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Abstract
In this paper we establish, using variational methods combined with the Moser–
Trudinger inequality, existence and multiplicity of weak solutions for a class of criti-
cal fractional elliptic equations with exponential growth without a Ambrosetti–Rabi-
nowitz-type condition. The interaction of the nonlinearities with the spectrum of the 
fractional operator will be used to study the existence and multiplicity of solutions. 
The main technical result proves that a local minimum in C0

s
(Ω) is also a local mini-

mum in Ws,p

0
 for exponentially growing nonlinearities.
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1  Introduction

In this paper we consider existence and multiplicity of solutions to the Dirichlet 
problem
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where (−Δ)s
p
 is the fractional p-Laplacian, Ω ⊂ ℝ

N is a bounded smooth domain, 
𝜆 > 0 and a ∈ ℝ are parameters, N = sp, and 0 < s < 1 < q < 2 ≤ p . Here

where u is a measurable function and x ∈ ℝ
N.

We suppose that the nonlinearity f has exponential growth, both critical and sub-
critical in the Trudinger–Moser sense.

Recently, non-local problems have been extensively studied in the literature and 
have attracted the attention of many mathematicians from different fields of research. 
They appear in the description of various phenomena in the applied sciences, such 
as optimization, finance, phase transitions, material science and water waves, image 
processing, etc. See the excellent book by Caffarelli on this subject [11], but also an 
elementary introduction to this topic by Di Nezza et al. [22].

In 1994, Ambrosetti et al. [2] established existence and multiplicity of solution 
for a local problem involving concave-convex nonlinearities and Sobolev critical 
exponent, namely, 2∗ = 2N

N−2
(N ≥ 3) . This work caused a growing interest in the 

study of multiplicity of solutions for local problems of the type

when g is asymptotically linear and asymmetric, that is, g satisfies the Ambro-
setti–Prodi-type condition given by (see [18]) g− = lim

t→−∞

g(t)

t
< 𝜆k < g+ = lim

t→+∞

g(t)

t
, 

where {�k}k≥1 denotes the sequence of eigenvalues of (−Δ) considered in H1
0
(Ω). In 

Chabrowsky and Yang [12] a problem with Neumann boundary condition was con-
sidered, while in Motreanu et al. [38] a problem involving a local p-Laplacian was 
considered. In [20], de Paiva and Massa studied the local problem

with 1 < q < 2, 𝜆 > 0, a ∈ [�k, �k+1), and the nonlinearity g satisfying subcritical 
polynomial growth at infinity, among other conditions. The critical case was con-
sidered in de Paiva and Presoto [21], where three solutions for problem (1.2) were 
obtained: a positive, a negative and a sign-changing solution. The problem (1.2) 
with critical polynomial growth was handled by Miyagaki et  al. [37] for the frac-
tional Laplacian operator. To complete our references, we would like to cite some 
papers. For instance, [2, 3, 14, 42] for concave problems, [4, 6, 7, 9] for problems 
involving the fractional Laplacian and, for the fractional p-Laplacian, we cite [8, 13, 
24, 35, 39]. See also references therein.

With respect to nonlinearities with exponential growth for a problem like (1.1), 
in the limit case N = sp , Bahrouni [5] proved a version of the Trudinger–Moser 

(1.1)
{

(−Δ)s
p
u = −�|u|q−2u + a|u|p−2u + f (u) in Ω,

u = 0 in ℝN⧵Ω,

(−Δ)s
p
u(x) = 2 lim

�→0∫
ℝN⧵B(x,�)

−|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+sp dy,

−Δu = �|u|q−2u + g(u) in Ω,

(1.2)
{

−Δu = −�|u|q−2u + au + g(u) in Ω,

u = 0 on �Ω,
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inequality for fractional spaces, which was improved by Takahashi [45], who 
obtained, among other things, optimality of the upper bound. With respect to local 
elliptic problems with exponential growth nonlinearity we would like to cite, e.g., 
[16, 17, 19, 32] and references therein.

The pioneering paper for fractional Laplacian, by Iannizzotto and Squassina [26], 
considered a nonlinearity with exponential growth, but it was proved by de Figue-
iredo et al. [16, 17, p.142] that the Ambrosetti–Rabinowitz (AR) condition was sat-
isfied in [26]. Namely, the (AR) condition is fulfilled if there exist 𝜇 > p and R > 0 
such that 

 and in this situation,

follows immediately from (AR). The main role of (AR) is to guarantee that 
Palais–Smale sequences are bounded. Many authors have been working to drop this 
condition in problems with polynomial growth, e.g., [15, 28, 31, 33, 34, 44] and ref-
erences therein. With respect to exponential growth without the (AR) condition we 
cite, for instance, [29, 30]. Recently, Pei [40] proved a existence result for a superlin-
ear p-fractional problem with exponential growth.

Motivated by [40] and [21], in this work we obtain results of existence and multi-
plicity of solutions for (1.1).

We look for solutions to (1.1) in the uniformly convex Sobolev space

Because solutions must be equal 0 outside Ω , it is natural to consider the space

Since Ω ⊂ ℝ
N is a bounded, smooth domain and 0 < s < 1 < p , this space can be 

considered with the Gagliardo norm (see [27, p.4]) defined by

which will be denoted by ‖ ⋅ ‖Xs
p
 . Also, consider A ∶ Xs

p
→ (Xs

p
)∗ defined, for all 

u, v ∈ Xs
p
 , by

(AR)0 < 𝜇F(t) ≤ f (t)t, for all |t| ≥ R, whereF(t) = �
t

0

f (s)ds

lim|t|→+∞

F(t)

|t|p = +∞

Ws,p(ℝN) ∶=

{
u ∈ Lp(ℝN) ∶ ∫

ℝ2N

|u(x) − u(y)|p
|x − y|N+sp dxdy < ∞

}
.

Xs
p
=
{
u ∈ Ws,p(ℝN) ∶ u = 0 on ℝ

N ⧵Ω
}
.

[u]Ws,p(ℝN ) ∶=

(
∫
ℝ2N

|u(x) − u(y)|p
|x − y|N+sp dxdy

)1∕p

,

(1.3)⟨A(u), v⟩ = ∫
ℝ2N

�u(x) − u(y)�p−2(u(x) − u(y))(v(x) − v(y))

�x − y�N+sp dxdy.



78	 H. P. Bueno et al.

1 3

Finally, denote by 𝜑1 > 0, the ( Lp-normalized) autofunction associated with the first 
eigenvalue

of (−Δ)s
p
 in the space Xs

p
.

To cope with nonlinearities involving exponential growth, the main tool is the 
so called “Moser–Trudinger inequality”. We will make use of the following ver-
sion of this inequality, based on [5, Lema 2.5].

Proposition 1.1  Suppose that 0 < s < 1 , p ≥ 2 and N = sp . Then there exists 
�∗
s,N

= �(s,N) such that, for all 0 ≤ 𝛼 < 𝛼∗
s,N

,

for all u ∈ Xs
p
 such that ‖u‖Xs

p
≤ 1 , where H𝛼 > 0 is a constant.

