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Abstract

In this paper, we prove the existence and the regularity of weak solutions for a class
of nonlinear anisotropic parabolic equations with p;(-) growth conditions, degenerate
coercivity and L") data, with m(-) > 1 being small. The functional setting involves
Lebesgue-Sobolev spaces with variable exponents.
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1 Introduction

In this paper, we are interested in the existence and regularity of solutions for some
nonlinear parabolic equations with principal part having degenerate coercivity:

N
du— Y Di(b(t.x,wat,x,Duw)) + F(t.x,u)=f in Qp,
i=1
(D

u=0 onZX,,
u(0,x) = uy(x) in Q.
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where O = (0,7) X Q,%; = (0,T) X 0Q, Qis abounded open subset of RN, (N > 2),
T > 0 is a real number, f € L™V, and u, € L™O~D50O(Q), s, (-) = max, ;. 5,(-).
Here, we suppose that b; : Or xR — R, q; : O XRY — R, F: Oy xR > R
are Carathéodory functions and satisfying for a.e.(t,x) € Q, for all u € R, for all
E,E €RY andforalli=1,...,N the following:

ai(t’ X, 6) : gi Z aléilp[(X)7 (2)
N -1
lay(t,x, )| < (g + )1 I”-f"‘)) ", 3)
=1
(atxe)-a@xe)) - &-E)>0. &#E, @
_ & <b(t,x,u) < Cy, 3)
(1 up7®

where « > 0,C,; >0,C, >0, m, 6 € c(Q), m(-) > L, 6(-) >0, g € L'(Q7) is non-
negative function, and the variable exponents p; : Q — (1,+4o00) are continuous
functions.

sup |F(t,x,u)| € L'(Q;), for all >0, )
|lu|<4
N
F(t,x,u)sign(u) > Y [ul", a.e. (t,x) € Oy, for allu € R, (7

i=1

where s; : Q—s (1, +00) are continuous functions on Q.
Let us consider for example the operator

Au =—

N
D; (b,-(t, x, u)a;(t, x, Du))

i=1

al Du|P972D,u
1 1
| —

i=l <ln(e+ |u|)>6<x>

The main difficulties in studying (1) are the fact that, due to assumption (5), the dif-
ferential operator Au is not coercive if u is very large, and the problem (1) has a
more complicated nonlinearity than the classical case p;(-) = p; since it is nonhomo-
geneous. This shows that the classical methods for the constant case [7] can’t be
applied here. In the classical case ¢ = 0 and p,(-) = p; the existence and regularity
solution have been treated in [7]. It is worth pointing out that the problem (1) has
been studied in [5] in the particular case p;(:) =2,i € {1,2,---,N}, m(-) = m, and
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Nonlinear anisotropic degenerate parabolic equations with... 515

oc(:r)=0¢€ [0, 1+ zzv) with u, = 0, where the author have discussed the existence

and regularity results based on (Lemma 2.2, [5]), but this technique do not work in
the anisotropic case. In this paper, we assume that condition (7) holds true and we
treat the regularity of u depending simultaneously on F and f. It is an open question
to solve our problem without an additional control on u (F = 0). As in elliptic case
[1, 9], we give also a better regularity result on Du when s(-) is large enough because

e N = 7 < W+Dp-N(+0)
ife(:)=0,m()=m,and S (-) > oo Ve have

mpi()s, () mpi() < (N + Dp(-) = N(1 + o) ) 1 i 1
l+s,()+0 " p() \N+1=(U+o)m—=1)/)" p() N & p()
So, Theorem 4 improves Theorem 3 and (Theorem 1.4, [S]).

The proof of existence and regularity results under the assumptions (2)-(5), where
p;(+) is assumed to be merely a continuous function (is not as in (10)), is essen-
tially based on the approximate problems (24) with some non degenerate coerciv-
ity and regular data. To describe briefly the tools we use, firstly we have the aniso-
tropic Sobolev inequality to overcome the difficulties of getting the regularity in the
Lemma 7, secondly we introduce the Lemma 9 to facilitate the control of the term
ou,, of the regularized problem. Thirdly to prove Theorems 4, a key result about an
L"%0(Q,) estimate for solution to (1) is proved. For the uniqueness of the weak
solution, where fis irregular data, it is necessary to impose additional conditions on
the data of the problem (1). Our regularity results are new and have not been proven
before neither in the isotropic nor in the anisotropic case.

