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Abstract
We consider the problem of maximal regularity for non-autonomous second order 
Cauchy problems 

Here, the time dependent operator A(t) is bounded from the Hilbert space V to its 
dual space V′ and B(t) is associated with a sesquilinear form �(t, ⋅, ⋅) with domain V . 
We prove maximal Lp-regularity results and other regularity properties for the solu-
tions of the above equation under minimal regularity assumptions on the operators. 
Our result is motivated by boundary value problems.

Keywords  Damped wave equation · Maximal regularity · Non-autonomous 
evolution equations

Mathematics Subject Classification  35K90 · 35K45 · 47D06

1  Introduction

The aim of this article is to study non-autonomous second order evolution equations 
governed by forms.

Let (H, (⋅, ⋅), ‖ ⋅ ‖) be a separable Hilbert space over ℝ or ℂ . We consider another 
separable Hilbert space V which is densely and continuously embedded into H . We 
denote by V′ the (anti-) dual space of V so that

Hence there exists a constant C > 0 such that

{
u��(t) + B(t)u�(t) +A(t)u(t) = f (t) t-a.e.

u(0) = u0, u�(0) = u1.

V ↪d H ↪d V
′.
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where ‖ ⋅ ‖V denotes the norm of V . Similarly,

We denote by ⟨, ⟩ the duality V′–V and note that ⟨� , v⟩ = (� , v) if � , v ∈ H.
In this paper we consider maximal regularity for second order Cauchy problems. We 

focus on the damped wave equation.
We consider a family of sesquilinear forms

such that 

[H1]	  D(�(t)) = V (constant form domain),
[H2]	  ��(t, u, v)� ≤ M‖u‖V‖v‖V ( V-uniform boundedness),
[H3]	  Re �(t, u, u) + 𝜈‖u‖2 ≥ 𝛿‖u‖2

V
(∀u ∈ V) for some 𝛿 > 0 and some � ∈ ℝ 

(uniform quasi-coercivity).

We denote by B(t),B(t) the usual operators associated with �(t)(as operators on H and 
V
′ ). Recall that u ∈ H is in the domain D(B(t)) if there exists h ∈ H such that for all 

v ∈ V : �(t, u, v) = (h, v) . We then set B(t)u ∶= h . The operator B(t) is a bounded opera-
tor from V into V′ such that B(t)u = �(t, u, ⋅) . The operator B(t) is the part of B(t) on H.

It is a classical fact that −B(t) and −B(t) are both generators of holomorphic semi-
groups (e−rB(t))r≥0 and (e−rB(t))r≥0 on H and V′ , respectively. The semigroup e−rB(t) is 
the restriction of e−rB(t) to H . In addition, e−rB(t) induces a holomorphic semigroup on 
V (see, e.g., Ouhabaz [20, Chapter 1]). Let A(t) ∈ L(V,V�) for all t ∈ [0, �] and a func-
tion h ∶ [0, �] → [0,∞) such that ∫ 𝜏

0
tph(t)p

dt

t
< ∞ and

We denote by A(t) the part of A(t) on H, defined by

Given a function f defined on [0, �] with values either in H or in V′ we consider the 
second order evolution equation

This is an abstract damped non-autonomous wave equation and our aim is to prove 
well-posedness and maximal Lp-regularity for p ∈ (1,∞) in V′ and in H.

Definition 1.1  Let X = H or V�. We say that Problem (1) has maximal Lp-regularity 
in X,  if for all f ∈ Lp(0, �;X) and all (u0, u1) in the trace space (see Sects. 2 and 3 for 

‖u‖ ≤ C‖u‖V (u ∈ V),

‖�‖V� ≤ C‖�‖ (� ∈ H).

� ∶ [0, �] × V × V → ℂ,

‖A(t)‖L(V,V�) ≤ h(t), for almost every t ∈ [0, �].

D(A(t)) ∶= {u ∈ V ∶ A(t)u ∈ H}

A(t)u ∶= A(t)u.

(1)
{

u��(t) + B(t)u�(t) +A(t)u(t) = f (t)

u(0) = u0, u�(0) = u1.
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more details) there exists a unique u ∈ W2,p(0, �;X) ∩W1,p(0, �;V) which satisfies (1) 
in the Lp-sense.

The maximal L2-regularity in V′ was first considered by Lions [16] (p. 151). He 
assumes that A(t) is associated with a sesquilinear form �(t) which satisfies the 
same properties as �(t) together with an additional regularity assumption on the 
forms t → �(t, u, v) and t → �(t, u, v) for every fixed u, v ∈ V. Dautray–Lions [10, 
p. 667] proved maximal L2-regularity in V′ without the regularity assumption by 
taking f ∈ L2(0, �;H) and considering mainly symmetric forms. Recently, Batty 
et al. [9] proved maximal Lp-regularity for general forms B(.) and A(.) for the case 
u0 = u1 = 0 and h ∈ Lp(0, �) by reducing the problem to a first order non-autono-
mous Cauchy problem. Dier–Ouhabaz [11] proved maximal L2-regularity in V′ for 
u0 ∈ V, u1 ∈ H and A(t) is also associated with a V-bounded quasi-coercive non-
autonomous form �(t). We improve the result in [9] by proving maximal Lp-regu-
larity in V′ for u0 and u1 not necessarily 0 and t → t

1−
1

p h(t) ∈ Lp(0, �) . Our proof 
is based on the result of the first order problem as in [9], but the main difference 
being that we use a fixed point argument.

More interesting is the question of second order maximal regularity in H , i.e. 
whether the solution u of (1) is in H2(0, �;H) provided that f ∈ L2(0, �;H). A 
first answer to this question was giving by Batty et al. [9] in the particular case 
B(.) = kA(.) for some constant k and that A(.) has the maximal regularity in H. By 
using the form method, Dier and Ouhabaz [11], proved maximal L2-regularity in 
H without the rather strong assumption B(.) = kA(.), but A(t) is also associated 
with V-bounded quasi-coercive form �(t) and t → �(t, u, v), �(t, u, v) are symmetric 
and Lipschitz continuous for all u, v ∈ V. We extend the results in [11] in three 
directions. The first one is to consider general forms which may not be symmet-
ric. The second direction is to deal with maximal Lp-regularity, for all p ∈ (1,∞). 
The third direction, which is our main motivation, is to assume less regularity on 
the operators A(t),B(t) with respect to t.

Our main results can be summarized as follows (see Theorems 3.7 and 3.10 for 
more general and precise statements).

For p ∈ (1,∞) we assume the following

•	 ��(t, u, v) − �(s, u, v)� ≤ w(�t − s�)‖u‖V‖v‖V, for all u, v ∈ V,

•	 ‖A(t) −A(s)‖L(V,V�) ≤ w(�t − s�),

such that

•	 ∫ 𝜏

0

w(t)

t
3
2

dt < ∞.

•	 For p ≠ 2 or p = 2 and D(B(0)
1

2 ) ↪ V, we assume 

•	 In the case p = 2 but D(B(0)
1

2 ) ↪̸ V, we assume 

(2)∫
𝜏

0

w(t)p

t
max{p,2}

2

dt < ∞.
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 for some 𝜀 > 0.

Here w ∶ [0, �] → [0,∞) is a non-decreasing function.
Let f ∈ Lp(0, �;H) and one of the following conditions holds 

1.	 for p ≥ 2 , u0 is in the real-interpolation space (V,D(A(0)))1− 1

p
,p and 

u1 ∈ (H,D(B(0)))1− 1

p
,p,

2.	 for p < 2, u0 ∈ V and u1 ∈ (H,D(B(0)))1− 1

p
,p.

Then (1) has maximal Lp-regularity in H. Assume in addition that D(B(t)
1

2 ) = V 
for all t ∈ [0, �] and w(t) ≤ Ct� for some 𝜀 > 0, then for all f ∈ L2(0, �;H) and 
u0, u1 ∈ V, we prove that the solution u ∈ H2(0, �;H) ∩ C1(0, �;V).

By induction, our approach allows to consider Cauchy problems of order N for 
any N ≥ 3.

By using similar ideas as in [5, 12], we give examples for which the maximal 
regularity fails.

We illustrate our abstract results by two applications in the final section. One of 
them concerns the Laplacian with time dependent Robin boundary conditions on a 
bounded Lipschitz domain Ω.

Notation We denote by L(E,F) (or L(E) ) the space of bounded linear operators 
from E to F (from E to E). The spaces Lp(a, b;E) and Wk,p(a, b;E) or Hk(a, b;E) if 
p = 2 denote respectively the Lebesgue and usual Sobolev spaces of order k of func-
tion on (a, b) with values in E. For u ∈ W1,p(a, b;E) we denote the first weak deriva-
tive by u′ and for u ∈ W2,p(a, b;E) the second derivative by u′′. Recall that the norms 
of H and V are denoted by ‖ ⋅ ‖ and ‖ ⋅ ‖V . The scalar product of H is (⋅, ⋅) and the 
duality V′–V is ⟨, ⟩. We denote by m! the factorial of m.

Finally, we denote by C, C′ or C0,C1, c,… all inessential constants. Their values 
may change from line to line.

2 � Maximal regularity for the damped wave equation in V′

In this section we prove maximal regularity in V′ for the Problem (1).
We start by recalling a well-known result for the first order non autonomous 

problem.
Following [6], we introduce the following definition

Definition 2.1  Let (�(t))t∈[0,�] be a family of V-bounded, sesquilinear forms. A func-
tion t → �(t) is called relatively continuous if for each t ∈ [0, �] and all 𝜀 > 0 there 
exists 𝛼 > 0, 𝛽 ≥ 0 such that for all u, v ∈ V, s ∈ [0, �]  and |t − s| ≤ � implies that

(3)∫
𝜏

0

w(t)2

t1+𝜀
dt < ∞,

��(t, u, v) − �(s, u, v)� ≤ (�‖u‖V + �‖u‖V� )‖v‖V.
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Theorem  2.2  Let (�(t))t∈[0,�] be a family of V-bounded, sesquilinear forms and 
p ∈ (1,∞).

We assume one of the following conditions

•	 for p = 2, t → �(t) is measurable,
•	 for p ≠ 2, t → �(t) is piecewise relatively continuous.