An adequate version of Proposition 1.1 in the special case p = 2 , s = 1∕2 and 
N = 1 is given in [45, Theorem 1] and [36, Proposition 1.1].

Considering (1.1) in the case of subcritical exponential growth in the 
Trudinger–Moser sense, we suppose that f satisfies 

(f1,p)	� f ∈ C(ℝ,ℝ) , f (0) = 0 and F(t) ≥ 0 for all t ∈ ℝ , where F(t) = ∫
t

0

f (s)ds;

(f2,p)	� lim|t|→∞

|f (t)|
exp(�|t| N

N−s )

= 0 , for all 𝛼 > 0;

(f3,p)	� lim|t|→0

f (t)

|t|p−2t = 0;

(f4,p)	� lim|t|→∞

F(t)

|t|p = +∞.

In the case of a critical exponential growth, we change (f2,p) for 

(f �
2,p
)	� there exists 𝛼0 > 0 such that 

Keeping up with the conditions (f1,p) and (f3,p) , we suppose additionally that f 
satisfies 

(f5,p)	�
f (t)

|t|p−2t is increasing if t > 0 , and decreasing if t < 0;

(f6,p)	� For all sequence (un) ⊂ Xs
p
 , if 

�1 = inf
�
[u]

p

Ws,p(ℝN )
∶ u ∈ Xs

p
, ‖u‖Lp(Ω) = 1

�

�
Ω

exp
(
�|u| N

N−s

)
dx ≤ H� ,

lim|t|→∞

|f (t)|
exp(𝛼|t| N

N−s )

=

{
∞, if 0 < 𝛼 < 𝛼0
0, if 𝛼 > 𝛼0.
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 then F(un) → F(u) in L1(Ω);
(f7,p)	� There exist r > p and Cr > 0 such that F(t) ≥ Cr

r
|t|r , for all t ∈ ℝ , verifying 

Cr >

⎡
⎢⎢⎣
2
N

s

�
𝛼0

𝛼∗
s,N

� N−s

s
(r − p)

pr

⎤
⎥⎥⎦

r−p

p

1

C
, with C = infu∈�

‖u‖Lr
‖u‖Xsp

 , where �∗
s,N

 is the 

constant given in Proposition 1.1 and � = span{�1,�} for � ∈ W.

Remark 1.2  Condition (f6,p) was supposed by [29, 30] and [40] in the case u = 0 . 
Observe that (f7,p) implies (f4,p).

Hypotheses (f1,p)−(f4,p) are satisfied by f (t) = |t|p−2t log(1 + |t|) , a function that 
does not verify the (AR) condition.

On its turn, considering 0 < 𝜎 < 1 , the function

satisfies our hypotheses in the critical growth case, if f (t) = −f (−t) , for t < 0.

Our main result is the following. It will play an essential role in the sequence.

Theorem 1  Let Φ ∶ Xs
p
→ ℝ be the C1(Xs

p
,ℝ) functional defined by

where G(t) = ∫
t

0

g(s)ds.

Let us suppose that g satisfies (f2,p) or (f �
2,p
) and that 0 is a local minimum of Φ in 

C0
s
(Ω) , that is, there exists r1 > 0 such that

Then 0 is a local minimum of Φ in Xs
p
 , that is, there exists r2 > 0 such that

(See definition of C0
s
(Ω) in Sect. 3.) Theorem 1 will play an essential role to 

obtain the next results.
In order to obtain the geometric conditions of the Linking Theorem, we define

un ⇀ u, in Xs
p
, f (un) → f (u), in L1(Ω),

f (t) =

⎧⎪⎨⎪⎩

𝜎tr−1 + Crt
r−1, if 0 ≤ t ≤ (p − 1)

N−s

N ,

t
N

N−s exp
�
t

N

N−s − (p − 1)
�
+ Crt

r−1

+𝜎(p − 1)
N−s

N
(r−1)

− (p − 1)
s

N , if t > (p − 1)
N−s

N

Φ(u) =
1

p
‖u‖p

Xs
p

− ∫
Ω

G(u)dx,

(1.4)Φ(0) ≤ Φ(z), ∀ z ∈ Xs
p
∩ C0

s
(Ω), ‖z‖0,s ≤ r1.

Φ(0) ≤ Φ(z), ∀ z ∈ Xs
p
, ‖z‖Xs

p
≤ r2.
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where

Theorem 2  (subcritical case) If 𝜆1 ≤ a < 𝜆∗ and if f satisfies conditions (f1,p) − (f4,p) 
then, for � small enough, problem (1.1) has at least three nontrivial solutions. Addi-
tionally, if f is odd, then (1.1) has infinitely many solutions.

Theorem 3  (Critical case) If f satisfies conditions (f1,p) , (f �2,p) , (f3,p) and (f5,p) − (f7,p) 
then, for � small enough, problem (1.1) has at least three nontrivial solutions in the 
case 𝜆1 ≤ a < 𝜆∗.

Remark 1.3  Analogous results are valid in the particular case N = 1 , p = 2 , s = 1∕2 
and Ω = (0, 1) . Considering the eigenvalue sequence {�j}j≥1 of (−Δ)1∕2 in X1∕2

2
 , The-

orems 2 and 3 are valid for any 𝜆k ≤ a < 𝜆k+1 , if 𝜆 > 0 is small enough.

The main achievement of this paper is the minimization result that will be pre-
sented in Sect. 3 (see notation there): we prove that a local minimum in C0

s
(Ω) is 

also a local minimum in Ws,p

0
 for nonlinearities with exponential growth. They are 

the counterpart of the result obtained by de Paiva and Massa [20] (also de Paiva and 
Presoto [21]) and their proofs are obtained by applying ideas developed by Barrios 
et  al. [6], Giacomoni, Prashanth and Sreenadh [23] and Iannizzoto, Mosconi and 
Squassina [25]. We would like to emphasize that with exception of [23], which deals 
with local N-Laplacian case with exponential growth, other references treated local 
or non-local Laplacian with polynomial growth.

2 � Preliminaries

Definition 2.1  We say that u ∈ Xs
p
 is a weak solution to (1.1) if

for all v ∈ Xs
p
 , with A ∶ Xs

p
→ (Xs

p
)∗ being defined by (1.3).

We recall that Xs
p
 is compactly immersed in Lr(Ω) for all 1 ≤ r < ∞ , the immer-

sion being continuous in the case r = ∞ (see [22, Teorema 6.5, 7.1]).
We define the functional I�,p ∶ Xs

p
→ ℝ by

The next result is a direct consequence of [41, Proposição 1.3.].

�∗ = inf
�
‖u‖p

Xs
p

∶ u ∈ W, ‖u‖p
Lp(Ω)

= 1
�
,

W =

�
u ∈ Xs

p
∶ ⟨A(�1), u⟩ = 0

�
.