This paper is organized in the following way: In Sect. 2, we introduce the func-
tion spaces. The main Results are presented in Sect. 3. Theorems 3-5 are proved in
Sect. 4.

2 Preliminaries

Let p;(-) : & = (1,4+0c0) be a continuous function for all i=1,...,N and let

p; = minp(x), p;r = max p(x). The appropriate Sobolev space to study problem (1)
xeQ X€EQ
is the anisotropic spaces

WiP(Q) = {u € ’OQ) | Dju € L"(Q)},
W, @) = {ue W' @ | Du e O},
which are Banach spaces under the norm
leell; = Nleell ooy + 1 Dsutll sy i =1, N, 8)

where
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pi(x)
el o :inf{ﬂ>0 | / dx < 1}.
Q

The following inequality will be used later

i Pi) P
min {1l o 117, / P < max { [l Wl -
©)
The smooth functions are in general not dense in ﬂ =N W1 i )(Q), but if the expo-

nent variable p;(-) > 1for eachi=1,..., N satisfies the log Holder continuity con-
dition (10), that is IM > 0:

u(x)

(10)

N | —

|p;(x) — p;(M| < — Vx #y € Q such that |x —y| <

_M
In(lx —y[)

then the smooth functions are dense in ﬂ W, (). The Poincaré type inequal-
ity is not correct in the variable anisotropic case but we have the following

Lp;()

Theorem 1 ([4]) Let Q c RN be a bounded domain and p;(-) > 1 are continuous
functions. Suppose that

pix) <p (), (1)

where

Npx)  se—
o= v PO <N
+o0, if p(x) > N.

Then the following Poincaré-type inequality holds:

N

”u“lﬁ+(>(g) < CZ ”D u”U’:()(g)? VI/[ [= ﬂ W] i )(Q)
i=1 -1

where C is a poszttve constant independent of u. Thus, Zi:l 1D;ull i is an equiv-
alent norm on ﬂ W, Lpi (Q)

The following embedding result for the anisotropic constant exponent Sobolev
space is well-known [11, 13].

Lemma 2 Let Q be a cube of RN with faces parallel to the coordinate planes. Sup-
posep;>1,i=1,.,Nandu € ﬂi\il WPi(Q). Then

==

N
llls) <K TT (Il + 1011 0) ™ (12)
i=1
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wheres =p* = NL_’% if p < N with p given by % = % Zf\il pl The constant K depends
on N and p,. Furthermore, if p > N , the inequality (12) is true for all s > 1, and K
depends on s and |Q|.

Remark 1 ([3]) Let Q be a bounded subset of RY, and p, : Q — (1,+0c0) be a con-
tinuous function. We have the following continuous dense embeddings

1P (0, T5L70(Q)) & LPO(Qp) & L7 (0, T;LPO(Q)).

Throughout the paper we suppose that p;(-) > 1 are continuous functions satis-
fied the assumption (11).

3 Statements of results
Definition 1 A function u is a weak solution of problem (1) if:
ue L'O.TWy @) (L49Qp) ). a, € L'O.TLI @), F € L'(Qp),

and

T
—/ /ua(pdxdt+ / /b(txu)a(txDu)qudxdt
i=1

(13)
/ /F(t x,u)pdxdt = / /(p(t x)f dxdt + / @(0, x)ug(x) dx,
for all € C'([0,T) x Q), the C! functions with compact support.
Our main existence results for (1) are the following:
Theorem 3 Let m(-) = m, o(-) = o, f € L"(Qr) withm > 1, such that
(N+0+2)p(-) m< (N+o0+2)p(-)
(N+Dp() =2N(1 +0)+ (N + 0 +2)p(-) N+o+2p()=N@o+1)’
(14)
0 <6 < min p()—1+ll)1_?() 2_,_%() p() =2 (15)
- N’ N J’ -
Assume that 5,(+), p;(+) are continuous functions such that foralli=1,...,N
13(-)<N+1—(1+6)(m—1)> ﬁ(-)<N+1—(1+6)(m—1)>
<p() < —
m(V+DFC) =N +0)) PO S NI+ o) —m— DN+ 0+ 250)
(16)
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and
5;(+) = p; (). (17)

Let a;, F be Carathéodory functions, where a; satisfying (2)-(4) and F satisfying (6)-
(7). Then, the problem (1) has at least one weak solution

