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Abstract
In this paper, we prove the existence and the regularity of weak solutions for a class 
of nonlinear anisotropic parabolic equations with pi(⋅) growth conditions, degenerate 
coercivity and Lm(⋅) data, with m(⋅) > 1 being small. The functional setting involves 
Lebesgue-Sobolev spaces with variable exponents.
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1 Introduction

In this paper, we are interested in the existence and regularity of solutions for some 
nonlinear parabolic equations with principal part having degenerate coercivity:

(1)
�tu −

N∑
i=1

Di

(
bi(t, x, u)ai(t, x,Du)

)
+ F(t, x, u) = f in QT ,

u = 0 on ΣT ,

u(0, x) = u0(x) in Ω.
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where QT ≐ (0, T) × Ω , ΣT = (0, T) × �Ω , Ω is a bounded open subset of ℝN , (N ≥ 2) , 
T > 0 is a real number, f ∈ Lm(⋅) , and u0 ∈ L(m(⋅)−1)s+(⋅)+1(Ω) , s+(⋅) = max1≤i≤N si(⋅) . 
Here, we suppose that bi ∶ QT ×ℝ ⟶ ℝ , ai ∶ QT ×ℝ

N
⟶ ℝ , F ∶ QT ×ℝ → ℝ 

are Carathéodory functions and satisfying for a.e.(t, x) ∈ QT , for all u ∈ ℝ , for all 
�, �� ∈ ℝ

N , and for all i = 1,… ,N the following:

where 𝛼 > 0 , C1 > 0 , C2 > 0 , m, � ∈ C(Ω) , m(⋅) > 1 , �(⋅) ≥ 0 , g ∈ L1(QT ) is non-
negative function, and the variable exponents pi ∶ Ω ⟶ (1,+∞) are continuous 
functions.

where si ∶ Ω ⟶ (1,+∞) are continuous functions on Ω.
Let us consider for example the operator

The main difficulties in studying (1) are the fact that, due to assumption (5), the dif-
ferential operator Au is not coercive if u is very large, and the problem (1) has a 
more complicated nonlinearity than the classical case pi(⋅) = pi since it is nonhomo-
geneous. This shows that the classical methods for the constant case [7] can’t be 
applied here. In the classical case � = 0 and pi(⋅) = pi the existence and regularity 
solution have been treated in [7]. It is worth pointing out that the problem (1) has 
been studied in [5] in the particular case pi(⋅) = 2 , i ∈ {1, 2,⋯ ,N} , m(⋅) = m , and 

(2)ai(t, x, �) ⋅ �i ≥ �|�i|pi(x),

(3)|ai(t, x, �)| ≤
(
g +

N∑
j=1

|�j|pj(x)
)1−

1

pi (x) ,

(4)
(
ai(t, x, 𝜉i) − ai(t, x, 𝜉

�
i
)
)
⋅ (𝜉i − 𝜉�

i
) > 0, 𝜉i ≠ 𝜉�

i
,

(5)
C2

(1 + |u|)�(x) ≤ bi(t, x, u) ≤ C1,

(6)sup
|u|≤𝜆

|F(t, x, u)| ∈ L1(QT ), for all 𝜆 > 0,

(7)F(t, x, u) sign(u) ≥
N∑
i=1

|u|si(x), a.e. (t, x) ∈ QT , for all u ∈ ℝ,

Au = −

N�
i=1

Di

�
bi(t, x, u)ai(t, x,Du)

�

= −

N�
i=1

⎛
⎜⎜⎜⎝
Di

⎛
⎜⎜⎜⎝

�Diu�pi(x)−2Diu�
ln(e + �u�)

��(x)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠
.
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�(⋅) = � ∈
[
0, 1 +

2

N

)
 with u0 = 0 , where the author have discussed the existence 

and regularity results based on (Lemma 2.2, [5]), but this technique do not work in 
the anisotropic case. In this paper, we assume that condition (7) holds true and we 
treat the regularity of u depending simultaneously on F and f. It is an open question 
to solve our problem without an additional control on u (F = 0) . As in elliptic case 
[1, 9], we give also a better regularity result on Du when s(⋅) is large enough because 
if �(⋅) = � , m(⋅) = m , and S+(⋅) >

(N+1)p−N(1+𝜎)

N−(m−1)p(⋅)
 we have

So, Theorem 4 improves Theorem 3 and (Theorem 1.4, [5]).
The proof of existence and regularity results under the assumptions (2)-(5), where 

pi(⋅) is assumed to be merely a continuous function (is not as in (10)), is essen-
tially based on the approximate problems (24) with some non degenerate coerciv-
ity and regular data. To describe briefly the tools we use, firstly we have the aniso-
tropic Sobolev inequality to overcome the difficulties of getting the regularity in the 
Lemma 7, secondly we introduce the Lemma 9 to facilitate the control of the term 
�un of the regularized problem. Thirdly to prove Theorems 4, a key result about an 
Lm(⋅)s+(⋅)(QT ) estimate for solution to (1) is proved. For the uniqueness of the weak 
solution, where f is irregular data, it is necessary to impose additional conditions on 
the data of the problem (1). Our regularity results are new and have not been proven 
before neither in the isotropic nor in the anisotropic case.

This paper is organized in the following way: In Sect. 2, we introduce the func-
tion spaces. The main Results are presented in Sect. 3. Theorems 3–5 are proved in 
Sect. 4.

2  Preliminaries

Let pi(⋅) ∶ Ω → (1,+∞) be a continuous function for all i = 1,… ,N and let 
p−
i
= min

x∈Ω

p(x) , p+
i
= max

x∈Ω

p(x) . The appropriate Sobolev space to study problem (1) 

is the anisotropic spaces

which are Banach spaces under the norm

where

mpi(⋅)s+(⋅)

1 + s+(⋅) + 𝜎
>

mpi(⋅)

p(⋅)

(
(N + 1)p(⋅) − N(1 + 𝜎)

N + 1 − (1 + 𝜎)(m − 1)

)
,

1

p(⋅)
=

1

N

N∑
i=1

1

pi(⋅)
.