Then for all u1 ∈ (V�,V)1− 1

p
,p and f ∈ Lp(0, �;V�) there exists a unique solution 

v ∈ MRp(V,V�) = W1,p(0, �;V�) ∩ Lp(0, �;V) to the problem

In addition, there exists a positive constant C such that

Here, ‖v‖MRp(V,V�) ∶= ‖v‖W1,p(0,�;V�) + ‖v‖Lp(0,�;V).

Proof  For the case p = 2 the result is due to Lions [16]. Since B(s) + � is the genera-
tor of an analytic semigroup in V′ for all s ∈ [0, �], then for all u1 ∈ (V�,V)1− 1

p
,p and 

f ∈ Lp(0, �;V�), p ∈ (1,∞) there exists a unique solution v ∈ MRp(V,V�) to the 
autonomous problem

Now, we apply [6, Theorem 2.7] to get the desired result for p ≠ 2. 	�  ◻

From [3, Theorem III 4.10.2] we have the following lemma

Lemma 2.3  Let E1,E2 be two Banach spaces such that E2 ⊆ E1 . Then

We introduce the maximal regularity space

It is a Banach space for the norm

Let v ∈ MRp(V,V�) be the solution of (4) for a giving u1 ∈ (V�,V)1− 1

p
,p and 

f ∈ Lp(0, �;V�) . For u0 ∈ V and t ∈ [0, �] we set w(t) = u0 + ∫ t

0
v(s) ds. Then 

w�(t) = v(t) and

(4)
{

v�(t) + B(t)v(t) = f (t) t-a.e.

v(0) = u1.

‖v‖MRp(V,V�) ≤ C

�
‖u1‖(V�,V)

1−
1
p
,p

+ ‖f‖Lp(0,�;V�)

�
.

(5)
{

w�(t) + B(s)w(t) = f (t) t-a.e.

w(0) = u1.

W1,p(0, �;E1) ∩ Lp(0, �,E2) ↪ C([0, �];(E1,E2)1− 1

p
,p).

MRp(V,V,V�) ∶= W2,p(0, �;V�) ∩W1,p(0, �;V).

‖u‖MRp(V,V,V�) ∶= ‖u��‖Lp(0,�;V�) + ‖u‖W1,p(0,�;V).
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Moreover, we have the following estimate

We note also that the solution of the Problem (6) is unique. Indeed, we suppose 
there are two solutions w1,w2, then w = w1 − w2 ∈ MR2(V,V,V�) is a solution to the 
following problem

Therefore for t ∈ [0, �]

Recall that w� ∈ W1,2(0, �;V�) ∩ L2(0, �;V). Then by using [10, Theorem 2, p. 477] 
we obtain

The uniform quasi-coercivity of the forms (�(t))t∈[0,�] gives

We conclude by Gronwall’s lemma that w�(t) = 0 for all t ∈ [0, �], hence w(t) = 0 
and consequently w1(t) = w2(t) for all t ∈ [0, �].

Using Lemma 2.3 and the Sobolev embedding we have

We define the associated trace space to MRp(V,V,V�) by

endowed with norm

Note that 
�
TRp(V,V�), ‖ ⋅ ‖TRp(V,V�)

�
 is a Banach space.

(6)
{

w��(t) + B(t)w�(t) = f (t) t-a.e.

w(0) = u0, w�(0) = u1.

(7)‖w‖MRp(V,V,V�) ≤ C

�
‖u0‖V + ‖u1‖(V�,V)

1−
1
p
,p

+ ‖f‖Lp(0,�;V�)

�
.

(8)
{

w��(t) + B(t)w�(t) = 0 t-a.e.

w(0) = 0, w�(0) = 0.

2Re ∫
t

0

⟨w��(s),w�(s)⟩ds + 2Re ∫
t

0

⟨B(s)w�(s),w�(s)⟩ ds = 0.

2Re ∫
t

0

⟨w��(s),w�(s)⟩ ds = ∫
t

0

d

ds
‖w�(s)‖2 ds

= ‖w�(t)‖2 − ‖w�(0)‖2
= ‖w�(t)‖2.

‖w�(t)‖2 + 2� �
t

0

‖w�(s)‖2
V
ds ≤ 2� �

t

0

‖w�(s)‖2 ds.

(9)MRp(V,V,V�) ↪ C1([0, �];(V�,V)1− 1

p
,p) ∩ C

1−
1

p ([0, �];V).

TRp(V,V�) ∶= {(u(0), u�(0)) ∶ u ∈ MRp(V,V,V�)},

‖(u(0), u�(0))‖TRp(V,V�) ∶= inf{‖v‖MRp(V,V,V�) ∶ v(0) = u(0), v�(0) = u�(0)}.
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Proposition 2.4  For all p ∈ (1,∞) we have

Proof  The first injection TRp(V,V�) ↪ V × (V�,V)1− 1

p
,p is obtained by (9). For the 

second injection “ ↩ ” let us take u1 ∈ (V�,V)1− 1

p
,p. Then by [17, Corollary 1.14] there 

exists w ∈ MRp(V,V�) such that w(0) = u1. We set now u(t) = u0 + ∫ t

0
w(s)ds, where 

u0 ∈ V. Then u ∈ MRp(V,V,V�) and

We note that the trace space associated to MRp(V,V�) is isomorphic to the real inter-
polation space (V�,V)1− 1

p
,p (see [18, Chapter 1]). Then

Thus V × (V�,V)1− 1

p
,p ↪ TRp(V,V�). 	�  ◻

Remark 2.5  From the previous proposition and (9), we can deduce that the operator

is well defined and bounded.

Our main result on maximal Lp-regularity in V′ is the following.

Theorem 2.6  Let p ∈ (1,∞). We assume one of the following conditions

•	 for p = 2, t → �(t) is measurable.
•	 for p ≠ 2, t → �(t) is piecewise relatively continuous.

Let A(t) ∈ L(V,V�) for all t ∈ [0, �] such that ‖A(t)‖L(V,V�) ≤ h(t) for almost 
every t ∈ [0, �] and ∫ 𝜏

0
tph(t)p

dt

t
< ∞. Then for all f ∈ Lp(0, �;V�) and 

(u0, u1) ∈ TRp(V,V�), there exists a unique solution u ∈ MRp(V,V,V�) to the 
problem

Moreover, there exists a positive constant C independent of u0, u1 and f such that the 
following estimate holds

TRp(V,V�) = V × (V�,V)1− 1

p
,p with equivalent norms.

‖u‖MRp(V,V,V�) ≤ C�
�
‖u0‖V + ‖w‖MRp(V,V�)

�
.

inf{‖u‖MRp(V,V,V�) ∶ u(0) = u0, u
�(0) = u1}

≤ C�
�
‖u0‖V + inf{‖w‖MRp(V,V�) ∶ w(0) = u1}

�

≤ C

�
‖u0‖V + ‖u1‖(V�,V)

1−
1
p
,p

�
.

MRp(V,V,V�) → C([0, �];TRp(V,V�))

u → (u, u�)

(10)
{

u��(t) + B(t)u�(t) +A(t)u(t) = f (t) t-a.e.

u(0) = u0, u�(0) = u1.
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As mentioned in the introduction, this theorem was proved by Batty, Chill 
and Srivastava [9] but they consider only the case u0 = u1 = 0 and suppose that 
t → ‖A(t)‖L(V,V�) ∈ Lp(0, �).

Proof  We introduce the subspace

We equip this subspace with the norm u → ‖u��‖Lp(0,�;V�) + ‖u�‖Lp(0,�;V). To prove 
existence and uniqueness of the solution we use the contraction fixed point theo-
rem and the existence of a solution in MR

p

0
(V,V,V�) for Problem (6). Indeed, let 

z ∈ MR
p

0
(V,V,V�) and v ∈ MR

p

0
(V,V,V�) be the solution of the problem

for a given g ∈ Lp(0, �;V�).

We consider the operator F ∶ z → v. It follows by (7) that 
F ∶ MR

p

0
(V,V,V�) → MR

p

0
(V,V,V�) is a bounded operator. Now, let 

z1, z2 ∈ MR
p

0
(V,V,V�) and v1 = Fz1, v2 = Fz2. We set v = v1 − v2,w = z1 − z2. Obvi-

ously, v satisfies

Therefore, by (7) we have

We choose � small enough such that C ∫ 𝜏

0
h(t)ptp−1dt < 1. Thus, F is a contraction 

on the Banach space MR
p

0
(V,V,V�) . So by the contraction fixed point theorem, there 

exists a unique solution to the problem

for all g ∈ Lp(0, �;V�) and 𝜏 > 0 small enough. In addition, we have from (7)

(11)‖u‖MRp(V,V,V�) ≤ C

�
‖(u0, u1)‖TRp(V,V�) + ‖g‖Lp(0,�;V�)

�
.

MR
p

0
(V,V,V�) ∶= {u ∈ MRp(V,V,V�) ∶ u(0) = 0, u�(0) = 0}.

(12)
{

v��(t) + B(t)v�(t) = g(t) −A(t)z(t) t-a.e.

v(0) = 0, v�(0) = 0

(13)
{

v��(t) + B(t)v�(t) = −A(t)w(t) t-a.e.

v(0) = 0, v�(0) = 0.

‖Fz1 − Fz2‖pMR
p

0
(V,V,V�)

≤ C‖A(.)w‖p
Lp(0,�;V�)

≤ C �
�

0

h(t)p‖w(t)‖p
V
dt

≤ C �
�

0

h(t)ptp−1 dt‖w‖p
C
1−

1
p ([0,�];V)

≤ C �
�

0

h(t)ptp−1 dt‖z1 − z2‖pMR
p

0
(V,V,V�)

.

(14)
{

v��(t) + B(t)v�(t) +A(t)v(t) = g(t) t-a.e.

v(0) = 0, v�(0) = 0
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Now, let u0, u1 ∈ V × (V�,V)1− 1

p
,p. Since by Proposition  2.4, 

TRp(V,V�) = V × (V�,V)1− 1

p
,p, then there exists z ∈ MRp(V,V,V�) (with minimal 

norm) such that z(0) = u0 and z�(0) = u1. We set now u = z + v. Thus, u belongs to 
MRp(V,V,V�) and satisfies

with f = g + z�� + B(.)z� +A(.)z ∈ Lp(0, �;V�).