N
ue ﬂ L9 <0, T;W(;’q’(')(Q)),
i=0

where q;(-) are continuous functions on Q satisfying foralli=1,...,N

mp;(-) < N+ Dp(-) - N1 + 6))
) \N+1l—-(+0)m-1)

Remark 2 The lower bound for m in (14) is due to the fact that ¢,(-) must not be
smaller than 1. The upper bound for m in (14) implies g¢,(-) < p;(:). In the Theo-

rem 3, we suppose that m > 1 because if 0<o< W, then
(N+0+2)p(-) 1 N
(N+1D)p(-)=2N(1+06)+(N+o+2)p(-) :

1 <¢,()< (18)

Remark 3 We note that (14) (resp. (16)) is well defined since we have (15) (resp.
(14)).

Remark 4 We not that (14) implies

_ NN+o+2)
() < m (19)

Therefore, by (18) we have g(-) < N.

(N+2)p(-)=2(N+1)
14+N—p(-)
(N+o+2)p(-)
N+o+2)p(-)—N(@o+1)

Remark 5 Under the assumption 0 < ¢ < that is

< ﬁ(')’

N
we can deduce that fis never in the dual space <ﬂ )i (0, T;WS”’ "(')(Q)>> , so that
i=1

the result of this paper deals with irregular data as in [2, 10]. If m tends to be 1, then
) < 2O (5ey — NetD

a:() < 22 () - Mo

p;()=2 the assumption (15) is equivalent to [(1.2), [5]], and then

q()=q= %, which is bound on ¢ obtained in [(1.6), [5]].

), which is bound on g,(-) obtained in [10]. Furthermore if

Theorem 4 Let f € L™ (Qy), 1 <m() < pl(-) pi(-) = p'zg_)l 5{()>0,i=1,...,N
and o (+) > 0, such that l

@ Springer



Nonlinear anisotropic degenerate parabolic equations with... 519

1+o(
m(.)a_( i > s5,() > (1 +o(-)) max {

Vs, € L(Qy), Vm € L™(Qy)

P,()—-1)
;i) =1
(m() = Dp;(-) + 1 ®:0) )} (20)

1 1+0()
o> oS00

Let a;, F be Carathéodory functions, where a; satisfying (2)-(4), and F satisfying (6)-
(7). Then, the problem (1) has at least one weak solution

21

N
ue (7 (01w, @),
i=0

where q,(+) are continuous functions on Q satisfying foralli=1,...,N

m()p;(-)s, ()

q,() = m (22)
Theorem 5 Let f € L"O(Q;),1 < m(:) < p;(-), o(+) > 0, such that
1+o() -
5.() > m(‘)a_ T Vo € L®(Q). (23)

Under the hypotheses (2)-(10) and (6)-(7), the problem (1) has at least one weak
solutionu € AN 177 (0, T, W, " (Q)) 0 L1+:0+0(Q,),

Remark 6 The assumption 1 < m(-) < pg(-) implies that (20) holds, otherwise (20)
become empty. By (21) we have that ¢;(-) > 1in (22).

4 Proof of Theorems 3, 4, and 5

4.1 Approximation of (1)

Let (f,)en+ C C2(Q7) and (g ,,),en+ € C () be sequences of functions satisfying

ol <n, lug,l <n, Vn 21,

”fn”Lm(')(QT) < Ilf”L’"(')(QT)7 14 || Loner-nser01 @y < Mgl pntr-veror1 () Vi 2 1.

Then, there exists at least one weak solution (see [2])

u, € (L 27 (0.7:W,"0@) n (0. TELA@))
o, € T, 17 (0.T:W " (@) ) + L@y,

of problems
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N

o,u, — Z D;(b(t, x, T, (u,))a,(t,x,Du,)) + F(t,x,u,) = f, inQy,

i=1

24)
u,=0 onZX, (
u,(0,x) = uy,(x) inL,
each of them satisfying the weak formulation
T N T
/ < ou,, e > dt+ Z/ /bi(t, x, T,(u,))a;(t,x, Du,).D;p dxdt
0 i=1 40 Q (25)

T T
+/ /F(t,x,un).(p dxdt:/ /fn(pdxdt,
0o Ja o Ja

for all ¢ € ﬂ g <0 T, Wlp i )(Q)> N L®(Qy). The truncation function 7T}, at height
k,k>0is deﬁned by 7,.(t) = max{—k, min{k,¢}},t € R.