⟨A(u), v⟩ = −�∫
Ω

�u�q−2uvdx + a∫
Ω

�u�p−2uvdx + ∫
Ω

f (u)vdx,

I�,p(u) =
1

p
‖u‖p

Xs
p

+
�

q ∫
Ω

�u�qdx − a

p ∫
Ω

�u�pdx − ∫
Ω

F(u)dx.
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Lemma 2.2  If un ⇀ u in Xs
p
 and ⟨A(un), un − u⟩ → 0 , then un → u in Xs

p
.

Let us consider the Dirichlet problem

where Ω ⊂ ℝ
N ( N > 1 ) is a bounded, smooth domain, s ∈ (0, 1) , p > 1 and 

f ∈ L∞(Ω).
The next two results can be found in Iannizzotto et al. [25], Theorems 1.1 and 4.4, 

respectively.

Proposition 2.3  There exist � ∈ (0, s] and CΩ > 0 depending only on N, p, s, with CΩ 
also depending on Ω , such that, for all weak solution u ∈ Xs

p
 of (2.1), u ∈ C�(Ω) and

Proposition 2.4  Let u ∈ Xs
p
 satisfies |||(−Δ)spu

||| ≤ K weakly in Ω for some K > 0 . Then

for some CΩ = C(N, p, s,Ω).

By adapting arguments of Zhang and Shen [46, Lemma 2] we obtain the following 
result.

Lemma 2.5  (Critical and subcritical cases) If f satisfies (f1,p) , (f2,p) (or (f �
2,p
)) and 

(f4,p) , then any (PS)-sequence for I�,p is bounded.

In order to obtain a positive solution for problem (1.1), we define

We have that I±
�,p

∈ C1(Xs
p
,ℝ) and

for all u, h ∈ Xs
p
 . Observe that a critical point for I±

�,p
 is a weak solution to the 

problem

(2.1)
{

(−Δ)s
p
u = f (u) in Ω,

u = 0 in ℝ
N ⧵Ω,

‖u‖
C�(Ω)

≤ CΩ‖f‖
1

p−1

L∞(Ω)
.

|u| ≤ (
CΩK

) 1

p−1 �s a.e. in Ω,

I±
�,p

∶ Xs
p
→ ℝ

I±
�,p
(u) =

1

p
‖u‖p + �

q ∫
Ω

�u±�qdx − a

p ∫
Ω

�u±�pdx − ∫
Ω

F(u±)dx.

⟨(I±
�,p
)�(u), h⟩ = ⟨A(u), h⟩ + �∫

Ω

�u±�q−1hdx − a∫
Ω

�u±�p−1hdx − ∫
Ω

f (u±)hdx

{
(−Δ)s

p
u = −�|u±|q−1 + a|u±|p−1 + f (u±) in Ω,

u = 0 in ℝ ⧵Ω,
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where u+ = max{u, 0} and u− = min{u, 0} . It is not difficult to see that a critical 
point of I+

�,p
 is a non-negative function.

3 � Proof of Theorem 1

We start showing a regularization result that will be useful in the proof of our main 
result.

Lemma 3.1  Let Ω ⊂ ℝ
N be a bounded, smooth domain and f a function satisfying 

(f2,p) or (f �
2,p
) . Let (v𝜖)𝜖∈(0,1) ⊆ Xs

p
 be a family of solution to the problem

where �� ≤ 0 and ‖v�‖Xs
p
≤ 1 , for all � ∈ (0, 1) . Then

Proof  We define, for 0 < k ∈ ℕ,

and

Observe that Tk(v�) ∈ Xs
p
 and ‖Tk(v𝜖)‖pXs

p

≤ Cp‖v𝜖‖pXs
p

< ∞ for a constant C > 0 . Tak-
ing Tk(v�) as a test-function, we obtain

We claim that

In fact, suppose that f satisfies (f2,p) . Then, for all t ∈ ℝ and 𝛼 > 0 we have

⎧
⎪⎨⎪⎩

(−Δ)s
p
u =

�
1

1 − ��

�
f (u) in Ω,

u = 0 in ℝ
N ⧵Ω,

sup
𝜖∈(0,1)

‖v𝜖‖L∞(Ω) < ∞.

Tk(s) =

⎧⎪⎨⎪⎩

s + k, if s ≤ −k,

0, if − k < s < k,

s − k, if s ≥ k

Ωk = {x ∈ Ω ∶ |v�(x)| ≥ k}.

⟨A(v�), Tk(v�)⟩ ≤ �
Ω

�f (v�)��Tk(v�)�dx.

(3.1)⟨A(v�), Tk(v�)⟩Xs
p
≤ C

�
�
Ω

�Tk(v�)�rdx
�1∕r

�Ωk�p∕r.

(3.2)|f (t)| ≤ C exp(�|t| N

N−s ) ∈ L1(Ω),
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where C > 0 is a constant. If 0 < 𝛼 < 𝛼∗
s,N

 (see Proposition 1.1), we can fix 𝜃 > 1 so 
that 0 < 𝜃𝛼 < 𝛼∗

s,N
 . Applying the (generalized) Hölder inequality and recalling 

‖v�‖Xs
p
≤ 1 , it follows from Proposition 1.1 the proof of our claim. The proof in the 

case that f satisfies (f �
2,p
) is analogous.

Denote

Noting that the following inequality holds

since both Tk(s) and s − Tk(s) are non decreasing functions, we obtain

Therefore, we have the estimate

The continuous immersion Xs
p
↪ Lr(Ω) yields (for a constant C1 > 0)

Thus, it follows from (3.1) and (3.3) the existence of C > 0 such that

Since, for all s ∈ ℝ , we have |Tk(s)| = (|s| − k)(1 − �[−k,k](s)) , we conclude that, if 
0 < k < h ∈ ℕ , then Ωh ⊂ Ωk . Thus,

Defining, for 0 < k ∈ ℕ,

we obtain

T(x, y) =
|v�(x) − v�(y)|p−2(v�(x) − v�(y))(Tk(v�)(x) − Tk(v�)(y))

|x − y|N+sp .

|s − t|p−2(s − t)(Tk(s) − Tk(t)) ≥ |Tk(s) − Tk(t)|p, for all s, t ∈ ℝ,

T(x, y) ≥ |Tk(v�)(x) − Tk(v�)(y)|p
|x − y|N+sp .

A(v�) ⋅ Tk(v�) ≥ �
ℝ2N

�Tk(v�)(x) − Tk(v�)(y)�p
�x − y�N+sp dxdy = ‖Tk(v�)‖pXs

p

.

(3.3)C1

�
�
Ω

�Tk(v�)�rdx
�p∕r

≤ ⟨A(v�), Tk(v�)⟩.

�
Ω

|Tk(v�)|rdx ≤ C|Ωk|p∕(p−1).

�
Ω

|Tk(v�)|rdx = �
Ωk

(|v�| − k)r ≥ �
Ωh

(|v�| − k)r ≥ (h − k)r|Ωh|.