Therefore

This proves the desired a priori estimate and completes the proof when � is suffi-
ciently small. We note that by Remark 2.5, (u, u�) ∈ C([0, �];TRp(V,V�)). For arbi-
trary 𝜏 > 0 , we split [0, �] into a finite number of subintervals with small sizes and 
proceed exactly as in the previous proof. Finally, we stick the solutions to get the 
desired result. 	�  ◻

3 � Maximal regularity for the damped wave equation in H

Let A(t) and B(t) be as before. In this section we assume moreover that 
‖A(t)‖L(V,V�) ≤ M, for all t ∈ [0, �].

Let us define the spaces

endowed with norms

‖v‖MRp(V,V,V�) ≤ C‖g‖Lp(0,�;V�).

(15)
{

u��(t) + B(t)u�(t) +A(t)u(t) = f (t) t-a.e.

u(0) = u0, u�(0) = u1,

‖u‖MRp(V,V,V�) ≤ C

�
‖v‖MRp(V,V,V�) + ‖z‖MRp(V,V,V�)

�

≤ C�
�
‖g‖Lp(0,�;V�) + ‖(u0, u1)‖TRp(V,V�)

�

≤ c

�
‖f‖Lp(0,�;V�) + ‖(u0, u1)‖TRp(V,V�)

�
.

MR(p,H) ∶= {u ∈ W2,p(0, �;H) ∩W1,p(0, �;V) ∶ B(.)u� +A(.)u ∈ Lp(0, �;H)}.

Tr(p,H) ∶= {(u(0), u�(0)) ∶ u ∈ MR(p,H)},

‖u‖MR(p,H) ∶= ‖u��‖Lp(0,�;H) + ‖u‖W1,p(0,�;V)

+ ‖B(.)u�(.) +A(.)u(.)‖Lp(0,�;H).

‖(u(0), u�(0))‖Tr(p,H) ∶= inf{‖v‖MR(p,H) ∶

v ∈ MR(p,H), v(0) = u(0), v�(0) = u�(0)}.
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Maximal Lp-regularity in H for Problem (10) consists of proving exist-
ence and uniqueness of a solution u ∈ MR(p,H) provided f ∈ Lp(0, �;H) and 
(u0, u1) ∈ Tr(p,H).

3.1 � Preparatory lemmas

In this subsection we prove several estimates and most of the main arguments which 
will play an important role in proofs of our main results.

Proposition 3.1  Maximal Lp-regularity in H for the problem

is equivalent to maximal Lp-regularity for the problem

for all � ∈ ℂ.

Proof  Let v be the solution of (16) and � ∈ ℂ. We set u(t) = e−�tv(t). By a simple 
computation we obtain that u satisfies (17). In addition, f ∈ Lp(0, �;H) if and only 
if t → e−�tf (t) ∈ Lp(0, �;H) and it is clear that v ∈ W2,p(0, �;H) ∩W1,p(0, �;V) if and 
only if u ∈ W2,p(0, �;H) ∩W1,p(0, �;V) . 	�  ◻

We deduce that we may replace B(t) by B(t) + � . Therefore, we may suppose 
without loss of generality that [H3] holds with � = 0. In particular, we may suppose 
that B(t) and B(t) are invertible. We will do so in the sequel without mentioning it.

We note that for 𝛾 > 0 big enough ( 𝛾 > max{
M

𝛿
, 𝜈} ) and t ∈ [0, �], we have that 

C(t) = A(t) + �B(t) + �2I is associated with a V-bounded coercive form �(t) (i.e., it 
satisfies [H3] with � = 0 ). In fact, let u ∈ V. We get

We denote by S� the open sector S𝜃 = {z ∈ ℂ∗ ∶ |arg(z)| < 𝜃} with vertex 0.

Lemma 3.2  For any t ∈ [0, �], the operators −B(t) and −B(t) generate strongly con-
tinuous analytic semigroups of angle � =

�

2
− arctan(

M

�
) on H and V′, respectively. 

In addition, there exist constants C and C� , independent of t,  such that

(16)
{

v��(t) + B(t)v�(t) +A(t)v(t) = f (t) t-a.e.

v(0) = u0, v�(0) = u1 + �u0

(17)

{
u��(t) +

(
B(t) + 2�

)
I)u�(t) +

(
A(t) + �B(t) + �2I

)
u(t) = e−�tf (t) t-a.e.

u(0) = u0, u�(0) = u1

Re �(t, u, u) = Re ⟨A(t)u, u⟩ + �Re �(t, u, u) + �2‖u‖2
≥ −‖A(t)‖L(V,V�)‖u‖2V + ��‖u‖2

V
+ (�2 − ��)‖u‖2

= −M‖u‖2
V
+ ��‖u‖2

V
+ (�2 − ��)‖u‖2

≥ (�� −M)‖u‖2
V
.
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1.	 ‖e−zB(t)‖L(H) ≤ 1 and ‖e−zB(t)‖L(V�) ≤ C for all z ∈ S� .

2.	 ‖B(t)e−sB(t)‖L(H) ≤ C

s
 and ‖B(t)e−sB(t)‖L(V�) ≤ C

s
 for all s ∈ ℝ.

3.	 ‖e−sB(t)‖L(H,V) ≤ C√
s
.

4.	 ‖(zI − B(t))−1‖L(H,V) ≤ C�√
1+�z� and ‖(zI − B(t))−1‖L(V�,H) ≤ C�√

1+�z� for all z ∉ S� with 
fixed 𝜃 > 𝛾 .

5.	 ‖(zI − B(t))−1‖L((H,V)�,p;V)
≤ C�,�

(1+�z�) 1+�2
 for all � ∈ [0, 1], z ∉ S� and p ∈ (1,∞).

6.	 All the previous estimates hold for B(t) + � with constants independent of � for 
𝛼 > 0.

Proof  For assertions 1–3 and 4, 6 we refer to [14, Proposition 2.1]. For assertion 5, 
observe that ‖(zI − B(t))−1‖L(H,V) ≤ C�√

1+�z�    and ‖(zI − B(t))−1‖L(V) ≤ C�

1+�z� (see e.g. 
[7, p.  3]) for all z ∉ S� with fixed 𝜃 > 𝛾 . Then the claim follows immediately by 
interpolation. 	�  ◻

For p ∈ (1,∞) and f ∈ Lp(0, �;H) and for almost every t ∈ [0, �] we define the 
operator L by

The following result is Lemmas 2.5 and 2.6 in [14].

Lemma 3.3  Let p ∈ (1,∞). Suppose that ‖B(t) − B(s)‖L(V,V�) ≤ w(�t − s�), where 
w ∶ [0, �] → [0,∞) is a non-decreasing function such that

Then the operator L is bounded on Lp(0, �;H).

Let p ∈ (1,∞). We introduce the following assumptions

•	 for p ≠ 2 ∶ t → �(t) is relatively continuous and for p = 2 ∶ t → �(t) is measur-
able.

•	 ��(t, u, v) − �(s, u, v)� ≤ w(�t − s�)‖u‖V‖v‖V for all u, v ∈ V.

•	 ‖A(t) −A(s)‖L(V,V�) ≤ w(�t − s�),

where w ∶ [0, �] → [0,∞) is a non-decreasing function such that

We assume in addition that

•	 For p ≠ 2 (or p = 2 with D(B(0)
1

2 ) ↪ V ) 

L(f )(t) ∶= B(t)∫
t

0

e−(t−s)B(t)f (s) ds.

∫
𝜏

0

w(t)

t
dt < ∞.

(18)∫
𝜏

0

w(t)

t
3

2

dt < ∞.
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•	 In the case where p = 2, but D(B(0)
1

2 ) ↪̸ V

 for arbitrary small 𝜀 > 0.

Let 𝛾 > 0 be sufficiently large such that C(t) = A(t) + �B(t) + �2I is associated 
with a V-bounded coercive form �(t). We denote by C(t) the part of C(t) on H.

It is clear that ��(t, u, v) − �(s, u, v)� ≤ (1 + �)w(�t − s�)‖u‖V‖v‖V for all u, v ∈ V.

In the following we set B = B(0), B = B(0).

Next we define the operator B−
1

2 ∈ L(V�) by

see [4, (3.52)] or [21, (Sec. 2.6 p. 69)]. Then (B−
1

2 )2 = B
−1. Moreover, B−

1

2 is injec-
tive. One defines B

1

2 by D(B
1

2 ) = R(B
−

1

2 ) and B
1

2 = (B
−

1

2 )−1, where R(B−
1

2 ) is the 
range of B−

1

2 . Then −B
1

2 is a closed operator on V′ (in fact, the generator of a ana-
lytic semigroup). We have B−

1

2 x = B
−

1

2 x for all x ∈ H and B−
1

2 is injective and 
D(B

1

2 ) = R(B
−

1

2 ), B
1

2 = (B
−

1

2 )−1. It can happen that R(B−
1

2 ) ≠ V. The following is 
easy to see using that (B−

1

2 )2 = B
−1 is an isomorphism from V′ onto V. For more 

details and references, see [20, Chapter 8].

Lemma 3.4  We claim that

(1)	 V ↪ D(B
1

2 ) if and only if D(B∗
1

2 ) ↪ V.

(2)	 If B = B∗, we have D(B
1

2 ) = D(B
∗
1

2 ) = V and

(3)	 D(B�) = [H,V]2� for all 0 ≤ 𝛼 <
1

2
.

(4)	 D(B1−�) ↪ V for all 0 ≤ 𝛼 <
1

2
.

Proof  Let u ∈ D(B∗). If V ↪ D(B
1

2 ) we have

Then by the density of D(B∗) in D(B∗
1

2 ) we obtain

(19)∫
𝜏

0

w(t)p

t
max{p,2}

2

dt < ∞.

(20)∫
𝜏

0

w(t)2

t1+𝜀
dt < ∞,

B
−

1

2 x ∶=
1

� ∫
∞

0

�
−

1

2 (� + B)−1x d� (x ∈ V
�),

√
�‖u‖V ≤ ‖B 1

2 u‖ ≤ √
M‖u‖V.

‖u‖2
V
≤ 1

�
Re (B

1

2 u,B∗
1

2 u)

≤ 1

�
‖B 1

2 u‖‖B∗
1

2 u‖
≤ C‖u‖V‖B∗

1

2 u‖.
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for all u ∈ D(B
∗
1

2 ). Then D(B∗
1

2 ) ↪ V.

