(A3) for every B ∈ Bb(R

d) and every t ∈ [0, T ], the functions ω �−→
‖r(ω, t, ·)‖2

L2(B)
,ω �−→

∥
∥
∥

r(ω,t,·)
K (ω,t,·)

∥
∥
∥
L2(B)

,ω �−→ ∫ T
0

∥
∥ dr
ds (ω, s, ·)∥∥L2(B)

ds and

ω �−→ ∫ T
0

∥
∥
∥
d( r

K )

ds (ω, s, ·)
∥
∥
∥
L2(B)

ds belong to L1
P
(�).

The following Lemma, allows to establish the assumption (Hω
4 ) of Theorem 3.19

and gives a formula for the homogenized reaction functional.

Lemma 5.6 If (A1)–(A3) hold then there exists �′ ∈ F with P(�′) = 1 such that for
each ω ∈ �′, (Hω

4 ) is satisfied with Gω = Fhom(ω, ·, ·) : [0, T ] × L2(O) → L2(O)

defined by
Fhom(ω, t, u)(x) := fhom(ω, t, u(x)), (5.7)

where fhom(ω, ·, ·) : [0, T ] × R → R is given by

fhom(ω, t, ξ) :=
〈

E
I
(∫

]0,1[d
a(·, t, y)dy

)

(ω), b(ξ)

〉

with a : � × [0, T ] × Rd → R3 and b : R → R3 given by (5.5). More precisely, we
have

fhom(ω, t, ξ) = rhom(ω, t)ξ(1 − ξ

Khom(ω, t)
) − hξ, (5.8)

where rhom(ω, ·) : [0, T ] → [0,∞[ and Khom(ω, ·) : [0, T ] → [0,∞[ are defined
by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

rhom(ω, t) := E
I
(∫

]0,1[d r(·, t, y)dy
)

(ω)

Khom(ω, t) :=
E
I
(∫

]0,1[d r(·, t, y)dy
)

(ω)

E
I
(∫

]0,1[d
r(·,t,y)
K (·,t,y)dy

)
(ω)

.

(5.9)

Moreover Fhom(ω, ·, ·) ∈ F(R1)-(R2) for all ω ∈ �′.

Proof of Lemma 5.6 By [4, Lemma 7.2, p. 208] there exists �′ ∈ F with P(�′) = 1
such that for every ω ∈ �′,

a(ω, t,
·
ε
)⇀E

I
(∫

]0,1[d
a(·, t, y)dy

)

(ω) in L2(O;R3) for all t ∈ [0, T ],
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hence, arguing as in the proof of [4, Theorem 7.1, pp. 209–210],

a(ω, ·, ·
ε
)⇀E

I
(∫

]0,1[d
a(·, ·, y)dy

)

(ω) in L2([0, T ]; L2(O;R3)).

Let v ∈ C([0, T ]; L2(O)) be such that uω
ε → v. By using similar arguments as in the

proof of [4, Lemma 7.2, p. 60] from the above we deduce that

〈
a(ω, ·, ·), b(uω

ε )
〉
⇀

〈

E
I
(∫

]0,1[d
a(·, ·, y)dy

)

(ω), b(v)

〉

in L2([0, T ]; L2(O)),

and the proof is complete. ��
Remark 5.7 In the formula of the homogenized reaction functional, the homogenized
carrying capacity Khom is given by a mixture between carrying capacity and growth
rate.

Taking Corollary 5.3, Remark 5.5 and Lemma 5.6 into account, from Theorem 3.19
we deduce the following stochastic homogenization result.

Corollary 5.8 Let assumptions (A1)–(A3) hold and for P-a.e. ω ∈ �, assume that:

• sup
ε>0

J
g
ε (ω, uω

0,ε) < ∞;
• there exists uω

0 ∈ L2(O) such that uω
0,ε⇀uω

0 in L2(O).