�(k) = |Ωk|,

𝜙(h) ≤ C(h − k)−r𝜙(k)p∕(p−1), 0 < k < h ∈ ℕ.
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Considering the sequence (kn) defined by k0 = 0 and kn = kn−1 + d∕2n , where 
d = 2pC1∕r|Ω|1∕(p−1)r , we have 0 ≤ �(kn) ≤ �(0)∕(2nr(p−1)) for all n ∈ ℕ . Thus 
limn→∞�(kn) = 0.

Since �(kn) ≥ �(d) implies �(d) = 0 , we have |v�(x)| ≤ d a.e. in Ω , for all 
� ∈ (0, 1) . We are done. 	�  ◻

We recall the definitions of the spaces C0
�
(Ω) and C0,�

�
(Ω) . For this, we define 

� ∶ Ω → ℝ
+ by �(x) = dist(x,ℝN ⧵Ω) . Then, if 0 < 𝛼 < 1,

with the respective norms

Proof of Theorem  1  For 0 < 𝜖 < 1 , let us denote B� = {z ∈ Xs
p
∶ ‖z‖Xs

p
≤ �} . By 

contradiction, suppose that for each 𝜖 > 0 , there exists u� ∈ B� such that

It is not difficult to verify that Φ ∶ B� → ℝ is weakly lower semicontinuous. There-
fore, there exists v� ∈ B� such that inf

u∈B�

Φ(u) = Φ(v�) . It follows from (3.4) that

We will show that

since this implies that, for r1 > 0 , the existence of z ∈ C0
s
(Ω) , such that ‖z‖0,s < r1 

and Φ(z) < Φ(0) , contradicting (1.4).
Since v� is a critical point of Φ in Xs

p
 , by Lagrange multipliers we obtain the exist-

ence of �� ≤ 0 such that ⟨Φ�(v�),�⟩ = ��⟨v� ,�⟩ , for all � ∈ Xs
p
.

Thus, v� satisfies

If ‖v𝜖‖Xs
p
≤ 𝜖 < 1 , Proposition  3.1 show the existence of a constant C1 > 0 , not 

depending on � , such that

C0
s
(Ω) =

{
u ∈ C0(Ω) ∶

u

𝛿s
has a continuous extension to Ω

}

C0,𝛼
s
(Ω) =

{
u ∈ C0(Ω) ∶

u

𝛿s
has a 𝛼 − Hölder extension to Ω

}

‖u‖0,� =
����
u

�s

����L∞(Ω)

and ‖u‖�,� = ‖u‖0,� + sup
x,y∈Ω, x≠y.

�u(x)∕�(x)s − u(y)∕�(y)s�
�x − y�� .

(3.4)Φ(u𝜖) < Φ(0).

Φ(v𝜖) = inf
u∈B𝜖

Φ(u) ≤ Φ(u𝜖) < Φ(0).

v� → 0 in C0
s
(Ω) as � → 0,

(−Δ)s
p
v� =

(
1

1 − ��

)
g(v�) =∶ g�(v�) in Ω,

v� = 0 in ℝ�Ω,

(3.5)‖v�‖L∞(Ω) ≤ C1.
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Since �� ≤ 0 , (3.2) and (3.5) show that ‖g�(v�)‖L∞(0,1) ≤ C2 for some constant 
C2 > 0 . Theorem 2.3 then yields ‖v�‖C0,� (Ω)

≤ C3 , for 0 < 𝛽 ≤ s and a constant C3 not 
depending on �.

It follows from Arzelà–Ascoli theorem the existence of a sequence (v�) such that 
v� → 0 uniformly as � → 0 . Passing to a subsequence, we can suppose that v� → 0 a. 
e. in Ω and, therefore, v� → 0 , uniformly in Ω . But now follows from Proposition 2.4 
that

for a constant C > 0 . We are done. 	�  ◻

Remark 3.2  Observe that, if 0 a strict local minimum in C0
�
(Ω) , then 0 is also a strict 

local minimum in Xs
p
.

4 � Proof of Theorem 2

In this section we deal with existence and multiplicity of solutions to the problem 
(1.1) when f has subcritical growth.

The proof of Theorem 2 will be given in 3 subsections. In the first subsection, 
we will obtain a positive solution by applying the Mountain Pass Theorem. Analo-
gously, in the second subsection we will obtain a negative solution. In the last sub-
section, a third solution will be obtained by the Linking Theorem and we conclude 
the proof of Theorem 2.

4.1 � Positive solution for the functional I�,p

Lemma 4.1  Suppose that f satisfies (f1,p) , (f2,p) , (f3,p) and (f4,p) . Then, for any 𝜆 > 0 , 
the functional I+

�,p
 satisfies the (PS) condition at any level.

The same result is valid for the functional I�,p.

Proof  Let (un) ⊂ Xs
p
 be a (PS)-sequence for I+

�,p
 . By arguments similar to that used in 

the proof of Lemma 2.5, there exists u0 ∈ Xs
p
 such that un ⇀ u0 in Xs

p
 . We can also 

suppose that

if 1 < q < 2 ≤ p , by applying Hölder’s inequality we obtain

Observe that un − u0 ⇀ 0 implies ⟨(I+
�,p
)�(un), un − u0⟩ → 0 . It follows that

‖v�‖0,� =
����
v�

�s

����L∞(Ω)

≤ C sup
x∈(0,1)

�g�(v�(x))�

un → u0 in Lr(Ω) for r ≥ 1 and un(x) → u0(x) a.e. in Ω.

∫
Ω

|u+
n
|q−2u+

n
(un − u0) → 0 and ∫

Ω

|u+
n
|p−2u+

n
(un − u0) → 0.
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Taking 0 < 𝛼 <
𝛼∗
s,N

rM
N

N−s

 , it follows from Hölder’s inequality

for a positive constant C1 . Thus ⟨A(un), un − u0⟩ → 0 and we conclude un → u0 in Xs
p
 

as a consequence of Lemma 2.2.
The proof is analogous in the case of the functional I�,p . 	�  ◻

The next results will be useful when proving the geometric conditions of the 
Mountain Pass Theorem. We define

and

Lemma 4.2  (Subcritical and critical cases) Suppose that a > 0 and that f satisfies 
(f3,p) . Then, the trivial solution u = 0 is a strict local minimum of J+

�,p
 for all 𝜆 > 0.

Proof  According to Theorem 1, it suffices to show that u = 0 is a strict local mini-
mum for J+

�,p
 in C0

�
(Ω) . Condition (f3,p) implies, for some 𝜔 > 0,

Consider u ∈ (C0
�
(Ω) ∩ Xs

p
) ⧵ {0} . Taking com ‖u‖0,� small enough, we have 

0 < |u+| < 𝜔 , since �u+� ≤ M‖u‖0,� for some M > 0 . Thus,

For 1 < q < p , we have �u+�p−q ≤ (k1)
p−q‖u‖p−q

0,�
 for some constant k1 > 0 . Thus,

⟨A(un), un − u0⟩ = ⟨(I+
�,p
)�(un), un − u0⟩ − �∫

Ω

�u+
n
�q−2u+

n
(un − u0)

+ a∫
Ω

�u+
n
�p−2u+

n
(un − u0) + ∫

Ω

f (u+
n
)(un − u0)

= ∫
Ω

f (u+
n
)(un − u0) + o(1).