W1,pi(⋅)(Ω) =
{
u ∈ Lpi(⋅)(Ω) ∣ Diu ∈ Lpi(⋅)(Ω)

}
,

W
1,pi(⋅)

0
(Ω) =

{
u ∈ W

1,1

0
(Ω) ∣ Diu ∈ Lpi(⋅)(Ω)

}
,

(8)‖u‖i = ‖u‖Lpi (⋅)(Ω) + ‖Diu‖Lpi(⋅)(Ω), i = 1,… ,N,
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The following inequality will be used later

The smooth functions are in general not dense in 
⋂i=N

i=1
W

1,pi(⋅)

0
(Ω) , but if the expo-

nent variable pi(⋅) > 1 for each i = 1,… ,N satisfies the log-Hölder continuity con-
dition (10), that is ∃M > 0:

then the smooth functions are dense in 
⋂i=N

i=1
W

1,pi(⋅)

0
(Ω) . The Poincaré type inequal-

ity is not correct in the variable anisotropic case but we have the following

Theorem  1 ([4]) Let Ω ⊂ ℝ
N be a bounded domain and pi(⋅) > 1 are continuous 

functions. Suppose that

where

Then the following Poincaré-type inequality holds:

where C is a positive constant independent of u. Thus, 
∑N

i=1
‖Diu‖Lpi (⋅)(Ω) is an equiv-

alent norm on 
⋂N

i=1
W

1,pi(⋅)

0
(Ω).

The following embedding result for the anisotropic constant exponent Sobolev 
space is well-known [11, 13].

Lemma 2 Let Q be a cube of ℝN with faces parallel to the coordinate planes. Sup-
pose pi ≥ 1 , i = 1, ...,N and u ∈

⋂N

i=1
W1,pi(Q) . Then

‖u‖Lpi (⋅)(Ω) = inf

�
𝜆 > 0 ∣ �Ω

����
u(x)

𝜆

����
pi(x)

dx ≤ 1

�
.

(9)

min
�
‖u‖p−i

Lpi (⋅)(Ω)
, ‖u‖p+i

Lpi (⋅)(Ω)

� ≤ �Ω

�u(x)�pi(x)dx ≤ max
�
‖u‖p−i

Lpi (⋅)(Ω)
, ‖u‖p+i

Lpi (⋅)(Ω)

�
.

(10)|pi(x) − pi(y)| ≤ −
M

ln(|x − y|) ∀x ≠ y ∈ Ω such that |x − y| ≤ 1

2
,

(11)pi(x) < p
∗
(x),

p
∗
(x) =

{
Np(x)

N−p(x)
, if p(x) < N

+∞, if p(x) ≥ N.

‖u‖Lp+(⋅)(Ω) ≤ C

N�
i=1

��Diu
��Lpi(⋅)(Ω), ∀u ∈

N�
i=1

W
1,pi(⋅)

0
(Ω),

(12)‖u‖Ls(Q) ≤K
N�
i=1

�
‖u‖Lpi (Q) + ‖Diu‖Lpi (Q)

� 1

N

,



517

1 3

Nonlinear anisotropic degenerate parabolic equations with…

where s = p
∗
=

Np

N−p
 if p < N with p given by 1

p
=

1

N

∑N

i=1

1

pi
 . The constant K depends 

on N and pi . Furthermore, if p ≥ N , the inequality (12) is true for all s ≥ 1 , and K 
depends on s and |Q|.

Remark 1 ([3]) Let Ω be a bounded subset of  ℝN , and pi ∶ Ω → (1,+∞) be a con-
tinuous function. We have the following continuous dense embeddings

Throughout the paper we suppose that pi(⋅) > 1 are continuous functions satis-
fied the assumption (11).

3  Statements of results

Definition 1 A function u is a weak solution of problem (1) if:

and

for all � ∈ C1
c
([0, T) × Ω) , the C1

c
 functions with compact support.

Our main existence results for (1) are the following:

Theorem 3 Let m(⋅) = m , �(⋅) = � , f ∈ Lm(QT ) with m > 1 , such that

Assume that si(⋅) , pi(⋅) are continuous functions such that for all i = 1,… ,N

Lp
+
i (0, T;Lpi(⋅)(Ω)) ↪ Lpi(⋅)(QT ) ↪ Lp

−
i (0, T;Lpi(⋅)(Ω)).

u ∈ L1(0, T;W1,1

0
(Ω)) ∩

(
Ls+(⋅)(QT )

)
, ai ∈ L1(0, T;L1(Ω)), F ∈ L1(QT ),

(13)
− ∫

T

0 ∫Ω

u�t� dx dt +

N∑
i=1

∫
T

0 ∫Ω

bi(t, x, u)ai(t, x,Du)Di� dx dt

+ ∫
T

0 ∫Ω

F(t, x, u)� dx dt = ∫
T

0 ∫Ω

�(t, x)f dx dt + ∫Ω

�(0, x)u0(x) dx,

(14)

(N + 𝜎 + 2)p(⋅)

(N + 1)p(⋅) − 2N(1 + 𝜎) + (N + 𝜎 + 2)p(⋅)
< m <

(N + 𝜎 + 2)p(⋅)

(N + 𝜎 + 2)p(⋅) − N(𝜎 + 1)
,

(15)0 ≤ 𝜎 < min

{
p(⋅) − 1 +

p(⋅)

N
, p(⋅) − 2 +

mp(⋅)

N

}
, p(⋅) ≥ 2.