Now, we assume that D(B∗
1

2 ) ↪ V. It follows that B∗−
1

2 ∈ L(H,V).

Let x ∈ H and write B∗
1

2 x = B
∗B

∗−
1

2 x . We obtain

The boundedness of norm implies B∗
1

2 ∈ L(H,V�) and by duality we have 
B

1

2 ∈ L(V,H). Then V ⊆ D(B
1

2 ) and we get for all x ∈ V

Thus, V ↪ D(B
1

2 ). This shows (1).
We assume now that B = B∗. Because of the density of D(B) in V and D(B

1

2 ), we 
get for all u ∈ V

This shows (2).
For (3), we refer to [15, Theorem 3.1].
Let 0 ≤ 𝛼 <

1

2
 and u ∈ D(B). We have

where C(𝛼) > 0 depending on �. Thus, for all u ∈ D(B1−�)

This shows (4). 	�  ◻

Next we set Xp = V for all p ∈ (1, 2[ and Xp = (V,D(C(0)))1− 1

p
,p for p ≥ 2.

Lemma 3.5  Let u1 ∈ (H,D(B(0)))1− 1

p
,p and u0 ∈ Xp, then the operators

‖u‖V ≤ C‖B∗
1

2 u‖

‖B∗
1

2 x‖V� ≤ ‖B∗‖L(V,V�)‖B∗−
1

2 x‖V ≤ M‖B∗−
1

2 ‖L(H,V)‖x‖.

‖x‖2
D(B

1
2 )

= ‖x‖2 + ‖B 1

2 x‖2
H

≤ (C2
H
+ ‖B 1

2 ‖2
L(V,H)

)‖x‖2
V
.

�‖u‖2
V
≤ Re �(0, u, u)

= ‖B 1

2 u‖2
≤ M‖u‖2

V
.

‖u‖2
V
≤ 1

�
‖B1−�u‖‖B∗�u‖

≤ 1

�
‖B1−�u‖‖u‖[H,V]2�

≤ C(�)

�
‖B1−�u‖‖u‖2�

V
‖u‖1−2� ,

‖u‖V ≤ C1−2�
H

C(�)

�
‖B1−�u‖.
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are bounded from (H,D(B(0)))1− 1

p
,p and Xp into Lp(0, �;H), respectively.

Remark 3.6  We note that the operator R1 is already studied in [1, Theorem 2.2]. Here 
we assume less regularity on the operators B(t) with respect to t compared with [1, 
Theorem 2.2].

Proof  Firstly, we note that in the case p < 2 we have (H,D(B(0)))1− 1

p
,p = (H,V)2(1− 1

p
),p 

(see [13, (p. 5)]). Then by Lemma 3.2

In the case p > 2, the embedding (H,D(B(0)))1− 1

p
,p ↪ V holds. In fact, we use the 

inclusion properties of the real interpolation spaces [17, Proposition 1.1.4] to obtain

with 𝜀 <
1

2
−

1

p
.

The embedding D(B(0)1−(
1

p
+�)

) ↪ V (see Proposition 3.4) gives

We consider now the case D(B(0)
1

2 ) ↪ V. One has

For the other case ( D(B(0)
1

2 ) ↪̸ V ), since D(B(0)
1+�

2 ) ↪ V for all 𝜀 > 0 (see Proposi-
tion 3.4) then

R1u1(t) = B(t)e−tB(t)u1

R2u0(t) = e−tB(t)C(t)u0

‖(�I − B(0))−1‖L((H,D(B(0)))
1−

1
p
,p
;V) ≤ C

��� 3

2
−

1

p

.

(H,D(B(0)))1− 1

p
,p = (H,D(B(0))) 1

2
+[

1

2
−

1

p
],p

↪ (H,D(B(0))) 1

2
+[

1

2
−

1

p
]−�,2

= D(B(0)
1−(

1

p
+�)

),

‖(�I − B(0))−1‖L((H,D(B(0)))
1−

1
p
,p
;V) ≤ C

��� .

‖(�I − B(0))−1u1‖V
≤ C0‖(�I − B(0))−1u1‖D(B(0) 12 )
≤ C1‖B(0)−

1

2 ‖
L(H,D(B(0)

1
2 ))
‖(�I − B(0))−1B(0)

1

2 u1‖
≤ C

1

���‖u1‖D(B(0) 12 ).
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We write

Choose a contour Γ in the positive half-plane and write by the holomorphic func-
tional calculus for the sectorial operators B(t), B(0)

Therefore

Then

•	 for p ≠ 2 or p = 2 with D(B(0)
1

2 ) ↪ V, we have 

•	 for p = 2 and D(B(0)
1

2 ) ↪̸ V, we get 

On the other hand, since B(0) is invertible, it is well-known that 
t → B(0)e−tB(0)u1 ∈ Lp(0, �;H) if and only if u1 ∈ (H,D(B(0)))1− 1

p
,p (see e.g. [17, 

Proposition 5.1.1]) and we have

Then

‖(�I − B(0))−1u1‖V
≤ C1‖B(0)−

1+�

2 ‖
L(H,D(B(0)

1+�
2 ))

‖B(0) �

2 (�I − B(0))−1B(0)
1

2 u1‖
≤ C

1

���1− �

2

‖u1‖D(B(0) 12 ).

R1u1(t) =

(
B(t)e−tB(t) − B(0)e−tB(0)

)
u1 + B(0)e−tB(0)u1.

B(t)e−tB(t) − B(0)e−tB(0) =
1

2�i ∫Γ

�e−t�(�I − B(t))−1
(
B(t) − B(0)

)
(�I − B(0))−1 d�.

‖B(t)e−tB(t)u1 − B(0)e−tB(0)u1‖
≤ C �

∞

0

���e−t� cos �����‖(�I − B(0))−1‖L((H,D(B(0)))
1−

1
p
,p
;V)

× ‖(�I − B(t))−1‖L(V�;H) d���‖B(t) − B(0)‖L(V,V�)

× ‖u1‖(H,D(B(0)))
1−

1
p
,p

.

‖(B(t)e−tB(t) − B(0)e−tB(0))u1‖ ≤ C
w(t)

t
max (

1

2
,
1

p
)
‖u1‖(H,D(B(0)))

1−
1
p
,p

.

‖(B(t)e−tB(t) − B(0)e−tB(0))u1‖ ≤ C
w(t)

t
1

2
+�
‖u1‖D(B(0) 12 ).

�
∞

0

‖B(0)e−tB(0) − B(0)u1‖pdt ≤ ‖u1‖p(H,D(B(0)))
1−

1
p
,p

.
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•	 for p ≠ 2 (or p = 2 with D(B(0)
1

2 ) ↪ V ), we have 

•	 if p = 2 and D(B(0)
1

2 ) ↪̸ V, we have 

This proves that R1 is bounded from (H,D(B(0)))1− 1

p
,p into Lp(0, �;H).

Now, we consider the operator R2 with p < 2. Clearly

Therefore ‖R2u0‖Lp(0,�;H) ≤ C‖u0‖V.
Now for p ≥ 2, we write

For i = 1 or i = 2, we have the following estimate

Then

We note that

Therefore

‖R1u1‖Lp(0,𝜏;H) ≤ C

��
�

𝜏

0

w(t)p

t
max (

p

2
,1)
dt

� 1

p

+ 1
�
‖u1‖(H,D(B(0)))

1−
1
p
,p

< ∞.

‖R1u1‖L2(0,�;H) ≤ C

��
�

�

0

w(t)2

t1+�
dt

� 1

2

+ 1
�
‖u1‖D(B(0) 12 ).

‖e−tB(t)C(t)u0‖ ≤ ‖e−tB(t)‖L(V�,H)‖C(t)u0‖V�

≤ C√
t
‖u0‖V.

R2u0(t) = B(t)e−tB(t)B(t)−1C(t)u0

= B(t)e−tB(t)B(t)−1(C(t) − C(0))u0

+ B(t)e−tB(t)(B(t)−1 − B(0)−1)C(0)u0

+ B(t)e−tB(t)B(0)−1C(0)u0

∶= I1(t) + I2(t) + I3(t).

‖Ii(t)‖ ≤ Cw(t)‖e−tB(t)‖L(V�,H)‖u0‖V
≤ C�w(t)√

t
‖u0‖V.

‖Ii‖Lp(0,�;H) ≤ C�
�
�

�

0

w(t)p

t
p

2

dt

� 1

p ‖u0‖V.

C(0) ∶

{
D(C(0)) → H

V → V
�.

D(C(0) ∣(V�,H)�,p
) = (V,D(C(0)))�,p,
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where C(0) ∣(V�,H)�,p
 is the part of C(0) on (V�,H)�,p.

Thus,

Observing that for t ∈ [0, �], I3(t) = R1B(0)
−1C(0)u0(t). Using the first part of the 

proposition, we obtain

This shows that t → R2u0(t) ∈ Lp(0, �;H) and then the lemma is proved. 	�  ◻

3.2 � The main result

Our aim in this subsection is to prove maximal Lp-regularity in H for the second 
order Cauchy problem (16).

Our main result is the following.

Theorem  3.7  For all f ∈ Lp(0, �;H) and u1 ∈ (H,D(B(0)))1− 1

p
,p, u0 ∈ Xp, with 

p ∈ (1,∞), there exists a unique solution v ∈ MR(p,H) to the problem

In addition, there exists a positive constant C such that

Proof  Let f ∈ Lp(0, �;H) and (u0, u1) ∈ (Xp × (H,D(B(0)))1− 1

p
,p) ⊆ 

(V × (V�,V)1− 1

p
,p). Recall that by Theorem  2.6 there exists a unique 

v ∈ W2,p(0, �;V�) ∩W1,p(0, �;V) solution to Problem (21). Then by Proposition 3.1, 
there exists a unique u ∈ W2,p(0, �;V�) ∩W1,p(0, �;V) solution to Problem (17).

For simplicity of notation, we write B(t) instead of B(t) + � .

Fix 0 ≤ t ≤ �. We get from the equation in (17)

Here g(s) = e−�sf (s) for almost every s ∈ [0, �].

B(0)−1C(0) ∈ L

(
(V,D(C(0)))1− 1

p
,p;(V,D(B(0))1− 1

p
,p)

)
.