4.2 Uniform estimates

In this section, we state and prove uniform estimates for the solutions u, of problem
(24). In the remainder of this paper, we denote by C or C;,j € N*, various positive
constants depending only on the structure of a;, F, |Ql, |[f | (g,)> and T, never on n.

Lemma 6 ([10]) There exists a constant C > 0 (independent of n) such that

T
/ / |F(t,x,u,)| dxdt < C.
o Ja

Lemma?7 Let m, p;(-), 0, s;(-)i=1,...,N are restricted as in Theorem 3. Then, for
all if 1,... ,{V, (D;u,,) is bounded in L% (0, T;L%O(Q)), furthermore (u, ) is bounded
in L9 (0, T, L7 O(Q)), where the exponents q,(+) are defined as in (18), q () = NgO)

_ N=g(-)’
q(-) <N.

Proof For all 6€(0,1) and 7€ (0,7) using
Ps(u,) = ((1 + |u, )% — l)sign(un))((o,r), as a test function in (25), where .
denotes the characteristic function of (0, 7) in (0, 7], one gets

/ < o,u,, ps(u,) > dt + Z/ /b (t,x, T,(u,))a;t, x,Du,).D;ps(u,) dxdt

/ /F(t x,u,).@su,) dxdt = / /fn(pé(un)dxdt.
0o Ja

From (2) and (5), we obtain
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u,(7,X) |P/(X)
/ dx/ ps(Mdr+a(l —6)C, Z/ /Q 0+ |M |)(5+"(x)) dx dt

/ /F(tx u,)@s(u,) dx dt (26)
1, (0,x)
5/ /qo(;(u,,)fndxdt+/ dx/ @s(r)dr.
0o Ja Q 0

Observing that there exist two positive constants C; and C, such that

Vr € R, / @s(t)dt > Cy|r|*~° —
0

(26) and (6), yield

|D,u,, |Pi®
llu, |L°°(0TL2 s+ Z/ /Q (1 + |u, [)E+e@) dxdt

(1-8)m’ #
SC5+C6</ (1+|un|> dxdt> .

Now, let q;' = max {qi(x)}, i=1,..., N be a constant such that
xeQ

27

+<min{mpl-(x)<(N+l)ﬁ(x)—N(o-+1))} _<(N+1)1_9_—N(0+1)> .
G\ 50 \N+1—(1+o)m—1) 7 \N+1—-(1+0)(m-1) "
By (15) we have

N+o+2)p N

l<m< <=+1 (28)

N+oc+2p —=N(@o+1) p

According to (14) we get

L =0€e(,1).

ml|g|

Holder’s inequality and (27) imply that, foralli =1, ... ,N

a N (5+0)0
/ /lD,unl dxdt = / /(1+| )(6+o’)9( + |u,l) dxdt
1=y’ o (6+0)-L
s<c+c</ (1+|un|) dxdt> )(/ (1+|u,,|) “’dxdt>

F_(=m(N+2)+mN(o+1)-No _ (6+0)0 _ N+2-6—
Let 6 = (o N , then we have (1 — &)m’' = - ~

(28)-(14) we deduce that § € (0,1). Putting d = N“ 2%, we obtain

1-6

(29)
——a, and by
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522 H. Abdelaziz, F. Mokhtari

m((N +1)p = N(o + 1))
5 (—m+N

d= (30)

From (29), we deduce that

d (I_E)Na
yo sc<1+/ (1+|un|> dxdt) ,

|::\

=z

hence

N @

& d a-%
I gCN<1+/ (1+|un|> dxdt) . 31)
i T

i=1

By (15) and (19), we have

r_s_g Nt =W rmp o
7 (1-m+N

and

m((N+1Dp =N+ 1)) (NQ+06)—(N+mp")
@ A=m+N)NN+2+0)—mN+1)p")

—% _

Hence 2 — § < d < a*. Using the interpolation inequality, we get

—x
Dl < O D = O (32
By virtue of (30) and (32), we obtain
= ﬁ, and dr = a.
Using (27) and (32), the result is
T
/0 2 gt < i I92 / I, o d
sC<1+/ (1+u |)ddxdt>(2 - /T N 7. dr (33)
T ! 0 @

L’ T

Nm’

=c<1+/ (1+|un|)daixdt> /||u =, dr.
, 0 LY (Q)