(16)

p(⋅)
(
N + 1 − (1 + 𝜎)(m − 1)

)

m
(
(N + 1)p(⋅) − N(1 + 𝜎)

) < pi(⋅) <
p(⋅)

(
N + 1 − (1 + 𝜎)(m − 1)

)

mN(1 + 𝜎) − (m − 1)(N + 𝜎 + 2)p(⋅)
,
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and

Let ai , F be Carathéodory functions, where ai satisfying (2)-(4) and F satisfying (6)-
(7). Then, the problem (1) has at least one weak solution

where qi(⋅) are continuous functions on Ω satisfying for all i = 1,… ,N

Remark 2 The lower bound for m in (14) is due to the fact that qi(⋅) must not be 
smaller than 1. The upper bound for m in (14) implies qi(⋅) < pi(⋅) . In the Theo-
rem  3, we suppose that m > 1 because if 0 ≤ 𝜎 <

(N+1)p(⋅)−2N

2N
 , then 

(N+𝜎+2)p(⋅)

(N+1)p(⋅)−2N(1+𝜎)+(N+𝜎+2)p(⋅)
< 1.

Remark 3 We note that (14) (resp. (16)) is well defined since we have (15) (resp. 
(14)).

Remark 4 We not that (14) implies

Therefore, by (18) we have q(⋅) < N.

Remark 5 Under the assumption 0 ≤ 𝜎 <
(N+2)p(⋅)−2(N+1)

1+N−p(⋅)
 that is

we can deduce that f is never in the dual space 

(
N⋂
i=1

Lp
−
i

(
0, T;W

1,pi(⋅)

0
(Ω)

))�

 , so that 

the result of this paper deals with irregular data as in [2, 10]. If m tends to be 1, then 
qi(⋅) <

pi(⋅)

p(⋅)

(
p(⋅) −

N(𝜎+1)

N+1

)
 , which is bound on qi(⋅) obtained in [10]. Furthermore if 

pi(.) = 2 the assumption (15) is equivalent to [(1.2), [5]], and then 
qi(.) = q =

m(N(1−�)+2)

N+1−(1+�)(m−1)
 , which is bound on q obtained in [(1.6), [5]].

Theorem 4 Let f ∈ Lm(⋅)(QT ) , 1 < m(⋅) < p�
i
(⋅) p�

i
(⋅) =

pi(⋅)

pi(⋅)−1
 , si(⋅) > 0 , i = 1,… ,N 

and �(⋅) ≥ 0 , such that

(17)si(⋅) ≥ pi(⋅).

u ∈

N⋂
i=0

Lq
−
i

(
0, T;W

1,qi(⋅)

0
(Ω)

)
,

(18)1 ≤ qi(⋅) <
mpi(⋅)

p(⋅)

(
(N + 1)p(⋅) − N(1 + 𝜎)

N + 1 − (1 + 𝜎)(m − 1)

)
.

(19)p(⋅) <
N(N + 𝜎 + 2)

m(N + 1)
.

(N + 𝜎 + 2)p(⋅)

(N + 𝜎 + 2)p(⋅) − N(𝜎 + 1)
< p(⋅),
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Let ai , F be Carathéodory functions, where ai satisfying (2)-(4), and F satisfying (6)-
(7). Then, the problem (1) has at least one weak solution

where qi(⋅) are continuous functions on Ω satisfying for all i = 1,… ,N

Theorem 5 Let f ∈ Lm(⋅)(QT ) , 1 < m(⋅) < p�
i
(⋅) , �(⋅) ≥ 0 , such that

Under the hypotheses (2)-(10) and (6)-(7), the problem (1) has at least one weak 
solution u ∈ ∩N

i=1
Lp

−
i (0, T ,W

1,pi(⋅)

0
(Ω)) ∩ L1+s+(⋅)+�(⋅)(QT ).

Remark 6 The assumption 1 < m(⋅) < p�
i
(⋅) implies that (20) holds, otherwise (20) 

become empty. By (21) we have that qi(⋅) > 1 in (22).

4  Proof of Theorems 3, 4, and 5

4.1  Approximation of (1)

Let (fn)n∈ℕ⋆ ⊂ C∞
c
(QT ) and (u0,n)n∈ℕ⋆ ⊂ C∞

c
(Ω) be sequences of functions satisfying

Then, there exists at least one weak solution (see [2])

of problems

(20)
1 + 𝜎(⋅)

m(⋅) − 1
> s+(⋅) > (1 + 𝜎(⋅))max

{
(pi(⋅) − 1)

(m(⋅) − 1)pi(⋅) + 1
;(pi(⋅) − 1)

}

∇s+ ∈ L∞(QT ), ∇m ∈ L∞(QT )

(21)pi(⋅) >
1

m(⋅)

(
1 +

1 + 𝜎(⋅)

s+(⋅)

)
.

u ∈

N⋂
i=0

Lq
−
i

(
0, T;W

1,qi(⋅)

0
(Ω)

)
,

(22)qi(⋅) =
m(⋅)pi(⋅)s+(⋅)

1 + s+(⋅) + �(⋅)
.

(23)s+(⋅) ≥ 1 + �(⋅)

m(⋅) − 1
, ∇� ∈ L∞(Ω).

�fn� ≤ n, �u0,n� ≤ n, ∀n ≥ 1,

‖fn‖Lm(⋅)(QT )
≤ ‖f‖Lm(⋅)(QT )

, ‖u0,n‖L(m(⋅)−1)s+(⋅)+1(Ω) ≤ ‖u0‖L(m(⋅)−1)s+(⋅)+1(Ω) ∀n ≥ 1.