⟨A(un), un − u0⟩ ≤ CC1

�
�
Ω

�un − u0�r∕(r−1)
�(r−1)∕r

+ o(1),

J�,p(u) ∶= I�,p(u) −
1

p
‖u‖p

Xs
p

=
�

q ∫
Ω

�u�qdx − a

p ∫
Ω

�u�pdx − ∫
Ω

F(u)dx

J+
�,p
(u) ∶= I+

�,p
(u) −

1

p
‖u‖p

Xs
p

=
�

q ∫
Ω

�u+�qdx − a

p ∫
Ω

�u+�pdx − ∫
Ω

F(u+)dx.

lim|t|→0

F(t)

|t|p = 0 ⇒ |F(t)| < |t|p, for all 0 < |t| ≤ 𝜔.

J+
�,p
(u) =

�

q ∫
Ω

|u+|qdx −
(
a

p
+ 1

)
∫
Ω

|u+|pdx
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Hence, there exists R > 0, such that,

completing the proof. 	�  ◻

Remark 4.3  The same result holds for J�,p.

Lemma 4.4  (Subcritical and critical cases) Suppose that a > 0 and f satisfies (f4,p) . 
Then, for a fixed Λ > 0 , there exists t0 = t0(Λ) such that

for all t ≥ t0 and 0 < 𝜆 < Λ.

Proof  It follows from (f4,p) that, fixed M > 0 , there exists CM > 0 such that

Thus, if M >
𝜆1

p
 , denoting by �1 the positive eigenfunction associated with the 

eigenvalue �1 , with ‖�1‖Lp(Ω) = 1 , we have

For a fixed Λ > 0 we now choose t0 = t0(Λ) > 0 such that

So, for t ≥ t0 and 𝜆 < Λ we have

The result follows. 	�  ◻

Proposition 4.5  Suppose that, for a > 0 , f satisfies (f1,p) , (f2,p) , (f3,p) (f4,p) . Then, the 
subcritical problem (1.1) has at least one positive solution, for all 0 < 𝜆 < Λ , where 
Λ > 0 is arbitrary.

J+
𝜆,p
(u) ≥

�
𝜆

q
−

�
a

p
+ 1

�
(k1)

p−q‖u‖p−q
0,𝛿

�
�
Ω

�u+�qdx, a

p
+ 1 > 0.

J+
𝜆,p
(u) > 0 = J+

𝜆,p
(0), ∀ 0 < ‖u‖0,𝛿 < R,

I+
𝜆,p
(t𝜑1) < 0,

(4.1)F(t) ≥ M|t|p − CM .

I+
�,p
(t�1) ≤ �1|t|p

p �
Ω

|�1|pdx + |t|q�
q �

Ω

|�1|qdx −M|t|p �
Ω

|�1|pdx + CM|Ω|

= tp
[
�

q

1

tp−q �Ω

|�1|qdx + 1

tp
CM|Ω| −

(
M −

�1

p

)]
.

Λ

q

1

t
p−q

0
∫
Ω

𝜑
q

1
dx +

CM

t
p

0

|Ω| −
(
M −

𝜆1

p

)
< 0.

𝜆

q

1

tp−q �Ω

𝜑
q

1
dx +

CM

tp
|Ω| −

(
M −

𝜆1

p

)
≤ Λ

q

1

t
p−q

0
�
Ω

𝜑
q

1
dx +

CM

t
p

0

|Ω| −
(
M −

𝜆1

p

)

< 0.
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Proof  It follows immediately from the Mountain Pass Theorem, as consequence of 
Lemmas 4.1, 4.2 and 4.4. 	�  ◻

4.2 � Negative solution for the functional I�,p

The Palais–Smale condition is obtained by following the reasoning given in the 
proof of Lemma 4.1.

For u ∈ Xs
p
 , by defining

we obtain the result analogous to Lemma 4.2.
Mimicking the proof of Lemma 4.4, we obtain the second condition of the Moun-

tain Pass Theorem. Thus, the negative solution follows, as before, from the Moun-
tain Pass Theorem.

4.3 � A third solution

In order to obtain the geometric conditions of the Linking Theorem, we define

where

with �1 the first autofunction, positive and normalized, of (−Δ)s
p
.

The proof of the next result is simple.

Proposition 4.6  Xs
p
= W ⊕ span{𝜑1}.

Following ideas of Alves et  al. [1] and Capozzi et  al. [10], we obtain the next 
result.

Proposition 4.7  𝜆1 < 𝜆∗.

Proof  Of course

Suppose that �1 = �∗ . It follows the existence of a sequence (un) ⊂ W such that

J−
�,p
(u) ∶= I−

�,p
(u) −

1

p
‖u‖p

Xs
p

=
�

q ∫
Ω

�u−�qdx − a

p ∫
Ω

�u−�pdx − ∫
Ω

F(u−)dx,

�∗ = inf
�
‖u‖p

Xs
p

∶ u ∈ W, ‖u‖p
Lp(Ω)

= 1
�
,

W =

�
u ∈ Xs

p
∶ ⟨A(�1), u⟩ = 0

�
,

�1 = inf
�
‖u‖p

Xs
p

∶ ‖u‖p
Lp(Ω)

= 1
� ≤ inf

�
‖u‖p

Xs
p

∶ u ∈ W e ‖u‖p
Lp(Ω)

= 1
�
= �∗.

‖un‖pLp(Ω) = 1 and lim
n→∞

‖un‖pXs
p

= �∗ = �1.
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Since (un) is bounded in Xs
p
 , passing to a subsequence if necessary, there exists 

u ∈ Xs
p
 such that

Since

we conclude that u = t�1 for some t ≠ 0.
But ⟨A(�1), un⟩ → ⟨A(�1), u⟩ . Since (un) ⊂ W , we have ⟨A(�1), un⟩ = 0 , thus 

implying ⟨A(�1), u⟩ = 0 . It follows t‖�1‖pXs
p

= 0 and t = 0 , and we have reached a 
contradiction. 	�  ◻

Lemma 4.8  If a < 𝜆∗ , then there exist 𝛽, 𝜌 > 0 such that I�,p(u) ≥ � for all u ∈ W 
such that ‖u‖Xs

p
= �.

Proof  Take 𝜃 > p and 0 < 𝛼 < 𝛼∗
s,N

 (see Proposition 1.1). It follows from (f2,p) and 
(f3,p) the existence of 0 ≤ 𝜇 < 𝜆∗ − a and C > 0 such that

Thus, if u ∈ W and ‖u‖Xs
p
≤ 1 , then the definition of �∗ yields

Take r > 1 so that 0 < r𝛼 < 𝛼∗
s,N

 . Recalling that ‖u‖Xs
p
≤ 1 , by combining the 

Hölder’s inequality, the continuous immersion Xs
p
↪ Lr

�q(Ω) and Proposition  1.1 
guarantee the existence of C1 > 0 such that

Observe that 𝜃 > p and 1 −
a + 𝜇

𝜆∗
> 0 . Thus, for 𝜌 > 0 small enough and ‖u‖Xs

p
= � , 

we have

We are done. 	�  ◻

Lemma 4.9  Suppose that f satisfies (f4,p) . If Y ⊂ Xs
p
 is a subspace with dimY < ∞ , 

then

un ⇀ u in Xs
p
, un → u in Lq(Ω), 1 ≤ q ≤ p, un(x) → u(x) a.e. in Ω.