‖I3‖Lp(0,�;H) ≤ C1‖B(0)−1C(0)u0‖(H,D(C(0)))
1−

1
p
,p

≤ C‖u0‖(V,D(C(0)))
1−

1
p
,p

.

(21)
{

v��(t) + B(t)v�(t) +A(t)v(t) = f (t) t-a.e.

v(0) = u0, v�(0) = u1 + �u0.

‖v‖MR(p,H) ≤ C

�
‖u1‖(H,D(B(0)))

1−
1
p
,p

+ ‖u0‖Xp + ‖f‖Lp(0,�;H)

�
.

(22)
B(t)∫

t

0

e−(t−s)B(t)u��(s) ds + B(t)∫
t

0

e−(t−s)B(t)B(s)u�(s) ds

+ B(t)∫
t

0

e−(t−s)B(t)C(s)u(s) ds = B(t)∫
t

0

e−(t−s)B(t)g(s) ds.
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Hence,

Integrating by parts, we obtain

and

Combining (24) with (25) and (23), we have

Therefore

(23)

B(t)∫
t

0

e−(t−s)B(t)u��(s) ds + B(t)∫
t

0

e−(t−s)B(t)B(s)u�(s) ds

+ B(t)∫
t

0

e−(t−s)B(t)
(
C(s) − C(t)

)
u(s) ds

+ B(t)∫
t

0

e−(t−s)B(t)C(t)u(s) ds

= B(t)∫
t

0

e−(t−s)B(t)g(s) ds.

(24)
B(t)∫

t

0

e−(t−s)B(t)u��(s) ds = B(t)u�(t) − B(t)e−tB(t)u�(0)

− B(t)∫
t

0

e−(t−s)B(t)B(t)u�(s) ds

(25)
B(t)∫

t

0

e−(t−s)B(t)C(t)u(s) ds = C(t)u(t) − e−tB(t)C(t)u(0)

− ∫
t

0

e−(t−s)B(t)C(t)u�(s) ds.

(26)

B(t)u�(t) − B(t)e−tB(t)u1 − B(t)∫
t

0

e−(t−s)B(t)
(
B(t) − B(s)

)
u�(s) ds

+ B(t)∫
t

0

e−(t−s)B(t)
(
C(s) − C(t)

)
u(s) ds

+ C(t)u(t) − e−tB(t)C(t)u0 − ∫
t

0

e−(t−s)B(t)C(t)u�(s) ds

= B(t)∫
t

0

e−(t−s)B(t)g(s) ds.
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This allows us to write

where for almost every t ∈ [0, �]

Then, if I − Q is invertible on Lp(0, �;H) we obtain

here R1 and R2 are as in Proposition 3.5, L as in Proposition 3.3 and

Now, we prove the boundedness of Q,W1,W1, L1 on Lp(0, �;H) for p ∈ (1,∞). Let 
h ∈ Lp(0, �;H). We have

B(t)u�(t) + C(t)u(t) = B(t)e−tB(t)u1 + e−tB(t)C(t)u0

+ B(t)∫
t

0

e−(t−s)B(t)(B(t) − B(s))B(s)−1(B(s)u�(s) + C(s)u(s)) ds

− B(t)∫
t

0

e−(t−s)B(t)(B(t) − B(s))B(s)−1C(s)u(s) ds + ∫
t

0

e−(t−s)B(t)C(t)u�(s) ds

+ B(t)∫
t

0

e−(t−s)B(t)(C(t) − C(s))u(s) ds

+ B(t)∫
t

0

e−(t−s)B(t)g(s) ds.

(27)

(I − Q)(B(.)u� + C(.)u)(t)

= B(t)e−tB(t)u1 + e−tB(t)C(t)u0

− B(t)∫
t

0

e−(t−s)B(t)
(
B(t) − B(s)

)
B(s)−1C(s)u(s) ds

+ B(t)∫
t

0

e−(t−s)B(t)
(
C(t) − C(s)

)
u(s) ds + ∫

t

0

e−(t−s)B(t)C(s)u�(s) ds

+ B(t)∫
t

0

e−(t−s)B(t)g(s) ds,

(Qh)(t) ∶= B(t)∫
t

0

e−(t−s)B(t)(B(t) − B(s))B(s)−1h(s) ds.

(28)
B(t)u�(t) + C(t)u(t)

= (I − Q)−1
[
R1u1 + R2u0 +W1(u) + L(f ) + L2(u) +W2(u)

]
(t),

W1(u)(t) ∶= −B(t)∫
t

0

e−(t−s)B(t)(B(t) − B(s))B(s)−1(C(s)u(s)) ds,

W2(u)(t) ∶= B(t)∫
t

0

e−(t−s)B(t)(C(t) − C(s))u(s) ds,

L2u(t) ∶= ∫
t

0

e−(t−s)B(t)C(t)u�(s) ds.
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Now, once we replace B(s) by � + B(s), (29) is valid with a constant independent of 
𝛼 > 0 by Proposition 3.1). using the estimate

in (29) for � + B(s), we see that

Therefore, by using Young’s inequality we obtain

Using the assumption on w and taking � large enough makes Q strictly contractive, 
so that (I − Q)−1 is bounded on Lp(0, �;H) by the Neumann series.

For Wi, with i = 1, 2 we have

The Sobolev embedding gives

The following estimate holds for L2

As a result, we obtain from (28), (11) and the previous estimates

(29)

‖(Qh)(t)‖ ≤ �
t

0

‖B(t)e− (t−s)

2
B(t)‖L(H)‖e−

(t−s)

2
B(t)‖L(V�,H)

× ‖B(s) − B(t)‖L(V,V�)‖B(s)−1‖L(H,V)‖h(s)‖ ds
≤ C �

t

0

w(t − s)

(t − s)
3

2

‖B(s)−1‖L(H,V)‖h(s)‖ ds.

‖(�I + B(s))−1‖L(H,V) ≤ c√
�

‖(Qh)(t)‖ ≤ C�
−

1

2 �
t

0

w(t − s)

(t − s)
3

2

‖h(s)‖ ds.

‖Q‖L(Lp(0,�;H)) ≤ C�
−

1

2 �
�

0

w(s)

s
3

2

ds.

‖Wi(u)‖Lp(0,�;H) ≤ C1 �
�

0

w(s)

s
3

2

ds ‖u‖L∞(0,�;V).

‖Wi(u)‖Lp(0,�;H) ≤ C �
�

0

w(s)

s
3

2

ds ‖u‖W1,p(0,�;V).

‖L2u‖Lp(0,�;H) ≤ C2

√
�‖u�‖Lp(0,�;V).

‖C(.)u + B(.)u�‖Lp(0,�;H)

≤ C

�
‖u‖W1,p(0,�;V) + ‖g‖Lp(0,�;H)

+ ‖u1‖(H,D(B(0)))
1−

1
p
,p

+ ‖u0‖Xp )

≤ C1

�
‖f‖Lp(0,�;H) + ‖u1‖(H,D(B(0)))

1−
1
p
,p

+ ‖u0‖Xp

�
.
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Then u�� = g − C(.)u − B(.)u� ∈ Lp(0, �;H) and consequently u ∈ MR(p,H) which 
implies that the Problems (17) and (21) have maximal Lp-regularity in H. This fin-
ishes the proof of the theorem. 	�  ◻

Following [2, Definition 3.4], we introduce the following definition

Definition 3.8  We say that (B(t))t∈[0,�] satisfies the uniform Kato square root prop-
erty if D(B(t)

1

2 ) = V for all t ∈ [0, �] and there are c1, c1 > 0 such that for all v ∈ V

The uniform Kato square root property is obviously satisfied for symmetric 
forms (see Lemma 3.4(2)). It is also satisfied for uniformly elliptic operators (not 
necessarily symmetric)

on L2(ℝd) since ‖∇u‖2 is equivalent to ‖B(t) 1

2 u‖2 with constants depending only on 
the dimension and the ellipticity constants, see [8].

From [1, Lemma 4.1] we have the following lemma

Lemma 3.9  Suppose (30). Then for all f ∈ L2(0, �;H), 0 ≤ s ≤ t ≤ �,

In the next result we prove maximal L2-regularity where we improve the 
assumption on u0 and prove that the solution belongs to C1([0, �],V). More 
precisely

Theorem 3.10  We assume the uniform Kato property (30) and the following two 
conditions that for all s, t ∈ [0, �]

1.	 ��(t, u, v) − �(s, u, v)� ≤ w(�t − s�)‖u‖V‖v‖V, with w ∶ [0, �] → [0,∞) is a non-
decreasing function such that

for an arbitrary 𝜀 > 0.

2.	 ‖A(t) −A(s)‖L(V,V�) ≤ w0(�t − s�), with w0 ∶ [0, �] → [0,∞) is a non-decreasing 
function continuous at 0 and satisfies

(30)c1‖v‖V ≤ ‖B(t) 1

2 v‖ ≤ c1‖v‖V.

B(t) = −

d∑
k,l=1

�k(akl(t, x)�l)

‖�
t

s

e−(t−r)B(t)f (r)dr‖V ≤ C‖f‖L2(s,t;H).

(31)�
𝜏

0

w(t)

t
3

2

dt < ∞, w(t) ≤ ct𝜀,

(32)∫
𝜏

0

w0(t)

t
3

2

dt < ∞, ∫
𝜏

0

w2
0
(t)

t
dt < ∞.
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Then for all f ∈ L2(0, �;H) and (u0, u1) ∈ V × V, there exists a unique u ∈ MR(2,H) 
be the solution to the Problem (21). Moreover, u ∈ C1([0, �];V).

Remark 3.11  We note that if w(t) ≤ Ct
1

2
+� and w0(t) ≤ C�t

1

2
+� for some 𝜀 > 0, then 

the assumptions (31), (32) are satisfied.

Proof  Firstly, we set w1(t) = w0(t) + �w(t). It is clear that 
��(t, u, v) − �(s, u, v)� ≤ w1(�t − s�)‖u‖V‖v‖V and w1 satisfies the same conditions 
with w0.

From (27) we have

such that

To prove maximal L2-regularity we follow the same proof as in Theorem 3.7. The 
main difference is to prove that t → R2u0(t) = e−tB(t)C(t)u0 ∈ L2(0, �;H).