⎧⎪⎨⎪⎩

un ∈
⋂N

i=1
Lp

−
i

�
0, T;W

1,pi(⋅)

0
(Ω)

�
∩ C([0, T];L2(Ω)),

�tun ∈
∑N

i=1
Lp

−
i
�
�
0, T;(W

1,pi(⋅)

0
(Ω))�

�
+ L1(QT ),
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each of them satisfying the weak formulation

for all � ∈

N⋂
i=1

Lp
−
i

(
0, T;W

1,pi(⋅)

0
(Ω)

)
∩ L∞(QT ). The truncation function  Tk at height 

k , k > 0 is defined by Tk(t) = max{−k, min{k, t}} , t ∈ ℝ.

4.2  Uniform estimates

In this section, we state and prove uniform estimates for the solutions un of problem 
(24). In the remainder of this paper, we denote by C or Cj, j ∈ ℕ

⋆ , various positive 
constants depending only on the structure of ai,F, �Ω�, ‖f‖Lm(QT )

, and T, never on n.

Lemma 6 ([10]) There exists a constant C > 0 (independent of n) such that

Lemma 7 Let m, pi(⋅) , � , si(⋅) i = 1,… ,N are restricted as in Theorem 3. Then, for 
all i = 1,… ,N , (Diun) is bounded in Lq−i (0, T;Lqi(⋅)(Ω)) , furthermore (un) is bounded 
in Lq

−

(0, T , Lq
∗
(⋅)(Ω)) , where the exponents qi(⋅) are defined as in (18), q∗(⋅) = Nq(⋅)

N−q(⋅)
 , 

q(⋅) < N.

Proof For all � ∈ (0, 1) and � ∈ (0, T) using 
��(un) =

(
(1 + |un|)1−� − 1

)
sign(un)�(0,�), as a test function in (25), where �(0,�) 

denotes the characteristic function of (0, �) in (0, T], one gets

From (2) and (5), we obtain

(24)
�tun −

N∑
i=1

Di

(
bi(t, x, Tn(un))ai(t, x,Dun)

)
+ F(t, x, un) = fn in QT ,

un = 0 on ΣT ,

un(0, x) = u0,n(x) in Ω,

(25)
∫

T

0

< 𝜕tun,𝜑 > dt +

N∑
i=1

∫
T

0 ∫Ω

bi(t, x, Tn(un))ai(t, x,Dun).Di𝜑 dx dt

+ ∫
T

0 ∫Ω

F(t, x, un).𝜑 dx dt = ∫
T

0 ∫Ω

fn𝜑 dx dt,

�
T

0 �Ω

|F(t, x, un)| dx dt ≤ C.

∫
T

0

< 𝜕tun,𝜑𝛿(un) > dt +

N∑
i=1

∫
T

0 ∫Ω

bi(t, x, Tn(un))ai(t, x,Dun).Di𝜑𝛿(un) dx dt

+ ∫
T

0 ∫Ω

F(t, x, un).𝜑𝛿(un) dx dt = ∫
T

0 ∫Ω

fn𝜑𝛿(un) dx dt.
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Observing that there exist two positive constants C3 and C4 such that

(26) and (6), yield

Now, let q+
i
= max

x∈Ω

{
qi(x)

}
 , i = 1, ...,N be a constant such that

By (15) we have

According to (14) we get

Hölder’s inequality and (27) imply that, for all i = 1,… ,N

Let � =
p
−
(1−m)(N+2)+mN(�+1)−N�

p
−
(1−m)+N

 , then we have (1 − �)m� =
(�+�)�

1−�
=

N+2−�

N
� , and by 

(28)-(14) we deduce that � ∈ (0, 1) . Putting d =
N+2−�

N
� , we obtain

(26)

�Ω

dx�
un(�,x)

0

��(r) dr + �(1 − �)C2

N∑
i=1

�
T

0 �Ω

|Diun|pi(x)
(1 + |un|)(�+�(x))

dx dt

+ �
T

0 �Ω

F(t, x, un)��(un) dx dt

≤ �
T

0 �Ω

��(un)fn dx dt + �Ω

dx�
un(0,x)

0

��(r) dr.

∀r ∈ ℝ, �
r

0

��(t)dt ≥ C3|r|2−� − C4.

(27)

‖un‖2−�L∞(0,T;L2−�(Ω))
+

N�
i=1

�
T

0 �Ω

�Diun�pi(x)
(1 + �un�)(�+�(x))

dx dt

≤ C5 + C6

�
�QT

�
1 + �un�

�(1−�)m�

dx dt

� 1

m�

.

q+
i
< min

x∈Ω

{
mpi(x)

p(x)

(
(N + 1)p(x) − N(𝜎 + 1)

N + 1 − (1 + 𝜎)(m − 1)

)}
=

mp−
i

p
−

(
(N + 1)p

−
− N(𝜎 + 1)

N + 1 − (1 + 𝜎)(m − 1)

)
= 𝛼i.

(28)1 < m <
(N + 𝜎 + 2)p

−

(N + 𝜎 + 2)p
−
− N(𝜎 + 1)

<
N

p
− + 1.

�i

p−
i

=
�

p
− = � ∈ (0, 1).

(29)

yni = �
T

0 �Ω

|Diun|�i dx dt = �
T

0 �Ω

|Diun|�i
(1 + |un|)(�+�)�

(1 + |un|)(�+�)� dx dt

≤
(
C + C

(
�QT

(
1 + |un|

)(1−�)m�

dx dt

) 1

m�

)�(
�QT

(
1 + |un|

)(�+�)
�

1−�
dx dt

)1−�

.
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From (29), we deduce that

hence

By (15) and (19), we have

and

Hence 2 − 𝛿 < d < 𝛼
⋆ . Using the interpolation inequality, we get

By virtue of (30) and (32), we obtain

Using (27) and (32), the result is

From Lemma 2, we have

(30)d =
m
(
(N + 1)p

−
− N(� + 1)

)

p
−
(1 − m) + N

.

y

�

N�i

ni
≤ C

(
1 + �QT

(
1 + |un|

)d

dx dt

)(1−
�

m
)

�

N�i

,

(31)
N∏
i=1

y

�

N�i

ni
≤ CN

(
1 + �QT

(
1 + |un|

)d

dx dt

)(1−
�

m
)

.