�1 ≤ ‖u‖p
Xs
p

≤ lim inf
k→∞

‖uk‖p = lim inf
k→∞

�k = �1.

F(t) ≤ �

p
tP + C exp(�|t| N

N−s )|t|� , for all t ∈ ℝ.

I�,p(u) ≥
‖u‖p

Xs
p

p
− (a + �)

‖u‖p
Xs
p

p�∗
− C �

Ω

exp(�u2)�u��dx.

I�,p(u) ≥ 1

p

�
1 −

a + �

�∗

�
‖u‖2

Xs
p

− C1‖u‖�Xs
p

.

I𝜆,p(u) ≥ 𝜌p
{

1

p

(
1 −

a + 𝜇

𝜆∗

)
− C1𝜌

𝜃−p

}
∶= 𝛽 > 0.



90	 H. P. Bueno et al.

1 3

Proof  Since all norms in Y are equivalent, there exist C1 > 0 and C2 > 0 such that, 
for all y ∈ Y  holds

Now, by applying (4.1) for M > C1

(
1

p
+

𝜆C2

q

)
 and (4.2), we obtain

The choice of M implies the result. 	� ◻

Lemma 4.10  If f satisfies (f4,p) and if 𝜆1 ≤ a < 𝜆∗ , then there exists 𝜂 = 𝜂(𝜆) > 0 
such that

Proof  Since u ∈ span{�1} , we have

But 𝜆1 ≤ a < 𝜆∗ , the continuous immersion and (4.1) imply that

Since 1 < q < p , we conclude that

Thus, there exists R > 0 such that I𝜆,p(u) < 0 for all u ∈ span{�1} satisfying 
‖u‖Xs

p
> R . If u ∈ span{�1} and ‖u‖Xs

p
≤ R , we have

The result follows by defining �(�) = �

q
KqR

q . 	�  ◻

Proposition 4.11  Suppose that f satisfies (f1,p) − (f4,p) . If 𝜆1 ≤ a < 𝜆∗ , then problem 
(1.1) has at least a third solution, for all 𝜆 > 0 small enough.

Proof  We already know that Xs
p
= W ⊕ span{𝜑1} and that the functional I�,p satis-

fies the Palais-Smale condition at all levels, for any 𝜆 > 0 . Therefore, the Linking 
theorem guarantees that I�,p has a critical value C ≥ � given by

lim
u∈Y ,‖u‖Xsp→∞

I�,p(u) = −∞.

(4.2)‖u‖p
Xs
p

≤ C1‖u‖pLp(Ω) and ‖u‖q
Lq(Ω)

≤ C2‖u‖qXs
p

.

I�,p(u) ≤ ‖u‖p
Xs
p

�
1

p
+

�C2

q
−

M

C1

�
+ CM�Ω�.

I�,p(u) ≤ �(�) and lim
�→0

�(�) = 0, for all u ∈ span{�1}.

I�,p(u) ≤
�
�1 − a

p

�
�
Ω

updx +
�

q
‖u‖q

Lq(Ω)
− �

Ω

F(u)dx.

I�,p(u) ≤ �Kq

q
‖u‖q

Xs
p

−MK2‖u‖pXs
p

+ CM .

lim
u∈span{�1},‖u‖Xsp→∞

I�,p(u) = −∞.

0 ≤ I�,p(u) ≤ �

q
Kq‖u‖qXs

p

− �
Ω

F(u)dx ≤ �

q
KqR

q − �
Ω

F(u)dx ≤ �

q
KqR

q.
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where Γ = {𝛾 ∈ C(Q̄,E) ; 𝛾 = Id in 𝜕Q}.
Taking into account Lemma 4.8, to conclude our result from the Linking Theo-

rem, it suffices to show the existence of e ∈ (�B1) ∩W , constants R > 𝜌 and 𝛼 > 0 
such that I𝜆,p||𝜕Q < 𝛼 < 𝛽 , where Q = (BR ∩ span{𝜑1})⊕ (0,Re).

So, take � ∈ W with ‖�‖Xs
p
= 1 . Lemma 4.9 guarantees the existence of R̄ > 0 

such that

By applying Lemma 4.8 for �� ∈ span{�1,�} , we obtain I𝜆,p(𝜌𝜑) ≥ 𝛽 > 0 , proving 
that R̄ > 𝜌 . We now consider

and the border �Q =
⋃3

i=1
Γi with 

(1)	 Γ1 = BR̄(0) ∩ span{𝜑1},
(2)	 Γ2 = {u ∈ Xs

p
∶ u = w + R̄𝜑,w ∈ BR̄(0) ∩ span{𝜑1}},

(3)	 Γ3 = {u ∈ Xs
p
∶ u = w + r𝜑, w ∈ span{𝜑1}, ‖w‖Xs

p
= R̄, 0 ≤ r ≤ R̄}.

We have I�,p||Γi
≤ �(�) , for i = 1, 2, 3 . In fact, this follows from Lemma  4.10 if 

u ∈ Γ1 ⊂ span{𝜑1} . However, if u ∈ Γ2 or u ∈ Γ3 , then it is a consequence of (4.3).
By the Linking theorem, there exists a weak solution u� ∈ Xs

p
 of the problem (1.1) 

such that

Observe that u� ≠ 0 , since I�,p(0) = 0.
In order to show that this third solution is different from the positive and negative 

solutions obtained before, consider g+
0
∶ [0, 1] → Xs

p
 given by g+

0
(t) = t(t0�1) , with t0 

defined in Lemma 4.4. We have

It follows from Lemma 4.10 that

The result now follows by applying a result analogous to Lemma 4.4, valid for solu-
tions with negative energy and defining g−

0
∈ Γ− , satisfying an estimate analogous to 

(4.4). 	�  ◻

Proof of Theorem  2  To conclude its proof we observe that, if f is odd, then I�,p is 
even. Now, the existence of infinite many solutions follows by applying the symmet-
ric version of the Mountain Pass Theorem, see [43, Theorem 9,12]. 	�  ◻

C = inf
�∈Γ

max
u∈Q

I�,p(�(u))

(4.3)I𝜆,p(u) < 0 for all u ∈ span{𝜑1,𝜑}, ‖u‖Xs
p
≥ R̄.

Q = {u = w + t𝜑, w ∈ span{𝜑1} ∩ BR̄, 0 ≤ t ≤ R̄}

0 < 𝜂(𝜆) < 𝛽 ≤ I𝜆,p(u𝜆) = C𝜆.

g+
0
∈ {g ∈ C([0, 1],Xs

p
) ∶ g(0) = 0, g(1) = t0�1}.