From Lemma 2, we have

@ Springer



Nonlinear anisotropic degenerate parabolic equations with... 523

T _ TN o
‘. dt<C Du,|" d. dt.
[ gy € [CTT( [ omia)

EN Nia = 1, and the Holder’s inequality, yield

i=1
T B N e
/0 i e g < c]}( A |Du, | Idxdt> . (34)

In view of (31), (33), and (34), we deduce

/Iunlddxdt§C<1+/ IMnIddxdt>
Or Or

i (35)
:c<1 + |un|ddxdt>

By (28) we have

Therefore, (35) implies that the sequence (u,) is bounded on L4(Q). Which then
yields, by (29), a bound on the norm of (D;u,) in L%, also in L% . The result of
Lemma 7 follows from ¢;(-) < q;r, Remark 1, and (34). -

Now let us consider a continuous variable exponent ¢,(-) on Q satisfying (18)
such that

mp; < N+Dp —N@+1) >

qr > —
i = 5 \N+1-(+o)m-1)

By the continuity of g,(-) and p,(-) on Q, there exists a constant § > 0 such that for
allx € Q

. {mpi(z)<(N+ Dp(z) — N(o + 1)>}
max ¢;(z) < min —
2€0(.6)NQ owanae L p@) \N+1-(0+o)m—1)

where Q(x, 5) is a cube with center x and diameter 5. Observe that Q is compact and,

lel to the coordinate axes. We denote by q; (resp. p; ) the local maximum of g,(-) on
(Qj’. N Q) (resp. the local minimum of p,(-) on (QJ’. N Q) ), such that

mp;( (N +1)p; =N+ 1)

+
<
G~ \N+1-U+o)m-1

= ay, for all j=1,..,k.
Pj

Observing that (7) and Lemma imply that (u,) is bounded in L+)(Q). So from (17)
and (12), it is easy to check that, instead of the global estimate (34), we find
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|

=

T _ N
/0 lug, 11 dt < CTT (1 +y,)™, (36)
i=1

L Q@)

where y,,;

% l_LyN 1 ' '
na |Dit | dx dit, Al Dt . According to (31), we obtain

= /(0,T>><(Q_;

o
. ] B (-2
H(1+)’ni/‘)m <c 1+/ <1+|u”|>‘]dx‘h . D
i=1 ’ (O,T)X(Q;ﬂﬂ)

% _ 5 N+2-5;— 57 (l=m)(N+2)+mN(o+1)~No
where £ = 2L =0, d; = —a;, 5, = - il

i pj N p; (1-m)+N
in (35), we obtain

. Arguing locally as

2o

N Nm #
/ |u,|% dxdt <C 1+/ |u,|% dx dt , (38)
(O,T)X(Q;nﬂ) (O,T)X(Q,fnﬂ)

where 1 + 2 — —’;1 — % < 1. Combining (36), (37), and (38), we obtain

J

” un “ and ”Diun ”L”ij ((O,T)X(Q/'.OQ)) S C

_ 7 <
LIOT.LT (@) ~

Knowing that ¢;(x) < q; < ;; and 7 (x) < 5;* < Rj* for all x € (Qj’. N Q), and all

Jj=1,...,k, we conclude that (D;u,,) is bou_rzded in _Lqi(')((O, T) x Q). Consequently,

by (36), (u,) remains in a bounded set of L4 (0, T;L9 ©)(Q)). This finishes the proof

of the Lemma 7. O
Now we consider the following family of functions (¢;):

e ¢, is a twice differentiable function, ¢;{, qﬁz are bounded on R.

e ¢u(o) =0 if |o| <k, and ¢{(c) =0 if |o| > k+(1/k), 0 < ¢; <1 on the set
(kk+ (1/K6)) U (=(k + (1/K)), —k).

The construction of this family (¢,),., can be made explicitly (See [6]).

Lemma 8 [10] There exists a constant C, dependent of k such that
/ |D; ()P dxdt < C,, i=1,...,N.
Or

Next we show that (d,u,) is in a bounded set of L"(0, T;W~1"(Q)) + L'(Q;) for
some r > 1.