2 − 𝛿 − d =
N(2 + 𝜎) − (N + m)p

−

p
−
(1 − m) + N

< 0,

d − 𝛼
⋆
=

m
(
(N + 1)p

−
− N(𝜎 + 1)

)(
N(2 + 𝜎) − (N + m)p

−)
(p

−
(1 − m) + N)(N(N + 2 + 𝜎) − m(N + 1)p

−
)

< 0.

(32)‖un(⋅, t)‖Ld(Ω) ≤ ‖un(⋅, t)‖1−𝜏L2−𝛿(Ω)
‖un(⋅, t)‖𝜏L𝛼∗ (Ω), 𝜏 =

(2 − 𝛿 − d)𝛼
⋆

(2 − 𝛿 − 𝛼
⋆
)d
.

� =
N

N + 2 − �
, and d� = �.

(33)

�
T

0

‖un‖dLd(Ω) dt ≤ ‖un‖(1−𝜏)dL∞(0,T;L2−𝛿(Ω)) �
T

0

‖un‖d𝜏L𝛼⋆ (Ω) dt

≤ C

�
1 + �QT

�
1 + �un�

�d
dx dt

� (1−𝜏)d

(2−𝛿)m�

�
T

0

‖un‖𝛼L𝛼⋆ (Ω) dt

= C

�
1 + �QT

�
1 + �un�

�d
dx dt

� 𝛼

Nm�

�
T

0

‖un‖𝛼L𝛼⋆ (Ω) dt.
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∑N

i=1

�

N�i
= 1 , and the Hölder’s inequality, yield

In view of (31), (33), and (34), we deduce

By (28) we have

Therefore, (35) implies that the sequence (un) is bounded on Ld(QT ) . Which then 
yields, by (29), a bound on the norm of (Diun) in L�i , also in Lq+i  . The result of 
Lemma 7 follows from qi(⋅) ≤ q+

i
 , Remark 1, and (34).

Now let us consider a continuous variable exponent qi(⋅) on Ω satisfying (18) 
such that

By the continuity of qi(⋅) and pi(⋅) on Ω , there exists a constant 𝛿 > 0 such that for 
all x ∈ Ω

where Q(x, �) is a cube with center x and diameter � . Observe that Ω is compact and, 
therefore, we can cover it with a finite number of cubes (Q�

j
)j=1,...,k with edges paral-

lel to the coordinate axes. We denote by q+
ij
 (resp. p−

ij
 ) the local maximum of qi(⋅) on 

(Q�
j
∩ Ω) (resp. the local minimum of pi(⋅) on (Q�

j
∩ Ω) ), such that

Observing that (7) and Lemma imply that (un) is bounded in Ls+(⋅)(Ω) . So from (17) 
and (12), it is easy to check that, instead of the global estimate (34), we find

�
T

0

‖un‖𝛼L𝛼⋆ (Ω) dt ≤ C �
T

0

N�
i=1

�
�Ω

�Diun�𝛼i dx
� 𝛼

N𝛼i

dt.

(34)�
T

0

‖un‖𝛼L𝛼⋆ (Ω) dt ≤ C

N�
i=1

�
�QT

�Diun�𝛼i dx dt
� 𝛼

N𝛼i

.

(35)
�QT

|un|d dx dt ≤C
(
1 + �QT

|un|d dx dt
)1+

�

Nm�
−

�

m

=C

(
1 + �QT

|un|d dx dt
)1+

�

N
−

�

Nm
−

�

mp−

.

1 +
𝛼

N
−

𝛼

Nm
−

𝛼

mp
− < 1.

q+
i
≥ mp−

i

p
−

(
(N + 1)p

−
− N(� + 1)

N + 1 − (1 + �)(m − 1)

)
.

max
z∈Q(x,𝛿)∩Ω

qi(z) < min
z∈Q(x,𝛿)∩Ω

{
mpi(z)

p(z)

(
(N + 1)p(z) − N(𝜎 + 1)

N + 1 − (1 + 𝜎)(m − 1)

)}

q+
ij
<
mp−

ij

p
−

j

(
(N + 1)p

−

j
− N(𝜎 + 1)

N + 1 − (1 + 𝜎)(m − 1)

)
= 𝛼ij, for all j = 1, ..., k.
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where ynij = ∫
(0,T)×(Q�

j
∩Ω)

|Diun|�ij dx dt , 1�j =
1

N

∑N

i=1

1

�ij
 . According to (31), we obtain

where �ij
p−
ij

=
�j

p
−

j

= �j , dj =
N+2−�j

N
�j , �j =

p
−

j
(1−m)(N+2)+mN(�+1)−N�

p
−

j
(1−m)+N

 . Arguing locally as 

in (35), we obtain

where 1 + 𝛼j

N
−

𝛼j

Nm
−

𝛼j

mp
−

j

< 1 . Combining (36), (37), and (38), we obtain

Knowing that qi(x) ≤ q+
ij
≤ �i,j and q∗(x) ≤ q

+

j

∗ ≤ �j
∗ for all x ∈ (Q�

j
∩ Ω) , and all 

j = 1,… , k , we conclude that (Diun) is bounded in Lqi(⋅)((0, T) × Ω) . Consequently, 
by (36), (un) remains in a bounded set of Lq

−

(0, T;Lq
∗
(⋅)(Ω)) . This finishes the proof 

of the Lemma 7.   ◻

Now we consider the following family of functions (𝜙k)k>0:

• �k is a twice differentiable function, �′

k
 , �′′

k
 are bounded on ℝ.