(4.4)I+
�,p
(g+

0
(t)) = I�,p(g

+

0
(t)) ≤ �(�), for all t ∈ [0, 1].
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5 � Proof of Theorem 3

5.1 � Positive and negative solutions for the functional I�,p

Lemma 5.1  Suppose that f satisfies the hypotheses of the critical exponential growth 
case. Then the functional I�,p satisfies the (PS)-condition at any level 

c <
s

N

(
𝛼∗
s,N

𝛼0

) N−s

s

.

Proof  For c < s

N

(
𝛼∗
s,N

𝛼0

) N−s

s  , let (un) be a (PS)c sequence in Xs
p
 . Lemma 2.5 guarantees 

that (un) is bounded. Therefore, passing to a subsequence, we can suppose that

Since 𝜆 > 0 , (‖I�
�,p
(un)‖(Xs

p
)∗ ) and (I�,p(un)) are bounded sequences in ℝ.

Therefore, since (f5,p) implies pF(t) ≤ tf (t) for all t ≠ 0 , there exists C > 0 such 
that

It follows from (3.2) that f (un), f (u) ∈ L1(Ω) . Since un → u in L1(Ω) and 
∫
Ω
f (un)undx ≤ C , we conclude that

by applying [16, 17, Lema 2.1]. Thus, (5.1) and (f6,p) allow us to conclude that

and

Since I�
�
(un) → 0 in (Xs

p
)∗ , it follows that

A new application of the inequality pF(t) ≤ tf (t) yields

We conclude from (5.3) that

un ⇀ u in Xs
p
, un → u in Lq(Ω) for all q ≥ 1, un(x) → u(x) a.e. in Ω.

max

�
‖un‖2Xs

p

,�
Ω

f (un)undx,�
Ω

F(un)dx

�
≤ C.

(5.1)f (un) → f (u) in L1(Ω)

(5.2)F(un) → F(u) in L1(Ω)

‖un‖pXs
p

p
→ c −

�

q ∫
Ω

�u�qdx + a

p ∫
Ω

�u�pdx + ∫
Ω

F(u)dx.

(5.3)∫
Ω

f (un)undx → pc + �

(
1 −

p

q

)
∫
Ω

|u|qdx + p∫
Ω

F(u)dx.

�
Ω

f (un)undx − p�
Ω

F(un)dx ≥ 0.
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thus showing that c ≥ 0 . Now, standard arguments show that ⟨I�
�,p
(u), v⟩ = 0 for all 

v ∈ Xs
p
.

Thus, pF(t) ≤ tf (t) yields

proving that I𝜆,p(u) > 0 , since I�,p(0) = 0.
To prove that un → u in Xs

p
 , it suffices to show that I�,p(u) = c , since this yields 

‖un‖Xs
p
→ ‖u‖Xs

p
 . In fact, it follows from (5.2) that

If I𝜆,p(u) < c , then we would have

By defining vn = un∕‖un‖Xs
p
 and v = u∕c0 , where

(5.4) would then imply that

We can conclude that vn ⇀ v in Xs
p
 , by choosing 𝛼 > 𝛼0 so that

Thus, I𝜆,p(u) > 0 and (5.4) would then imply

It is not difficult to show that cp
0

�
p(c − I�)(u)

�−1
=

�
1 − ‖v‖p

Xs
p

�−1

.

pc ≥ �

(
p

q
− 1

)
�
Ω

|u|q,

I𝜆,p(u) >
1

p

�
‖u‖p

Xs
p

+ 𝜆∫
Ω

�u�q − a∫
Ω

�u�2dx − ∫
Ω

f (u)udx

�
=

1

p
⟨I�

𝜆,p
(u), u⟩ = 0

I�,p(u) ≤ lim inf
n→∞

�
1

p
‖un‖pXs

p

+
�

q �
Ω

�un�q − a

p �
Ω

�un�pdx − �
Ω

F(un)dx

�

= lim inf
n→∞

I�,p(un) = c.

(5.4)
lim
n→∞

‖un‖pXs
p

> p

�
I𝜆,p(u) −

𝜆

q ∫
Ω

�u�q + a

p ∫
Ω

�u�2dx + ∫
Ω

F(u)dx

�

= ‖u‖p
Xs
p

.

c0 =

(
pc −

p𝜆

q ∫
Ω

|u|q + a∫
Ω

|u|pdx + p∫
Ω

F(u)dx

)−1∕p

> 0,

‖v‖Xs
p
=

‖u‖Xs
p

c0
<

‖u‖Xs
p

‖u‖Xs
p

= 1.

pr
N−s

s 𝛼
N−s

s <

(
𝛼∗

s,N

) N−s

s

c
.

lim
n→∞

r
N−s

s 𝛼
N−s

s ‖un‖pXs
p

= r
N−s

s 𝛼
N−s

s c
p

0
<

�
𝛼∗

s,N

� N−s

s

�
c
p

0

p(c − I𝜆,p(u))

�
.
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Thus,

So, for 𝜖 > 0 small enough and n ∈ ℕ large enough, we have

Thus, there exist 1 < 𝜇 <
1

(1−‖v‖p
Xsp
)

s
N−s

 and 0 < 𝛾 < 𝛼∗
s,N

 such that

But (3.2) implies

Our choice of � and � guarantees that the sequence 
(
exp

(
�|vn|

N

N−s

))
 is bounded in 

L�(Ω) . Therefore, (f (un)) is bounded in Lr(Ω) for some r > 1.
By applying the Brezis-Lieb lemma, we conclude that f (un) ⇀ f (u) in Lr(Ω) and, 

since un → u in Lr� (Ω) , we conclude that

Thus,

we have reached a contradiction. Therefore, I�,p(u) = c . 	�  ◻

Remark 5.2  The same result is valid for the functionals I+
�,p

 and I−
�,p

.

Proposition 5.3  Suppose that a ≥ �1 and f satisfies (f1,p), (f �2,p) , (f3,p) and (f5,p) − (f7,p) . 
Then, in the case of critical exponential growth, problem (1.1) has at least one posi-
tive solution for all 𝜆 > 0 small enough.

Proof  As in the subcritical growth case, the functional I+
�,p

 satisfies the geometric 
hypotheses of the Mountain Pass Theorem.

We will show that I+
�,p

 satisfies the (PS) condition at level C+

�
 , given by

b = lim
n→∞

r
N−s

s 𝛼
N−s

s ‖un‖pXs
p

<

�
𝛼∗

s,N

� N−s

s

1 − ‖v‖p
Xs
p

.

r𝛼‖un‖
N

N−s

Xs
p

< 𝜖 + b <
𝛼∗
s,N

(1 − ‖v‖p
Xs
p

)
s

N−s

.

r𝛼‖un‖
N

N−s

Xs
p

< 𝛾𝜇 <
𝛼∗
s,N

(1 − ‖v‖p
Xs
p

)
s

N−s

.