Lemma9 Let

o { m(N + 1)p;(x) <_ N(c + 1)) }
1 < r < minmin — p(x) — ——= ) 5.
i xea |(N+1-=(1+0)m—1D)(p(x)— Dp(x) N+1
(39)

@ Springer



Nonlinear anisotropic degenerate parabolic equations with... 525

The sequence (d,u,) remains in a bounded set of L' (0, T;W~'"(Q)) + L'(Qy).

Proof 1t is similar to the proof of Lemma 2.11 of [6]. The existence of r > 1 is by
virtue of the upper bound in the assumption (16). Knowing that (f, — F(-, -, u,)) is in
a bounded set of L'(Q;), we have to show that

N
w, =

D, (b;(t, x, T, (u,))a,(t,x, Du,))
i=1

belongs to a bounded set of L'(0,T;W~'"(Q)). In fact, setting for r € (0,7),
w,(t) = w,. By (39), (3) and (5), we get

”Wn“W’]-’(Q) = , sup
1./
PEW," (@), II(pIIWé.,/(Q)Sl

N
/ Y (bi(t,x, T, (u,)ay(t,x, Du,)) Digp dx
Q

i=1

N

N =5
<C, sup 12/ <g+ Z |Djun|1’f(')> |D;p| dx.
<15 Ja
© i=1

llell 1.
"

J=1
By the Holder inequality, we get

llw, |l W-1r(Q)
N

<C, sup Z( / Gl-(t,x)dxdt> Y |IDie
Q

<17
R =

S =

'@

i=1
where

N

(1=~
G(t,x) = <g+ |Djun|f’f<'>> (t,x), foralli=1,-,N.

J=1

Thus

T N T
/ ||wn||;V_l,(Q)dt$CZ/ /G,.(t,x)dxdt.
0 i=1 40 Q

Thanks to (39) we have

<1_L>r< mN + 1) (1__N("+1) >,i=1,...,N.
7)) SNTI—(+om-D\  smn+0D

There exist 0 such that foralli=1,...,N

<1—L>r<9< m(N + 1) <1__N(6+1) >
pi(*) N+1-(+0o)m-1) PN +1)
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from the upper bound in (14) we obtain that

m(N + 1) <1_ N(a+1)><1
N+1-(14+0o)(m—-1) PN+ 1)

Therefore, 8 € (0, 1) and

mp;(-) { (N + D)p(-) = N(o + 1) 1 \r
50) <N+1—(1+a)(m—1)>’ (1__>5<1‘ (40)

)ZO]
0
Writing G; = G/, by the Holder inequality, we deduce

T N T N (
/ W15 10, d < Cs D </ / <go + |Dj,,,n|ep,»<->>dxdr>
0 ( i=1 0 Q j=1

N - N “‘ﬁ)é
([ [ e)es) o
i=1 =

By (9), Lemma 7, and (40) we get

T N N
Op- opt
Op.(-) J j
/o /QZ‘ 1Dyt et < Z‘ max { llDf”"”L""f<'>(QT>’ ”Df'”"”L""ﬂ'kQT)} <C
j= Jj=

Since g € L'(Q7), we find

1<0p,(-) <

1 r
-1 L
I’,’(-))H

T
|l sy <

This complete the proof of Lemma 9. O

Lemma 10 Let p;, s;, 0, mi=1,...,N are restricted as in Theorem 4. Then, there
exists a constant C > 0 independent of n, such that

r | D, [P ! @, @
mx)s (X, < A
/0 /Q(1+|un|)1—(m<x>—1>f+<x>+”<x> dxdt+/0 /Q|u,,| dxdt < C. (41)

Proof As in elliptic case [9], taking

Pu,) = ((1 + |u, N"O™D® — 1)sign(u,,),
as a test function in (25), by (2), (3), (5), (14), and the fact that for a.e. (t,x) € Q;
D;p(u,) = (m(x) — D(A + |u, )"0~ D%Osign(u,)D;s,, (x) In(1 + |u,|)

(m(x) = 1)s (x)D;u, (-1 (x) -
o oD + Dm0 Osign(u, s, () L+ )

we obtain
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1, (7,X) N T p;(x)
dx (rydr + a(m™ — 1)s] Z 1Dt | dx dt
o o ' + S Jo Ja (1+ |u,|)!=m@=Ds,@+o)
N T
+ / / it [+ (1 4 [ag, DO~ — 1) dx
i=1 70 Q

T
s/ /an((1+|un|)(’”(")_1)5+(x)—l)dxdt
0 Q

1
pi(®)