• �k(�) = � if |�| ≤ k , and ��
k
(�) = 0 if |�| ≥ k + (1∕k) , 0 < 𝜙′

k
< 1 on the  set 

(k, k + (1∕k)) ∪ (−(k + (1∕k)),−k).

The construction of this family (𝜙k)k>0 can be made explicitly (See [6]).

Lemma 8 [10] There exists a constant Ck dependent of k such that

Next we show that (�tun) is in a bounded set of Lr(0, T;W−1,r(Ω)) + L1(QT ) for 
some r > 1.

Lemma 9 Let

(36)�
T

0

‖un‖𝛼j
L
𝛼⋆
j (Q�

j
∩Ω)

dt ≤ C

N�
i=1

�
1 + ynij

� 𝛼j

N𝛼ij ,

(37)
N∏
i=1

(
1 + ynij

) �

N�ij ≤ CN

(
1 + �(0,T)×(Q�

j
∩Ω)

(
1 + |un|

)dj
dx dt

)(1−
�j

m
)

,

(38)�(0,T)×(Q�
j
∩Ω)

|un|dj dx dt ≤C
(
1 + �(0,T)×(Q�

j
∩Ω)

|un|dj dx dt
)1+

�j

N
−

�j

Nm
−

�j

mp−
j

,

‖un‖L�j (0,T ,L�∗j ((Q�
j
∩Ω)))

≤ C and ‖Diun‖L�ij ((0,T)×(Q�
j
∩Ω)) ≤ C.

�QT

|Di�k(un)|pi(x) dx dt ≤ Ck, i = 1,… ,N.

(39)

1 < r < min
i

min
x∈Ω

{
m(N + 1)pi(x)

(N + 1 − (1 + 𝜎)(m − 1))(pi(x) − 1)p(x)

(
p(x) −

N(𝜎 + 1)

N + 1

)}
.
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The sequence (�tun) remains in a bounded set of Lr(0, T;W−1,r(Ω)) + L1(QT ).

Proof It is similar to the proof of Lemma 2.11 of [6]. The existence of r > 1 is by 
virtue of the upper bound in the assumption (16). Knowing that (fn − F(⋅, ⋅, un)) is in 
a bounded set of L1(QT ) , we have to show that

belongs to a bounded set of Lr(0, T;W−1,r(Ω)) . In fact, setting for t ∈ (0, T) , 
wn(t) = wn . By (39), (3) and (5), we get

By the Hölder inequality, we get

where

Thus

Thanks to (39) we have

There exist � such that for all i = 1,… ,N

wn =

N∑
i=1

Di

(
bi(t, x, Tn(un))ai(t, x,Dun)

)

‖wn‖W−1,r(Ω) = sup
�∈W1,r�

0
(Ω), ‖�‖

W
1,r�

0
(Ω)

≤1

�������Ω

N�
i=1

�
bi(t, x, Tn(un))ai(t, x,Dun)

�
Di� dx

������

≤C1 sup
‖�‖

W
1,r�

0
(Ω)

≤1

N�
i=1

�Ω

�
g +

N�
j=1

�Djun�pj(⋅)
�1−

1

pi(⋅)

�Di�� dx.

‖wn‖W−1,r(Ω)

≤C1 sup
‖�‖

W
1,r�

0
(Ω)

≤1

N�
i=1

�
�Ω

Gi(t, x)dxdt

� 1

r
N�
i=1

��Di�
��Lr� (Ω)

Gi(t, x) =

(
g +

N∑
j=1

|Djun|pj(⋅)
)(1−

1

pi (⋅)
)r

(t, x), for all i = 1,⋯ ,N.

�
T

0

‖wn‖rW−1,r(Ω)
dt ≤ C

N�
i=1

�
T

0 �Ω

Gi(t, x) dx dt.

(
1 −

1

pi(⋅)

)
r <

m(N + 1)

N + 1 − (1 + 𝜎)(m − 1)

(
1 −

N(𝜎 + 1)

p(x)(N + 1)

)
, i = 1,… ,N.

(
1 −

1

pi(⋅)

)
r < 𝜃 <

m(N + 1)

N + 1 − (1 + 𝜎)(m − 1)

(
1 −

N(𝜎 + 1)

p(⋅)(N + 1)

)
,
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from the upper bound in (14) we obtain that

Therefore, � ∈ (0, 1) and

Writing Gi = G
�

�

i
 , by the Hölder inequality, we deduce

By (9), Lemma 7, and (40) we get

Since g ∈ L1(QT ) , we find

This complete the proof of Lemma 9.  ◻

Lemma 10 Let pi , si , � , m i = 1,… ,N are restricted as in Theorem 4. Then, there 
exists a constant C > 0 independent of n, such that

Proof As in elliptic case [9], taking

as a test function in (25), by (2), (3), (5), (14), and the fact that for a.e. (t, x) ∈ QT

we obtain

m(N + 1)

N + 1 − (1 + 𝜎)(m − 1)

(
1 −

N(𝜎 + 1)

p(⋅)(N + 1)

)
< 1.

(40)1 ≤ 𝜃pi(⋅) <
mpi(⋅)

p(⋅)

(
(N + 1)p(⋅) − N(𝜎 + 1)

N + 1 − (1 + 𝜎)(m − 1)

)
,

(
1 −

1

pi(⋅)

)
r

𝜃
< 1.

∫

T

0
‖wn‖

r
W−1,r

( Ω)
dt ≤ C5

N
∑

i=1

(

∫

T

0 ∫Ω

(

g� +
N
∑

j=1
|Djun|�pj(⋅)

)

dx dt

)(1− 1
pi (⋅)

) r
�

≤C5

N
∑

i=1

(

∫

T

0 ∫Ω

(

g� +
N
∑

j=1
|Djun|�pj(⋅)

)

dx dt

)(1− 1
p+i

) r
�

+ C5N.