Then, for P-a.e. ω ∈ �, there exists uω ∈ AC([0, T ]; L2(O)) such that:

• uω
ε → uω in C([0, T ]; L2(O));

• duω
ε

dt
⇀

duω

dt
in L2([0, T ]; L2(O));

• 0 ≤ uω(t) ≤ y(T ) for all t ∈ [0, T ];
• uω is the unique solution of the following Dirichlet–Cauchy local reaction–
diffusion problem of gradient flow type:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

duω

dt
(t) + ∇J

g
hom(ω, uω(t)) = Fhom(ω, t, uω(t)) for L 1-a.a. t ∈ [0, T ]

uω(0) = uω
0 ∈ dom(J

g
hom(ω, ·)).

uω
0 ∈ H1

g (O) ∩ L2(O; [0, ρ]).

with Fhom(ω, ·, ·) given by (5.7)–(5.9).
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A. Elements of Legendre–Fenchel calculus

Let X be a normed space and let X∗ be its topological dual. In what follows, for any
u ∈ X and any u∗ ∈ X∗, we write u∗(u) = 〈u∗, u〉. We begin with the following
definition.

Definition A.1 Let � : X →]−∞,∞] be a proper3 function. The Legendre–Fenchel
conjugate (or the conjugate) of � is the function �∗ : X∗ →] − ∞,∞] defined by

�∗(u∗) := sup
{〈u∗, u〉 − �(u) : u ∈ X

}
.

(As � is proper and � > −∞ we have �∗ > −∞.) The Legendre–Fenchel biconju-
gate (or the biconjugate) of � is the function �∗∗ : X → [−∞,∞] defined by

�∗∗(u) := sup
{〈u∗, u〉 − �∗(u∗) : u∗ ∈ X∗}.

(Since �∗ > −∞, u∗ ∈ dom(�∗) if and only if there exists α ∈ R such that
�∗(u∗) ≤ α, i.e. �(u) ≥ 〈u∗, u〉 − α for all u ∈ X . Hence, if � admits a continuous
affine minorant function4 then �∗ is proper and �∗∗ > −∞.) The following theorem
gives the main properties of the Legendre–Fenchel conjugate and biconjugate (see [2,
Sect. 9.3, p. 343] for more details).

Theorem A.2 Let � : X →] − ∞,∞] be a proper function.
(a) If � is convex and lower semicontinuous then �∗ is proper, convex and lower

semicontinuous.
(b) (Legendre–Fenchel’s inequality.) For every u ∈ X and every u∗ ∈ X∗,

�(u) + �∗(u∗) − 〈u∗, u〉 ≥ 0.

(c) (Fenchel–Moreau–Rockafellar’s theorem.) If � is convex and lower semicontinu-
ous then

�∗∗ = �.

(d) If � is convex and admits a continuous affine minorant function then

�∗∗ = �,

where � denotes the lower semicontinuous envelope of �.

Here is the definition of the subdifferential of a function.

Definition A.3 Let � : X →] − ∞,∞] be a proper function. The subdifferential of
� is the multivalued operator ∂� : X−→−→X∗ defined by

∂�(u) := {
u∗ ∈ X∗ : �(v) ≥ �(u) + 〈u∗, v − u〉 for all v ∈ X

}
.

3 We say that� : X →]−∞, ∞] is proper if (its effective domain) dom(�) := {u ∈ X : �(u) < ∞} �= ∅.
4 This is true if � : X →] − ∞,∞] is a proper, convex and lower semicontinuous function, because � is
then equal to the supremum of all its continuous affine minorant functions.
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(Note that dom(�) ⊃ dom(∂�) := {
u ∈ X : ∂�(u) �= ∅}.)

For the subdifferentials of convex functions we have the following result (see [2,
Sect. 9.5, p. 355 and Lemma 17.4.1, p. 737] for more details).

Proposition A.4 Let � : X →] − ∞,∞] be a proper and convex function.

(a) If � is Fréchet-differentiable at u ∈ X then

∂�(u) = {∇�(u)
}
.

(b) (Fenchel’s extremality relation.) If � is lower semicontinuous then

u∗ ∈ ∂�(u) ⇐⇒ �(u) + �∗(u∗) − 〈u∗, u〉 = 0.

(c) (Brønsted–Rockafellar’s lemma) If � is lower semicontinuous then

dom(∂�) = dom(�).

B. Mosco-convergence

Let X be aBanach space and let X∗ be its topological dual. Inwhat follows, “→” (resp.
“⇀”) denotes the strong (resp. the weak) convergence. We begin with the definition
of De Giorgi �-convergence (see [10, 15, 16] for more details).