�
Ω

|f (un)|rdx ≤ C �
Ω

exp(r�|un|
N

N−s )dx ≤ C �
Ω

exp
(
��|vn|

N

N−s

)
dx.

lim
n→∞∫

Ω

f (un)undx = ∫
Ω

f (u)udx.

lim
n→∞

‖un‖pXs
p

= ‖u‖p
Xs
p

− ⟨I�
�,p
(u), u⟩ = ‖u‖p

Xs
p

.
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where Γ+ = {g ∈ C([0, 1],Xs
p
) ∶ g(0) = 0, g(1) = t0�1} , with t0 given in 

Lemma 4.4. Observe that

thus implying that max
t∈[0,1]

I+
�,p
(g(t)) ≥ 0, ∀ g ∈ Γ+.

It follows that

As in the proof of Lemma 5.1, we obtain that I+
�,p

 satisfies the (PS)c condition for all 

𝜆 > 0 , where c < s

N

(
𝛼∗
s,N

𝛼0

) N−s

s  . We will show that C+

𝜆
<

s

N

(
𝛼∗
s,N

𝛼0

) N−s

s  , if 𝜆 > 0 is small 
enough.

In fact, by defining g+
0
∶ [0, 1] → Xs

p
 by g+

0
(t) = t(t0�1) , the result follows by 

applying Lemma 4.10:

if 𝜆 > 0 is small enough. 	�  ◻

The proof of existence of a negative solution is analogous to that of 
Proposition 5.3.

Proposition 5.4  Suppose that a ≥ �1 and that f satisfies (f1,p), (f �2,p), (f3,p) and 
(f5,p) − (f7,p) . Then, in the case of critical exponential growth, problem (1.1) has at 
least one negative solution for all 𝜆 > 0 small enough.

5.2 � A third solution

Proposition 5.5  Suppose that f satisfies (f1,p), (f �2,p), (f3,p) , and (f5,p) − (f7,p) . If 
𝜆1 ≤ a < 𝜆∗ then, for all 𝜆 > 0 small enough, problem (1.1) has at least a third solu-
tion in the case of critical exponential growth.

Proof  According to Lemmas 4.8 and 4.9, the functional I�,p satisfies the geometry of 
the Linking Theorem.

We maintain the notation introduced in Sect.  4, with Xs
p
= W ⊕ span{𝜑1} and 

Q = (BR ∩ span{𝜑1})⊕ ([0,R𝜑]) for � ∈ W . So, it suffices to prove that 

C+

�
= inf

g∈Γ+
max

u∈g([0,1])
I+
�,p
(u),

max
t∈[0,1]

I+
�,p
(g(t)) ≥ I+

�,p
(g(0)) = I+

�,p
(0) = 0, ∀ g ∈ Γ+,

0 ≤ inf
g∈Γ+

max
u∈g([0,1])

I+
𝜆,p
(u) = C+

𝜆
< ∞.

C+

𝜆
≤ I+

𝜆,p
(g+

0
) < 𝜂(𝜆) <

s

N

(
𝛼∗
s,N

𝛼0

) N−s

s

,
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(iii)	� sup
u∈Q

I𝜆,p(u) <
s

N

(
𝛼∗
s,N

𝛼0

) N−s

s

.

We claim that (f7,p) implies, for 𝜆 > 0 small enough,

So, we write I�,p in the form

with J(u) = 1

p
‖u‖p

Xs
p

−
a

p
∫
Ω
�u�pdx − ∫

Ω
F(u)dx.

In order to prove (iii), it is enough to verify that

or, what is the same, that for 𝜆 > 0 small enough, we have

thus showing (iii).
In order to prove (5.6), we will show that

Consider � = span{�1,�} . We have

But

Define � ∶ [0,+∞) → ℝ by

(5.5)max
u∈Q̄

I𝜆,p(u) <
s

N

(
𝛼∗
s,N

𝛼0

) N−s

s

.

I�,p(u) = J(u) +
�

q ∫
Ω

|u|qdx,

(5.6)sup
u∈Q̄

J(u) <
s

N

(
𝛼∗
s,N

𝛼0

) N−s

s

sup
u∈Q

I𝜆,p(u) ≤ sup
u∈Q

J(u) +
𝜆

q
sup
u∈Q̄

|u|q
Lq(Ω)

<
s

N

(
𝛼∗
s,N

𝛼0

) N−s

s

,

sup
u∈Q̄

J(u) <
s

N

(
𝛼∗
s,N

𝛼0

) N−s

s

.

sup
u∈Q̄

J(u) ≤ max
u∈�

J(u) = max
u∈� ,t≠0 J

(
|t| u|t|

)
= max

u∈� ,t>0
J(tu) ≤ max

u∈� ,t≥0 J(tu).

J(tu) =
tp

p
‖u‖p

Xs
p

−
a

p
tp �

Ω

�u�pdx − �
Ω

F(tu)dx ≤ tp

p
‖u‖p

Xs
p

− �
Ω

F(tu)dx.

�(t) =
tp

p
‖u‖p

Xs
p

− ∫
Ω

F(tu)dx.
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Since all norms in �  are equivalent, it follows from (f7,p) the existence of C > 0 such 
that

Thus,

Therefore, (5.7) yields 𝜂(t) < s

N

(
𝛼∗
s,N

𝛼0

) N−s

s  and

and the proof of our claim is complete.
For 𝜆 > 0 small enough, the functional I�,p satisfies the (PS)-condition at the level 

C𝜆 = infh∈Γ supu∈Q̄ I𝜆,p(h(u)) , where Γ = {h ∈ C(Q̄,Xs
p
) ; h = id in 𝜕Q} . In fact, 

(5.5) implies that, for 𝜆 > 0 small enough, we have

and the (PS)C�
-condition is consequence of Lemma 5.1.

It follows from the Linking Theorem that C𝜆 = inf
h∈Γ

sup
u∈Q̄

I𝜆,p(h(u)) is a critical value 

for I�,p , with C� ≥ � . Therefore, there exists u� ∈ Xs
p
 weak solution of (1.1) satisfy-

ing 0 < 𝛽 ≤ I𝜆,p(u𝜆) , what implies that u� ≠ 0.
As in the proof of Proposition 4.11, we prove that this solution is different from 

the positive and negative solutions already obtained. 	�  ◻

Observe that we also conclude the proof of Theorem 3 by the same reasoning given 
in the proof of Theorem 2.

Remark 5.6  The proof of the analogous results in case N = 1 , p = 2 , s = 1∕2 and 
Ω = (0, 1) are completely similar; in order to find a third solution by applying the 
Linking Theorem we consider the decomposition

where Vk = span{�1,… ,�k} is the subspace generated by the autofunctions of 
(−Δ)1∕2 corresponding to the eigenvalues �1,… , �k , e Wk = V⟂

k
.
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Ω

F(tu)dx ≥Cr

r �
Ω

tr�u�rdx = Cr

r
tr‖u‖r

Lr(Ω)
≥ C

Cr

r
tr‖u‖r

Xs
p
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(5.7)�(t) ≤ tp
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‖u‖p
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p

− C
Cr

r
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p
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�
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− C
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�
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