Observing that

For the first term in the RHS of (33), we have

We write

(I − Q)

(
B(.)u� + C(.)u

)
(t) = B(t)e−tB(t)u1 + e−tB(t)C(t)u0

− B(t)∫
t

0

e−(t−s)B(t)
(
B(t) − B(s)

)
B(s)−1C(s)u(s) ds

+ B(t)∫
t

0

e−(t−s)B(t)
(
C(s) − C(t)

)
u(s) ds

+ ∫
t

0

e−(t−s)B(t)C(t)u�(s) ds

+ B(t)∫
t

0

e−(t−s)B(t)g(s) ds,

(Qh)(t) = B(t)∫
t

0

e−(t−s)B(t)(B(t) − B(s))B(s)−1h(s) ds, t ∈ (0, �).

(33)
R2u0(t) = e−tB(t)C(t)u0

= e−tB(t)(C(t) − C(0))u0 + e−tB(t)C(0)u0.

�
�

0

‖e−tB(t)(C(t) − C(0))u0‖2 dt

≤ �
�

0

‖e−tB(t)‖2
L(V�,H)

‖C(t) − C(0)‖2
L(V,V�)

‖u0‖2V dt

≤ C �
�

0

w1(t)
2

t
dt ‖u0‖2V.

e−tB(t)C(0)u0 = e−tB(t)C(0)u0 − e−tB(0)C(0)u0 + e−tB(0)C(0)u0.
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The functional calculus for the sectorial operators B(t), B(0) gives

Clearly,

We note that by [2, Lemma 3.5] we have the quadratic estimate, namely

for all x ∈ H.

Hence,

Since D(B(0)
1

2 ) = V, we have D(B(0)
1

2 ) = H and B(0)−
1

2 ∈ L(V�,H) (see 
Lemma 3.4).

Therefore

Then ‖R2u0‖L2(0,�;H) ≤ C‖u0‖V and maximal L2-regularity holds in H. Thus, 
u ∈ MR(2,H).

We proceed to show that u� ∈ L∞(0, �;V).

Fix 0 ≤ t ≤ � and use (26), we obtain

Now, we define the operator K in L∞(0, �;V) by

‖e−tB(t)C(0)u0 − e−tB(0)C(0)u0‖ ≤ c
w(t)

t
1

2

‖u0‖V.

e−tB(0)C(0)u0 = B(0)
1

2 e−tB(0)B(0)−
1

2 C(0)u0.

(34)�
�

0

‖B(0) 1

2 e−tB(0)x‖2dt ≤ c‖x‖2

�
�

0

‖e−tB(0)C(0)u0‖2dt

= �
�

0

‖B(0) 1

2 e−tB(0)B(0)−
1

2 C(0)u0‖2dt

≤ c‖B(0)− 1

2 C(0)u0‖2.

�
�

0

‖e−tB(0)C(0)u0‖2 dt ≤ C‖u0‖2V.

(35)

u�(t) = −B(t)−1C(t)u(t) + e−tB(t)B(t)−1C(t)u0

+ e−tB(t)u1 + ∫
t

0

e−(t−s)B(t)(B(t) − B(s))u�(s) ds

+ ∫
t

0

e−(t−s)B(t)(C(t) − C(s))u(s) ds

+ ∫
t

0

e−(t−s)B(t)B(t)−1C(t)u�(s) ds + ∫
t

0

e−(t−s)B(t)g(s) ds.
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where t ∈ [0, �]. Taking the norm in V, it follows that

where C is a positive constant independent of t. Now, we take � small enough such 
that C

√
𝜏 ∫ 𝜏

0

w(s)

s
3
2

ds < c, with 0 < c < 1.

We conclude that ‖K(h)‖L∞(0,�;V) ≤ c‖h‖L∞(0,�;V) and hence I − K is invertible on 
L∞(0, �;V).

Using (35), we get

Therefore for � small enough and by using Lemma 3.9 we obtain

Since u� ∈ L∞(0, �;V) ∩ C([0, �];H), we have by [2, Lemma 3.7] that u�(t) ∈ V for 
all t ∈ [0, �]. Now, for � arbitrary we split (0, �) into small intervals and proceed 
exactly as in the previous proof. In order to obtain a solution u ∈ W1,∞(0, �;V), we 
glue the solutions on each-interval.

We fix s and t in [0, �] such that s < t. We get from the equation in (17)

Hence,

K(h)(t) ∶= ∫
t

0

e−(t−s)B(t)(B(t) − B(s))h(s) ds,

‖K(h)(t)‖V ≤ �
t

0

‖e−(t−s)B(t)‖L(V�,V)‖B(t) − B(s)‖L(V,V�)‖h(s)‖V ds

≤ C �
t

0

w(t − s)

t − s
ds ‖h‖L∞(0,t;V)

≤ C
√
t �

t

0

w(s)

s
3

2

ds ‖h‖L∞(0,t;V),

(I − K)(u�)(t) = −B(t)−1C(t)u(t) + e−tB(t)B(t)−1C(t)u0

+ e−tB(t)u1 + ∫
t

0

e−(t−s)B(t)(C(t) − C(s))u(s) ds

+ ∫
t

0

e−(t−s)B(t)B(t)−1C(t)u�(s) ds + ∫
t

0

e−(t−s)B(t)g(s) ds.

‖u�‖L∞(0,�;V) ≤ C

�
‖u‖L∞(0,�;V) + ‖u0‖V + ‖u1‖V + ‖g‖L2(0,�;H)

+ ‖u�‖L2(0,�;V) + �
t

0

w1(l)

l
dl ‖u‖L∞(0,�;V)

�
.

(36)
∫

t

s

e−(t−l)B(t)u��(l) dl + ∫
t

s

e−(t−l)B(t)B(l)u�(l) dl

+ ∫
t

s

e−(t−l)B(t)C(l)u(l) dl = ∫
t

s

e−(t−l)B(t)g(l) dl.
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By performing an integration by parts we have

and

Combining (39) with (38) and (37), we obtain

Observing that

(37)

∫
t

s

e−(t−l)B(t)u��(l) dl + ∫
t

s

e−(t−l)B(t)B(l)u�(l) dl

+ ∫
t

s

e−(t−l)B(t)
(
C(l) − C(t)

)
u(l) dl

+ ∫
t

s

e−(t−l)B(t)C(t)u(l) dl

= ∫
t

s

e−(t−l)B(t)g(l) dl.

(38)
∫

t

s

e−(t−l)B(t)u��(l) dl = u�(t) − e−(t−s)B(t)u�(s)

− ∫
t

s

e−(t−l)B(t)B(t)u�(l) dl

(39)
∫

t

s

e−(t−l)B(t)C(t)u(l) dl = B(t)−1C(t)u(t) − e−(t−s)B(t)B(t)−1C(t)u(s)

− ∫
t

s

e−(t−l)B(t)B(t)−1C(t)u�(l) dl.

u�(t) − u�(s)

=
(
−B(t)−1C(t)u(t) + e−(t−s)B(t)B(t)−1C(t)u(s)

)

+
(
e−(t−s)B(t)u�(s) − u�(s)

)
+ ∫

t

s

e−(t−l)B(t)(B(t) − B(l))u�(l) dl

+ ∫
t

s

e−(t−l)B(t)(C(t) − C(l))u(l) dl

+ ∫
t

s

e−(t−l)B(t)B(t)−1C(t)u�(l) dl + ∫
t

s

e−(t−l)B(t)g(l) dl

∶= K1(t, s) + K2(t, s) + K3(t, s) + K4(t, s) + K5(t, s) + K6(t, s).
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We write by the functional calculus for the sectorial operators B(t), B(s)

where Γ = �S� is the boundary for an appropriate sector S� , with � ∈ (0,
�

2
) . Then

where � is an appropriate small positive constant and c𝜀 > 0 depending on �.
Now the fact w(t) ≤ ct� for some 𝜀 > 0 imply that ‖I1(s, t)‖V → 0 as t → s.

For i = 2, 3, we have immediately

For the last terms in (40) we get

Since t → C(t)u(t) ∈ C([0, �];V�) and by the strong continuity of the semigroup 
r → e−rB(s) on V one has

as t → s. Therefore ‖K1(t, s)‖V → 0 as t → s.

(40)

e−(t−s)B(t)B(t)−1C(s)u(s) − B(t)−1C(t)u(t)

=
[
e−(t−s)B(t) − e−(t−s)B(s)

]
B(t)−1C(s)u(s)

+ e−(t−s)B(s)(B(t)−1 − B(s)−1)C(s)u(s)

− (B(t)−1 − B(s)−1)C(t)u(t)

+ B(s)−1(C(s)u(s) − C(t)u(t))

+ B(s)−1(e−(t−s)B(s) − I)C(s)u(s)

∶= I1(s, t) + I2(s, t) + I3(s, t) + I4(s, t) + I5(s, t).

e−(t−s)B(t) − e−(t−s)B(s) =
1

2�i ∫Γ

e−(t−s)�(� − B(t))−1(B(t) − B(s))(� − B(s))−1 d�,

‖I1(s, t)‖V
= ‖

�
e−(t−s)B(t) − e−(t−s)B(s)

�
B(t)−1C(s)u(s)‖V

=
1

2�
‖�

Γ

e−(t−s)�(� − B(t))−1(B(t) − B(s))(� − B(s))−1B(t)−1C(s)u(s) d�‖V

≤ �
Γ

e−(t−s)��� cos �‖(� − B(t))−1‖L(V,V�)‖(� − B(s))−1‖L(V) d���
× ‖B(t) − B(s)‖L(V,V�)‖B(t)−1C(s)u(s)‖V

≤ cw(t − s)�
Γ

e−(t−s)��� cos �(1 + ���)−1 d��� ‖u(s)‖V

≤ c�
w(t − s)

(t − s)�
‖u(s)‖V,

‖Ii(s, t)‖V ≤ C‖B(t) − B(s)‖L(V,V�)‖u‖L∞(s,t;V).

‖I4(s, t)‖V ≤ C1‖C(s)u(s) − C(t)u(t)‖V� .

‖I5(s, t)‖V ≤ C2‖
�
e−(t−s)B(s) − I

�
C(s)u(s)‖V� .