N T N 1
+G Z/O /9(1 + Jug, )OS In(1 + |un|).(g +Y |Djun|p./'(x)> dxdt
i=1 =

1,,(0,x)
+ / dx / @(r)dr.
Q 0

By dropping the positif term, the fact that |u,, |+ > 275+O(1 + |u, |)*+) — 1, (9), and
Young inequality, we have

N T () N T

D.u |Pi 1
E / / IDit| ‘ _dxdt+ = z / /(1+|un|)"’(")s+(x)dxdt
= Jy Q (1 + |un|)l—(m(x)—l)a+(x)+a(,\) 2 =~ /o Q

m* m-
S Cg + Cg max <|V;1| L’"(')(QT)’ ”fn ”Lm(.)(QT)>

1

1
YT N e
+ Cg Z/o /Q(l + |un|)(m(x)—1)5+(x) In(1 + |u,|) X <g + Z |Djun|p/(x)> dxdt.
i=1

J=1

(42)
We can estimate the last term in (42) by application of Young’s inequality
N _pl(x)
(1 + Ju, DO In(1 4+ Ju, ) x | g+ Y 1Dju, [P
=1
1— (1=(m(x)=1)s 4 ()+0o(x))
= ()7 (1 + )
1——L
N pi¥) (=m0~ Dsy @ +o ()i )=1)
x| g+ ) IDju, [ A+, w0 (43)
j=1
N p . 1
< Co(l + |u oWp;)+pi(N)—(1=(m@X)=Ds, )+ (10 (1 + |y i) 4
51+ 1, ) (n(l+ 1, )P + 25

N |Dju, [P
4NC8 Z‘d 1+ |u )1 (mx)=1)s, (x)+o(x) *

By (42) and (43), we obtain
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N

T ; N T
Du, |Pi® o
> / / |Dit,| ~ dxdt + ) / /(1+Iunl)’"(")"+(”dxdt
0 Q (1 + |un|)1—(m(x)—1)s+(x)+6(1u) “~ o Q

i=1

T
< Clo + C” /0 /9(1 + |un|)"(x)l’i(x)+1’i(x)_(1_(’”(x)_1)s+(x)+"()‘))(ln(1 + |un|))pf(x)dxdt

=1
(44)

We observe that

d
@+ D@ = 1) =5,00 < (000 + D, — D = 5, =d, < 3 <0,

dj
due to the hypotheses (20), so (1 + |u,|)*@FDPOD=50=5 (In(] 4 |u, )P is
bounded for all x € Q. We get by Young’s inequality,

T 4 § ) 4
I = ClO + Cll / /(] + |Mn|)m(x).v‘(x)+7(] + |un|)(a(x)+])(p,(l)—l)—.s,(x)—;(ln(l + |un|))p‘(x)
0 Q

T
<Cp+ 1 / / (1 + |, )" @5 lxer.
2o Ja
(45)
Therefore, (44) and (45) yield (41).
O

Lemma 11 Let p;, s;, o, mi=1,...,N are restricted as in Theorem 5. Then, the
approximate solution u,, is bounded in n;ilei_ o,T, W(;’p"(')(Q)) N L5000 (Q.).

Proof Using ¢(u,) = ((1 + |u,|)'**) — 1)sign(u,,) as test function in (25) and drop-
ping the positif term, by (2) and (3), we obtain for all € > 0

N

T

a |D,u,,|Pi™ dx dt

2/

N T
+Z/ /Iunlm")((l+|u,,|)“+"<"”—1)dxd;

i=1J0 JQ

T T ’
< C13(6)/ /lfnlm(x)dxdt_l_e/ /(1 + |un|)(1+6(x))m (X)dxdtdxdt
0 Q 0 Q
1

1——
l r N pi(x)
+Cu 2 / / (1+|u,,|>“+"<x>>1n(1+|un|).<g+Z|Dju,,|f’f<x>> dx dt
=1 /0 JQ =
+ /Q (1+ |, (0. 0))***@ dx + C5.