Definition B.1 Let � : X →]−∞,∞] and, for each ε > 0, let �ε : X →]−∞,∞].
We say that {�ε}ε>0 strongly �-converges (resp. weakly �-converges) to �, and we
write

� = �s- lim
ε→0

�ε or �ε
�s−→ � (resp. � = �w- lim

ε→0
�ε or �ε

�w−→ �),

if the following two assertions hold:

• for every u ∈ X , �s- lim
ε→0

�ε(u) ≥ �(u)(resp. �w- lim
ε→0

�ε(u) ≥ �(u)) with

�s- lim
ε→0

�ε(u) := inf

{

lim
ε→0

�ε(uε) : uε → u

}

(resp. �w- lim
ε→0

�ε(u) := inf

{

lim
ε→0

�ε(uε) : uε⇀u

}

)

or equivalently, for every u ∈ X and every {uε}ε>0 ⊂ X , if uε → u (resp. uε⇀u)
then

lim
ε→0

�ε(uε) ≥ �(u);
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• for every u ∈ X , �s- lim
ε→0

�ε(u) ≤ �(u)(resp. �w- lim
ε→0

�ε(u) ≤ �(u)) with

�s- lim
ε→0

�ε(u) := inf

{

lim
ε→0

�ε(uε) : uε → u

}

(resp. �w- lim
ε→0

�ε(u) := inf

{

lim
ε→0

�ε(uε) : uε⇀u

}

)

or equivalently, for every u ∈ X there exists {uε}ε>0 ⊂ X such that uε → u (resp.
uε⇀u) and

lim
ε→0

�ε(uε) ≤ �(u).

From �-convergence we can define Mosco-convergence (which was introduced by
Mosco, see [19]).

Definition B.2 Let � : X →]−∞,∞] and, for each ε > 0, let �ε : X →]−∞,∞].
We say that {�ε}ε>0 Mosco-converges to �, and we write

� = M- lim
ε→0

�ε or �ε
M−→ �,

if � = �s- lim
ε→0

�ε = �w- lim
ε→0

�ε or equivalently �s- lim
ε→0

�ε ≤ � ≤ �w- lim
ε→0

�ε.

From Definition B.2, it is easy to see that under a suitable compactness condition
strong �-convergence is equivalent to Mosco-convergence.

Proposition B.3 Let� : X →]−∞,∞] and, for each ε > 0, let�ε : X →]−∞,∞].
Assume that the following compactness condition hold:

• for every {uε}ε>0 ⊂ X, if sup
ε>0

�ε(uε) < ∞ then {uε}ε>0 is strongly relatively

compact in X.

Then, �ε
�s−→ � if and only if �ε

M−→ �.

As stated in the following theorem due to Mosco (see [19, Theorem 1]), in
the reflexive case and for lower semicontinuous, convex and proper functions, the
Legendre–Fenchel transform is continuous with respect to Mosco-convergence.

Theorem B.4 Let � : X →] − ∞,∞] be a proper, convex and lower semicontinuous
function and, for each ε > 0, let �ε : X →] − ∞,∞] be a proper, convex and lower
semicontinuous function. If X is reflexive then �ε

M−→ � if and only if �∗
ε

M−→ �∗.

The following result allows to pass from Mosco-convergence in X to Mosco-
convergence in L2([0, T ]; X) (see [4, Lemma 2.6, p. 50] for a proof).
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Theorem B.5 Fix T > 0 and assume that X is aHilbert space. Let� : X → [0,∞] be
a proper, convex and lower semicontinuous function, let � : L2([0, T ]; X) → [0,∞]
be defined by

�(u) :=
∫ T

0
�(u(t))dt

and, for each ε > 0, let �ε : X → [0,∞] be a lower semicontinuous, proper and
convex function and let �ε : L2([0, T ]; X) → [0,∞] be defined by

�ε(u) :=
∫ T

0
�ε(u(t))dt .

If �ε
M−→ � then �ε

M−→ �.

C. Grönwall’s lemma

In the paper we use the following version of the so-called Grönwall’s lemma (for a
proof we refer to [4, Lemma A.1, p. 277]).

Lemma C.1 Let T > 0, let a ∈ [0,∞[, let m ∈ L1([0, T ]) be such that m(s) ≥ 0 for
L 1-a.a. s ∈ [0, T ] and let φ ∈ C([0, T ];R) be such that φ(s) ≤ a + ∫ s

0 φ(t)m(t)dt

for all s ∈ [0, T ]. Then φ(s) ≤ ae
∫ s
0 m(t)dt for all s ∈ [0, T ].
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