‖e−(t−s)B(t)B(t)−1C(s)u(s) − B(t)−1C(t)u(t)‖V → 0
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We write

We estimate the first term on the RHS. By using again the functional calculus for the 
operators B(t), B(s) we have

for appropriate small 𝜀′ > 0.
By the strong continuity of the semigroup r → e−rB(s) on V one has

Therefore ‖K2(t, s)‖V → 0 as t → s.

Taking the norm in V, we obtain

where C1,C2,C3 are a positive constants independents of s and t.
By using Lemma 3.9 we get

Hence, ‖u�(t) − u�(s)‖V → 0 as t → s. This proves that u′ is right continuous for the 
norm of V.

It remains to prove left continuity of u′.
Fix 0 ≤ s ≤ t ≤ �. We integrate the Eq. (17) from s to t to obtain

Now, by integration by parts we get

‖K2(t, s)‖V = ‖[e−(t−s)B(t) − I]u�(s)‖V
≤ ‖[e−(t−s)B(t) − e−(t−s)B(s)]u�(s)‖V + ‖[e−(t−s)B(s) − I]u�(s)‖V.

‖[e−(t−s)B(t) − e−(t−s)B(s)]u�(s)‖V ≤ c�
w(t − s)

(t − s)�
�
‖u�(s)‖V,

‖[e−(t−s)B(s) − I]u�(s)‖V → 0 as t → s.

‖K3(t, s)‖V ≤ C1 �
t

s

‖B(t) − B(l)‖L(V,V�)

t − l
dl ‖u�‖L∞(s,t;V)

≤ C1 �
t

s

w(t − l)

t − l
dl ‖u�‖L∞(s,t;V).

‖K4(t, s)‖V ≤ C2 �
t

s

‖C(t) − C(l)‖L(V,V�)

t − l
dl ‖u‖L∞(s,t;V)

≤ C2 �
t

s

w1(t − l)

t − l
dl ‖u‖L∞(s,t;V).

‖K5(t, s)‖V ≤ C3(t − s) ‖u�‖L∞(s,t;V),

‖K6(t, s)‖V ≤ C‖g‖L2(s,t;V).

∫
t

s

e−(l−s)B(s)u��(l) dl + ∫
t

s

e−(l−s)B(s)B(l)u�(l) dl

+ ∫
t

s

e−(l−s)B(s)C(l)u(l) dl = ∫
t

s

e−(l−s)B(s)g(l) dl.
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Hence,

We now proceed analogously as the proof of the right continuity of u′, we obtain that

We have proved that u′ is left continuous in V and finally u ∈ C1([0, �];V). Therefore 
v ∈ C1([0, �];V). This finishes the proof of the theorem. 	�  ◻

For higher order equations we have

Theorem  3.12  Let (Ai(t))t∈[0,�],i∈[1,N] , N ∈ ℕ∗ such that Ai(t) ∈ L(V,V�) for all 
i ∈ [1,N] and ‖Ai(t)‖L(V,V�) ≤ M. We suppose that (AN(t))t∈[0,�] is associated with V
-bounded quasi-coercive forms and for all i ∈ [1,N]

for some K > 0 and 𝛼 >
1

2
. We assume in addition that (AN(t) + �)t∈[0,�] satisfies the 

uniform Kato property (30). Then for all f ∈ L2(0, �;H) and u0,… , uN−1 ∈ V there 
exists a unique u ∈ WN,2(0, �;H) ∩ CN−1(0, �;V) be the solution to the problem

u�(s) = e−(t−s)B(s)u�(t) − B(s)−1e−(t−s)B(s)C(t)u(t) + B(s)−1C(t)u(s)

+ 2∫
t

s

e−(l−s)B(s)(B(l)u�(l) + C(l)u(l)) dl

+ ∫
t

s

e−(l−s)B(s)(B(s) − B(l))u�(l) dl

− ∫
t

s

e−(l−s)B(s)(C(l) − C(t))u(l) dl

− ∫
t

s

e−(l−s)B(s)B(s)−1C(t)u�(l) dl − ∫
t

s

e−(l−s)B(s)g(l) dl.

u�(s) − u�(t) = e−(t−s)B(s)u�(t) − u�(t)

− B(s)−1e−(t−s)B(s)C(t)u(t) + B(s)−1C(t)u(s)

+ 2∫
t

s

e−(l−s)B(s)(B(l)u�(l) + C(l)u(l)) dl

+ ∫
t

s

e−(l−s)B(s)(B(s) − B(l))u�(l) dl

− ∫
t

s

e−(l−s)B(s)(C(l) − C(t))u(l) dl

− ∫
t

s

e−(l−s)B(s)B(s)−1C(t)u�(l) dl − ∫
t

s

e−(l−s)B(s)g(l) dl.

‖u�(t) − u�(s)‖V → 0 as s → t.

‖Ai(t) −Ai(s)‖L(V,V�) ≤ K�t − s��
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In addition, there exists a positive constant C independent of u0,… , uN−1 and f such 
that

Proof  We give only the main ideas of the proof. We prove the theorem by induction. 
In case N = 1 the result follows from [1, Theorem 4.2]. The theorem holds for N = 2 
by Theorem 3.10. Now, we assume that the theorem is true at order N − 1 where N is 
an arbitrary positive integer. By integration and following the same strategy of proof 
as in Theorem  2.6 we prove maximal L2-regularity in V′ for the Cauchy problem 
(41) and we have u ∈ WN,2(0, �;V�) ∩WN−1,2(0, �;V).

Let 𝛾 > 0 and set v(t) = e−�tu(t). By Leibniz’s rule and using the Eq. (41) we get 
that v is the solution to the problem

where Cj(t) =

�∑N−1

m=j
(−1)N+1−mCN

m
Cm
j

�
�N−jI +

∑N−1

m=j
Cm
j
�m−jAm+1(t), for all 

j ∈ [0,N − 1] and Cm
j
=

m!

j!(m−j)!
. Here v(j) is the derivative of order j.

We assume now that 𝛾 >
|𝜈|
N
, then CN−1(t) = AN(t) + N�I is associated with V

-bounded coercive form for all t ∈ [0, �].
By performing an integration by parts as in (24), (25) we obtain

We now proceed analogously to the proof of Theorem  3.10 to prove maximal L2
-regularity in H. The details are left to the reader. 	�  ◻

(41)

{
u(N)(t) +AN(t)u

(N−1)(t) +AN−1(t)u
(N−2)(t) +⋯ +A1(t)u(t) = f (t) t-a.e.

u(N−1)(0) = uN−1,… , u(0) = u0.

‖u‖WN,2(0,�;H)∩CN−1(0,�;V) ≤ C

�
N−1�
i=0

‖ui‖V + ‖f‖L2(0,�;H)

�
.

(42)

�
v(N)(t) + (AN(t) + N�I)v(N−1)(t) +

∑N−2

j=0
Cj(t)v

(j)(t) = e−�tf (t) t-a.e.

v(k)(0) = vk =
∑k

j=0
Ck
j
(−�)k−juj, k ∈ [0,N − 1],

CN−1(t)v
(N−1)(t) + CN−2(t)v

(N−2)(t) +⋯ + C0(t)v(t)

= CN−1(t)e
−tCN−1(t)vN−1 + e−tCN−1(t)

(
C1(t)v0 +⋯ + CN−2(t)vN−2

)

+ CN−1(t)∫
t

0

e−(t−s)CN−1(t)
(
CN−1(t) − CN−1(s)

)
v(N−1)(s) ds

+ CN−1(t)∫
t

0

e−(t−s)CN−1(t)
(
CN−2(t) − CN−2(s)

)
v(N−2)(s) ds

+⋯ + CN−1(t)∫
t

0

e−(t−s)CN−1(t)
(
C0(t) − C0(s)

)
v(s) ds

+ ∫
t

0

e−(t−s)CN−1(t)
(
C0(t)v

�(s) +⋯ + CN−2(t)v
(N−1)(s)

)
ds

+ CN−1(t)∫
t

0

e−(t−s)CN−1(t)e−�sf (s) ds.
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4 � Counter‑examples

In this section we give some examples where the maximal regularity fails.
Let

be bounded coercive form and let C is the operator associated to � in V′ and C = C ∣H .

We introduce the following space

with norm

Let us consider the space

endowed with norm

We define the associated trace space by

with norm

Proposition 4.1  We have

Proof  Let us first prove that TR
�
(2,H) ⊆ D. Indeed, let u ∈ MRC(2,H) and we set 

v = u + u�. Then

and by Lemma 2.3 one has v ∈ C([0, �];(H,D(C)) 1

2
,2).

Moreover, v(0) ∈ (H,D(C)) 1

2
,2, u(0) + u�(0) ∈ (H,D(C)) 1

2
,2 and u(0) ∈ V.

Thus, TR
�
(2,H) ⊆ D.

We next prove D ⊆ TR
�
(2,H). Indeed, let (u0, u1) ∈ D. By [17, Corollary 1.14], 

there exist v ∈ L2(0, �;D(C)) ∩W1,2(0, �;H) such that v(0) = u0 + u1.

Now, we set

� ∶ V × V → ℂ

L2(0, �;D(C)) ∶= {u ∈ L2(0, �;H) ∶ Cu ∈ L2(0, �;H)},

‖u‖L2(0,�;D(C)) ∶= ‖Cu‖L2(0,�;H).

MRC(2,H) ∶= {u ∈ W2,2(0, �;H) ∩W1,2(0, �;V) ∶ C(u + u�) ∈ L2(0, �;H)}

‖u‖MRC(2,H) ∶= ‖u��‖L2(0,�;H) + ‖C(u + u�)‖L2(0,�;H).

TR
�
(2,H) = {(u(0), u�(0)) ∶ u ∈ MRC(2,H)},

‖(u0, u1)‖TR�(2,H) = inf{‖u‖MRC(2,H) ∶ u0 = u(0), u�(0) = u1}.

TR
�
(2,H) = D = {(u0, u1) ∶ u0 ∈ V, u0 + u1 ∈ (H,D(C)) 1

2
,2}.

v ∈ L2(0, �;D(C)) ∩W1,2(0, �;H)
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We conclude that u(0) = u0, u
�(t) = −e−tu0 + v(t) and u�(0) = u1. Furthermore

Thus D ⊆ TR
�
(2,H). Then the claim follows immediately. 	�  ◻

4.1 � Dier’s counter‑example

The example below is inspired by [5] who considered the first order Cauchy problem.
According to [19], there exist Hilbert spaces V,H with V ↪d H and a V-bounded 

coercive form � ∶ V × V → ℂ such that D(B
1

2 ) ≠ D(B
∗
1

2 ), where B is the associated 
operator with � on V′ and B is the restriction of B to H.