�
T

0 �Ω

N�
j=1

�Djun��pj(⋅) dx dt ≤
N�
j=1

max
�
‖Djun‖

�p−
j

L
�pj (⋅)(QT )

, ‖Djun‖
�p+

j

L
�pj (⋅)(QT )

� ≤ C.

�
T

0

‖wn‖rW−1,r(Ω)
dt ≤ C6.

(41)�
T

0 �Ω

|Diun|pi(x)
(1 + |un|)1−(m(x)−1)s+(x)+�(x)

dx dt + �
T

0 �Ω

|un|m(x)s+(x) dx dt ≤ C.

�(un) =
(
(1 + |un|)(m(x)−1)s+(x) − 1

)
sign(un),

Di�(un) = (m(x) − 1)(1 + |un|)(m(x)−1)s+(x)sign(un)Dis+(x) ln(1 + |un|)
+

(m(x) − 1)s+(x)Diun

(1 + |un|)1−(m(x)−1)s+(x)
+ Dim(x)(1 + |un|)(m(x)−1)s+(x)sign(un)s+(x) ln(1 + |un|)
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By dropping the positif term, the fact that |un|s+(⋅) ≥ 2−s+(⋅)(1 + |un|)s+(⋅) − 1 , (9), and 
Young inequality, we have

We can estimate the last term in (42) by application of Young’s inequality

By (42) and (43), we obtain

�Ω

dx�
un(�,x)

0

�(r) dr + �(m− − 1)s−
+

N∑
i=1

�
T

0 �Ω

|Diun|pi(x)
(1 + |un|)1−(m(x)−1)s+(x)+�(x)

dx dt

+

N∑
i=1

�
T

0 �Ω

|un|s+(x)
(
(1 + |un|)(m(x)−1)s+(x) − 1

)
dx dt

≤ �
T

0 �Ω

|fn|
(
(1 + |un|)(m(x)−1)s+(x) − 1

)
dx dt

+ C7

N∑
i=1

�
T

0 �Ω

(1 + |un|)(m(x)−1)s+(x) ln(1 + |un|).
(
g +

N∑
j=1

|Djun|pj(x)
)1−

1

pi (x)

dx dt

+ �Ω

dx�
un(0,x)

0

�(r) dr.

(42)

N�
i=1

�
T

0 �Ω

�Diun�pi(x)
(1 + �un�)1−(m(x)−1)s+(x)+�(x)

dx dt +
1

2

N�
i=1

�
T

0 �Ω

(1 + �un�)m(x)s+(x) dx dt

≤ C8 + C8 max
�
‖fn‖m+

Lm(⋅)(QT )
, ‖fn‖m−

Lm(⋅)(QT )

�

+ C8

N�
i=1

�
T

0 �Ω

(1 + �un�)(m(x)−1)s+(x) ln(1 + �un�) ×
�
g +

N�
j=1

�Djun�pj(x)
�1−

1

pi (x)

dx dt.

(43)

(1 + |un|)(m(x)−1)s+(x) ln(1 + |un|) ×
(
g +

N∑
j=1

|Djun|pj(x)
)1−

1

pi (x)

= (1 + |un|)�(x)+1−
(1−(m(x)−1)s+(x)+�(x))

pi (x) ln(1 + |un|)

×

(
g +

N∑
j=1

|Djun|pj(x)
)1−

1

pi (x)

(1 + |un|)−
(1−(m(x)−1)s+(x)+�(x))(pi(x)−1)

pi (x)

≤ C9(1 + |un|)�(x)pi(x)+pi(x)−(1−(m(x)−1)s+(x)+�(x))(ln(1 + |un|))pi(x) + 1

4NC8

g

+
1

4NC8

N∑
i=1

|Diun|pi(x)
(1 + |un|)1−(m(x)−1)s+(x)+�(x)

.
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We observe that

due to the hypotheses (20), so (1 + |un|)(�(x)+1)(pi(x)−1)−s+(x)−
di

2 (ln(1 + |un|))pi(x) is 
bounded for all x ∈ Ω . We get by Young’s inequality,

Therefore, (44) and (45) yield (41).
  ◻

Lemma 11 Let pi , si , � , m i = 1,… ,N are restricted as in Theorem  5. Then, the 
approximate solution un is bounded in ∩N

i=1
Lp

−
i (0, T ,W

1,pi(⋅)

0
(Ω)) ∩ L1+s+(⋅)+�(⋅)(QT ).

Proof Using �(un) =
(
(1 + |un|)1+�(⋅) − 1

)
sign(un) as test function in (25) and drop-

ping the positif term, by (2) and (3), we obtain for all 𝜀 > 0

Since (23) we have (1 + �)m� ≤ 1 + s+ + � and 2 + � ≤ (m − 1)s+ + 1 . It follows 
from the Young inequality that

(44)

N∑
i=1

�
T

0 �Ω

|Diun|pi(x)
(1 + |un|)1−(m(x)−1)s+(x)+�(x)

dx dt +

N∑
i=1

�
T

0 �Ω

(1 + |un|)m(x)s+(x) dx dt

≤ C10 + C11 �
T

0 �Ω

(1 + |un|)�(x)pi(x)+pi(x)−(1−(m(x)−1)s+(x)+�(x))(ln(1 + |un|))pi(x)dxdt
= I.

(𝜎(x) + 1)(pi(x) − 1) − s+(x) ≤ ((𝜎(x) + 1)(pi(x) − 1) − s+(x))
+ = di <

di

2
< 0,

(45)

I = C10 + C11 �
T

0 �Ω

(1 + |un|)m(x)si(x)+
di

2 (1 + |un|)(�(x)+1)(pi(x)−1)−si(x)−
di

2 (ln(1 + |un|))pi(x)

≤ C12 +
1

2 �
T

0 �Ω

(1 + |un|)m(x)si(x)dxdt.