Since (23) we have (1+o0)m' <1+s, +0 and 2+ 06 < (m— 1)s, + 1. It follows
from the Young inequality that
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N T T
D / / |Du, |P® dx dt + / / |, |+ g dy
i=1 40 Q 0 Q

v (46)

<Cy ), / / (1 + [, )P (1 4 [u, | YiD dx dr + C 5.

i=1 40 Q
Let us write
(e()+ Dpi()=(c()+ D@;() = D —s5,() - + o()+1+s,(0) +a 2
by (20), we get
v; =min{(c + D(p;(x) = 1) = s, (x)} <O0.
xeQ

Arguing as in (45) and using (46), we obtain

N T T

D / / |Du,, |7 dox dt + / / |, |"FOO+O Gy dr < Cg.

i=1 40 Q 0 Q
This concludes the proof of the lemma. O

Lemma 12 Let p,(-), o(-), s;(-), m(-)i =1, ..., N are restricted as in Theorem 4. Then,
every solution u,, of (25) satisfies the estimate

”D ||th<)(Q ) <C,
where the g,(-) defined as in (22).

Proof Observe that (22) implies that g;(-) < p;(-) and
(1 +s5,.¢)+0()g,(-)

<m(-)s,(-).
pi()
Then, by Young’s inequality, we have
T
/ / |D,u,,|%™ dx dt
|D;u, |<1,(X) (=(n()=Ds4 (+0(0)g; ()
/ / (1=(m(x)— l)s+(«\)+¢r(r))q,o) ( + |u”|) it dx dt’

AN —

X DM Pi(x)
q[( ) | I dx dt
p (x) 1+ |u |)(1 (m(x)=1)s, (x)+0(x))
(1=(m(x)— s () +0(x))g; (x)
/ / ql( ) (1 + |un|) Pi0)=g;(x) dxdt.

From (22), we deduce
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T
/ / |Du,, | %™ dx dt
Q

0
T |D.u, [P T
< C/ / Lz ‘ dxdt+C/ /(1 + |, )"+ dx dr.
o Jao(+ |un|)(1—(M(X)—1)s+(X)+6(X)) o Jo

47)
Consequently, (47) and (41) imply the desert result. O

4.3 Passage to the limit and proof of Theorem 3

By Lemma 7, the sequence (u,) remains in a bounded set of nfi IL‘IF O, T;W;’q; Q))
where the g;(-) defined as in (18) and from Lemma 9, the sequence (0,u,) remains in
a bounded set of the space

L0, T;(W' (Q))) + L'(Q7) = L'O, T;W5(Q)) + L'(Q7)

for all s<min{N/(N—-1),r}. Therefore, (Jdu,) is bounded in
L', T;W=15(Q)) + LY(Qp).
Now, we can use Corollary 4 in [12], we obtain that

u, is relatively compact in LI(QT).

This implies that we can extract a subsequence (denote again by (u,,)) such that

u, = u a.e on Q. (48)

Lemma 13 ([8]) Let a; be a function satisfying (2)-(4) and let F satisfy (6)-(7). Then
F(t,x,u,) = F(t,x,u) strongly in L0, T;L'(Q)).

Now, using Lemma 8 and adapting the approach of [10], there exists a subse-
quence (still denoted u,,) such that

Du, - Du a.e on Qy. (49)
From (48), (49), Lemma 7, and assumption (3), we get
by(t,x, T, (u,))a;(t,x, Du,) — b(t,x,u)a,(t,x,Du) strongly in L)(Q;), (50)
for all continuous function ; on Oy such that

mp;(-) <(N+ Dp() —N( + 6))
@)= DpO\N+1-(1+0o)m-1))

This is possible because since we have the upper bound in (16). Using (48), Lemma
(13), and (50), we can easily pass to the limit in (24). This proves Theorem (3).

I <k() <
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4.4 Proof of Theorem 4

In order to prove this Theorem, we modify the proof of Theorem 3. It’s sufficient
to replace only (50) with the following

bi(t,x, T, (u,))a;(t,x,Du,) — b,(t,x,u)a,(t,x,Du) strongly in L7“(Q;), (51)
for all continuous function z; on Qf such that

m()p;(+)s ()
(I +s5,(0)+o(DNP) =1

1<) <

This is possible because we have (20). Thus by (51) and Lemma 13, we can deduce
that the limit function u is a weak solution of (1) possessing the regularity stated in
(22). This proves Theorem 4.

4.5 Proof of Theorem 5

In the same way of the proof of Theorem 4 we have by (3) and Lemma 11 that
bi(t, x, T,(u,))a(t, x, Du,) = by(t,x,ua,t,x,Du) weakly in L7i(Q;),
therefore, we can easily passe to the limit in (24). So the theorem is proved.
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