We define the symmetric form � ∶ V × V → ℂ by

Let C be the associated operator with the form �. We set C = C ∣H is the part of C in 
H.

It follows that

Let � ∈ MRB(2,H) such that (�(0),��(0)) = (0, u1) and u1 ∈ D(B
1

2 ) ⧵ V (D(B
∗
1

2 ) ⧵ V). 
Note such u1 exists since from Lemma 3.4 or [15, Theorem 1] either D(B

1

2 ) ⧵ V or 
D(B

∗
1

2 ) ⧵ V is not empty.
We set v(t) = −t2�(1 − t) with t ∈ [0, 1], one has v�(t) = −2t�(1 − t) + t2��(1 − t) 

with v�(0) = 0, v(0) = 0 and v(1) = 0, v�(1) = u1.

Remark 4.2  Note that by Proposition  4.1 we have (0, u1) ∈ TR
�
(2,H) but 

(0, u1) ∉ TR
�
(2,H).

We define the non-autonomous forms

where � is the indicator function and we denote by A(t) the associated operator to 
�(t) in V′.

Set

Let u be the solution to the problem

u(t) = e−tu0 + ∫
t

0

v(s) ds, t ∈ [0, �].

u ∈ W2,2(0, �;H) ∩W1,2(0, �;V) and u + u� ∈ L2(0, �;D(C)).

�(v,w) =
1

2

[
�(v,w) + �(w, v)

]
.

D(C
1

2 ) = D(C
∗
1

2 ) = V.

�(t;⋅, ⋅) = �[0,1](t)�(⋅, ⋅) + �[1,2](t)�(⋅, ⋅),

(43)f (t) =

{
v��(t) +A(t)v�(t) +A(t)v(t), t ∈ (0, 1)

0 otherwise .
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with t ∈ [0, 2]. Then by Theorem 2.6 we get u ∈ W2,2(0, 2;V�) ∩W1,2(0, 2;V).

Moreover, u ∣[0,1]= v, u�(1) = u1 and u(1) = 0. We put now w(t) = u|[1,2](t − 1), 
one has w(0) = 0 and w�(0) = u1.

Since (0, u1) ∉ TR
�
(2,H), we obtain that w ∉ MRC(2,H) and w is the solution to 

the following problem on L2(0, 1;V�)

Thus, w ∉ W2,2(0, 1;H) and u ∉ W2,2(0, 2;H).

4.2 � Fackler’s counter‑example

Proposition 4.3  For all � ∈ (0,∞) there exist a Gelfand triple V ↪ H ↪ V
′ and a 

V-bounded coercive, symmetric, non-autonomous forms

with t → �(t, u, v), �(t, u, v) ∈ C
1

2 ([0, �]), for all u, v ∈ V such that the second order 
Cauchy problem (21) does not have maximal L2-regularity in H.

Proof  According to [13, Theorem 5.1], there exist a Gelfand triple V ↪ H ↪ V
′ and 

a bounded coercive, symmetric, non-autonomous form

with t → �(t, u, v) ∈ C
1

2 ([0, �]) for all u, v ∈ V, such that the first order Cauchy 
problem

does not have maximal L2-regularity in H, or equivalently, there exists 
f ∈ L2(0, �;H) such that u ∈ W1,2(0, �;V�) ∩ L2(0, �;V) but u ∉ W1,2(0, �;H). 
Now, we take �(t) = �(t) + I and we set v(t) = ∫ t

0
e−(t−s)u(s) ds. Consequently, 

v(t) + v�(t) = u(t) and so v�(t) + v��(t) = u�(t).

We get by Theorem 2.6 that v ∈ W2,2(0, �;V�) ∩W1,2(0, �;V) is the unique solu-
tion to the problem

Note that u ∈ W1,2(0, �;H) if and only if v ∈ W2,2(0, �;H).

Let the form �(⋅) and V,H be as in [13, Theorem  5.1]. Then there exists 
f ∈ L2(0, �;H) such that u ∉ W1,2(0, �;H), where u is the solution to Problem (46). 

(44)
{

u��(t) +A(t)u�(t) +A(t)u(t) = f (t) t-a.e.

u(0) = 0, u�(0) = 0,

(45)
{

w��(t) + C(w�(t) + w(t)) = 0 t-a.e.

w(0) = 0, w�(0) = u1.

�, � ∶ [0, �] × V × V → ℂ,

� ∶ [0, �] × V × V → ℂ

(46)
{

u�(t) +A(t)u(t) = f (t) t-a.e.

u(0) = 0

(47)
{

v��(t) + (A(t) + I)v�(t) +A(t)v(t) = f (t) t-a.e.

v(0) = 0, v�(0) = 0.
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It follows that v�� ∉ W2,2(0, �;H) and so Problem  (47) does not have maximal L2
-regularity in H. 	�  ◻

5 � Applications

This section is devoted to some applications of the results given in the previous sec-
tions. We give examples illustrating the theory without seeking for generality.

5.1 � Laplacian with time dependent Robin boundary conditions

Let Ω be a bounded domain of ℝd, with Lipschitz boundary Γ . Denote by � the 
(d − 1)-dimensional Hausdorff measure on Γ . Let

be bounded measurable functions which are ( 1
2
+ �)-Hölder continuous w.r.t. the first 

variable with 𝜀 > 0, i.e.,

for i = 1, 2, with t, s ∈ [0, �], � ∈ Γ and K > 0.

We consider the forms �, �

defined by

and

The forms �, � are H1(Ω)-bounded, quasi-coercive and symmetric. The first state-
ment follows readily from the continuity of the trace operator and the boundedness 
of �i, i = 1, 2 . The second one is a consequence of the inequality

which is valid for all 𝜀 > 0 ( C� is a constant depending on � ). Note that this is a con-
sequence of compactness of the trace as an operator from H1(Ω) into L2(Γ, d�).

Let A(t) be the operator associated with �(t, ⋅, ⋅) and B(t) the operator associated 
with �(t, ⋅, ⋅). Note that the part A(t) in H ∶= L2(Ω) of A(t) is interpreted as (minus) 
the Laplacian with time dependent Robin boundary conditions:

�1, �2 ∶ [0, �] × Γ → ℝ

|�i(t, �) − �i(s, �)| ≤ K|t − s| 1

2
+�

�, � ∶ [0, �] × H1(Ω) × H1(Ω) → ℝ

�(t, u, v) = ∫
Ω

∇u∇v dx + ∫
Γ

�1(t, .)uv d�

�(t, u, v) = ∫
Ω

∇u∇v dx + ∫
Γ

�2(t, .)uv d�.

�
Γ

�u�2d� ≤ �‖u‖2
H1(Ω)

+ C�‖u‖2L2(Ω)
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Here we use the following weak definition of the normal derivative. Let 
v ∈ H1(Ω) such that Δv ∈ L2(Ω). Let h ∈ L2(Γ, d�). Then ��v = h by definition if 
∫
Ω
∇v∇wdx + ∫

Ω
Δv∇wdx = ∫

Γ
hw d� for all w ∈ H1(Ω). Based on this definition, 

the domain of A(t) is the set

and for u ∈ D(A(t)) the operator is given by A(t)u ∶= −Δu. The same definition for 
the operator B(t).

In the next proposition we suppose that w1 ∈ (L2(Ω),D(B(0)))1− 1

p
,p,w0 ∈ H1(Ω) 

for p ≤ 2 and w1 ∈ (L2(Ω),D(B(0)))1− 1

p
,p, w0 ∈ (H1(Ω),D(A(0)))1− 1

p
,p for p > 2.

We note that for p < 2

where B
2(1−

1

p
),2

p (Ω) is the classical Besov space.

Proposition 5.1  For all f ∈ Lp(0, �;H), there exists a unique solution of the 
problem

where w ∈ W2,p(0, �;L2(Ω)) ∩W1,p(0, �;H1(Ω)) and for p ≥ 2, we have 
w ∈ C1([0, �];H1(Ω)).

The proposition follows from Theorems 3.7 and 3.10.
Maximal Lp-regularity for the Laplacian with time dependent Robin boundary 

condition with �1 = �2 and w0 = w1 = 0 was previously proved in [9] and maximal 
L2-regularity with t → �1(t, ⋅), �2(t, ⋅) ∈ C1 was proved in [11].

5.2 � Elliptic operators on ℝd

Let H = L2(ℝd) and V = H1(ℝd) . Suppose that al
jk
∈ L∞(I ×ℝd) , where I = [0, �] 

and j, k ∈ (1,… , d), l ∈ (1, 2) and there exists a constant 𝛼 > 0 , such that

We define the forms

��v + �1(t, .)v = 0 on Γ.

D(A(t)) ∶= {u ∈ H1(Ω) ∶ Δu ∈ L2(Ω), ��u + �1(t, .)u = 0}

(L2(Ω),D(B(0)))1− 1

p
,p = (L2(Ω),H1(Ω))2(1− 1

p
),p = B

2(1−
1

p
),2

p (Ω),

(48)

⎧⎪⎨⎪⎩

w��(t) − Δw�(t) − Δw(t) = f (t) t-a.e.

w(0) = w0, w�(0) = w1,

��(w
�(t) + w(t)) + �2(t, .)w

�(t) + �1(t, .)w(t) = 0 on Γ,

d∑
j,k=1

al
jk
(t, x)�i �j ≥ � |�|2 (t ∈ I, x ∈ ℝ

d, � ∈ ℂ
d
)
.
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with domain V = H1(ℝd). For each t,  the corresponding operator is formally given 
by

Proposition 5.2  Let u0, u1 ∈ H1(ℝd) and f ∈ L2(0, �;L2(ℝd)) and if 
al
jk
∈ C

1

2
+�
(I;L∞(ℝd)) for some 𝜀 > 0, there exists a unique 

u ∈ H2(I;L2(ℝd)) ∩ C1(I;H1(ℝd)) such that

It is clear that

where

As we already mentioned before, the uniform Kato square root property required in 
Theorem 3.10 is satisfied in this setting, see [8, Theorem 6.1]. Then Proposition 5.2 
follows from Theorem 3.10.
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