�

N∑
i=1

�
T

0 �Ω

|Diun|pi(x) dx dt

+

N∑
i=1

�
T

0 �Ω

|un|s+(x)
(
(1 + |un|)(1+�(x)) − 1

)
dx dt

≤ C13(�)�
T

0 �Ω

|fn|m(x)dxdt + ��
T

0 �Ω

(1 + |un|)(1+�(x))m�(x)dxdt dx dt

+ C14

N∑
i=1

�
T

0 �Ω

(1 + |un|)(1+�(x)) ln(1 + |un|).
(
g +

N∑
j=1

|Djun|pj(x)
)1−

1

pi (x)

dx dt

+ �Ω

(1 + |un(0, x)|)2+�(x) dx + C15.
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Let us write

by (20), we get

Arguing as in (45) and using (46), we obtain

This concludes the proof of the lemma.  ◻

Lemma 12 Let pi(⋅) , �(⋅) , si(⋅) , m(⋅) i = 1, ...,N are restricted as in Theorem 4. Then, 
every solution un of (25) satisfies the estimate

where the qi(⋅) defined as in (22).

Proof Observe that (22) implies that qi(⋅) < pi(⋅) and

Then, by Young’s inequality, we have

From (22), we deduce

(46)

N∑
i=1

�
T

0 �Ω

|Diun|pi(x) dx dt + �
T

0 �Ω

|un|1+�(x)+s+(x) dx dt

≤ C16

N∑
i=1

�
T

0 �Ω

(1 + |un|)(1+�(x))pi(x) ln(1 + |un|)pi(x) dx dt + C17.

(�(⋅) + 1)pi(⋅) = (�(⋅) + 1)(pi(⋅) − 1) − s+(⋅) −
�i

2
+ �(⋅) + 1 + s+(⋅) +

�i

2
,

𝜈i = min
x∈Ω

{(𝜎 + 1)(pi(x) − 1) − s+(x)} < 0.

N∑
i=1

�
T

0 �Ω

|Diun|pi(x) dx dt + �
T

0 �Ω

|un|1+�(x)+s+(x) dx dt ≤ C18.

‖Diun‖Lqi (⋅)(QT )
≤C,

(1 + s+(⋅) + 𝜎(⋅))qi(⋅)

pi(⋅)
< m(⋅)s+(⋅).

�
T

0 �Ω

|Diun|qi(x) dx dt

= �
T

0 �Ω

|Diun|qi(x)

(1 + |un|)
(1−(m(x)−1)s+(x)+�(x))qi(x)

pi (x)

(1 + |un|)
(1−(m(x)−1)s+(x)+�(x))qi(x)

pi (x) dx dt,

≤ �
T

0 �Ω

(qi(x)
pi(x)

) |Diun|pi(x)
(1 + |un|)(1−(m(x)−1)s+(x)+�(x))

dx dt

+ �
T

0 �Ω

(
1 −

qi(x)

pi(x)

)
(1 + |un|)

(1−(m(x)−1)s+(x)+�(x))qi(x)

pi (x)−qi(x) dx dt.
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Consequently, (47) and (41) imply the desert result.   ◻

4.3  Passage to the limit and proof of Theorem 3

By Lemma 7, the sequence (un) remains in a bounded set of ∩N
i=1

Lq
−
i (0, T;W

1,q−
i

0
(Ω)) 

where the qi(⋅) defined as in (18) and from Lemma 9, the sequence (�tun) remains in 
a bounded set of the space

for all s < min{N∕(N − 1), r} . Therefore, (�tun) is bounded in 
L1(0, T;W−1,s(Ω)) + L1(QT ).

Now, we can use Corollary 4 in [12], we obtain that

This implies that we can extract a subsequence (denote again by (un) ) such that

Lemma 13 ([8]) Let ai be a function satisfying (2)-(4) and let F satisfy (6)-(7). Then

Now, using Lemma 8 and adapting the approach of [10], there exists a subse-
quence (still denoted un ) such that

From (48), (49), Lemma 7, and assumption (3), we get

for all continuous function �i on QT such that

This is possible because since we have the upper bound in (16). Using (48), Lemma 
(13), and (50), we can easily pass to the limit in (24). This proves Theorem (3).

(47)

�
T

0 �Ω

|Diun|qi(x) dx dt

≤ C �
T

0 �Ω

|Diun|pi(x)
(1 + |un|)(1−(m(x)−1)s+(x)+�(x))

dx dt + C �
T

0 �Ω

(1 + |un|)m(x)s+(x) dx dt.

L1(0, T;(W1,r� (Ω))�) + L1(QT ) ↪ L1(0, T;W−1,s(Ω)) + L1(QT )

un is relatively compact in L1(QT ).

(48)un → u a.e on QT .

F(t, x, un) → F(t, x, u) strongly in L1(0, T;L1(Ω)).

(49)Dun → Du a.e on QT .

(50)bi(t, x, Tn(un))ai(t, x,Dun) → bi(t, x, u)ai(t, x,Du) strongly in L�i(.)(QT ),

1 < 𝜅i(⋅) <
mpi(⋅)

(pi(⋅) − 1)p(⋅)

(
(N + 1)p(⋅) − N(1 + 𝜎)

N + 1 − (1 + 𝜎)(m − 1)

)
.
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4.4  Proof of Theorem 4

In order to prove this Theorem, we modify the proof of Theorem 3. It’s sufficient 
to replace only (50) with the following

for all continuous function �i on QT such that

This is possible because we have (20). Thus by (51) and Lemma 13, we can deduce 
that the limit function u is a weak solution of (1) possessing the regularity stated in 
(22). This proves Theorem 4.

4.5  Proof of Theorem 5

In the same way of the proof of Theorem 4 we have by (3) and Lemma 11 that

therefore, we can easily passe to the limit in (24). So the theorem is proved.
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