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Abstract
We consider the problem of maximal regularity for non-autonomous second order
Cauchy problems

() + B(Ou' (t) + ADu@®) = f(r) t-ae.
u(0) = uy, '(0) =u,.

Here, the time dependent operator .A(7) is bounded from the Hilbert space V to its

dual space V' and B(¢) is associated with a sesquilinear form b(z, -, -) with domain V.

We prove maximal L”-regularity results and other regularity properties for the solu-

tions of the above equation under minimal regularity assumptions on the operators.

Our result is motivated by boundary value problems.

Keywords Damped wave equation - Maximal regularity - Non-autonomous
evolution equations

Mathematics Subject Classification 35K90 - 35K45 - 47D06

1 Introduction

The aim of this article is to study non-autonomous second order evolution equations
governed by forms.

Let (7, (-,-), || - ||) be a separable Hilbert space over R or C. We consider another
separable Hilbert space V which is densely and continuously embedded into H. We
denote by V' the (anti-) dual space of V so that

Vo, Ho, V.

Hence there exists a constant C > 0 such that
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lull < Cllully, (we V),
where || - ||}, denotes the norm of V. Similarly,
lwlly < Cllvll (v € H).

We denote by {, ) the duality V-V and note that (y,v) = (y,v)if y,v € H.

In this paper we consider maximal regularity for second order Cauchy problems. We
focus on the damped wave equation.

We consider a family of sesquilinear forms

b:[0,7]x VXV —C,

such that

[H1] D(b(¢)) = V (constant form domain),

[H2] |b(t, u,v)| < M||ully|vIly (V-uniform boundedness),

[H3] Re b(t, u, u) + vljul|* > 5||u||]2/ (Vu € V) for some 6 > 0 and some v e R
(uniform quasi-coercivity).

We denote by B(z), B(¢) the usual operators associated with b(¢)(as operators on H and
V). Recall that u € H is in the domain D(B(?)) if there exists # € H such that for all
v € V:b(t,u,v) = (h,v). We then set B(f)u := h. The operator 5(¢) is a bounded opera-
tor from V into V' such that B(t)u = b(z, u, -). The operator B(?) is the part of B(f) on H.

It is a classical fact that —B(f) and —B(¢) are both generators of holomorphic semi-
groups (eB") . and (¢7®),. on H and V', respectively. The semigroup e~"2® is
the restriction of =5 to H. In addition, e~"#® induces a holomorphic semigroup on
V (see, e.g., Ouhabaz [20, Chapter 1]). Let A(¥) € L(V, V) for allt € [0, 7] and a func-
tion /2 : [0, 7] — [0, co) such that / ﬂ’h(r)f’% < coand

IA®I £y < h(2),  for almost every t € [0, 7].
We denote by A(¢) the part of A(f) on H, defined by

DA®) :={ueV : A(hu € H}
AMu 1= A(tu.

Given a function f defined on [0, 7] with values either in H or in V' we consider the
second order evolution equation

W (1) + B! (1) + A@Ou(t) = £(1)
w0) = uy, ' (0) = u,. )

This is an abstract damped non-autonomous wave equation and our aim is to prove
well-posedness and maximal I7-regularity for p € (1, 00)in ) and in H.

Definition 1.1 Let X = H or V. We say that Problem (1) has maximal I7-regularity
inX, if forall f € LP(0, 7;X) and all (u,, u;) in the trace space (see Sects. 2 and 3 for
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more details) there exists a unique u € W>?(0, 7:X) N W'*(0, ;) which satisfies (1)
in the I7-sense.

The maximal L?-regularity in V' was first considered by Lions [16] (p. 151). He
assumes that A(z) is associated with a sesquilinear form a(#) which satisfies the
same properties as b(¢) together with an additional regularity assumption on the
forms ¢t — a(t,u,v) and t — b(z, u,v) for every fixed u,v € V. Dautray—Lions [10,
p. 667] proved maximal L-regularity in V' without the regularity assumption by
taking f € L*(0,7;H) and considering mainly symmetric forms. Recently, Batty
et al. [9] proved maximal LP-regularity for general forms 5(.) and .A(.) for the case
uy =u; = 0and h € LF(0, 7) by reducing the problem to a first order non-autono-
mous Cauchy problem. Dier-Ouhabaz [11] proved maximal L>-regularity in ) for
uy € V,u; € H and A(r) is also associated with a V-bounded quasi-coercive non-
autonomous form a(r). We improve the result in [9] by provmg maximal LP-regu-
larity in V' for u, and u, not necessarily 0 and 7 — £ »h(t) € [7(0, 7). Our proof
is based on the result of the first order problem as in [9], but the main difference
being that we use a fixed point argument.

More interesting is the question of second order maximal regularity in H, i.e.
whether the solution u of (1) is in H?(0,7;H) provided that f € L*(0,7;H). A
first answer to this question was giving by Batty et al. [9] in the particular case
B(.) = kA(.) for some constant k and that 4(.) has the maximal regularity in . By
using the form method, Dier and Ouhabaz [11], proved maximal L>-regularity in
‘H without the rather strong assumption B(.) = kA(.), but A(z) is also associated
with V-bounded quasi-coercive form a(¢) and t — a(t, u, v), b(¢, u, v) are symmetric
and Lipschitz continuous for all u,v € V. We extend the results in [11] in three
directions. The first one is to consider general forms which may not be symmet-
ric. The second direction is to deal with maximal LP-regularity, for all p € (1, ).
The third direction, which is our main motivation, is to assume less regularity on
the operators A(?), B(r) with respect to 7.

Our main results can be summarized as follows (see Theorems 3.7 and 3.10 for
more general and precise statements).

For p € (1, o) we assume the following

o |b(t,u,v) = b(s,u,v)| < w(|t = sDlullylvlly, for all u,v € V,
A — A(S)”L(vy) <w(|t = s|),

such that

o [ dr< co.

12

e Forp#2orp=2and D(B(O) ) & ), we assume

T ow@y
/ P dt < oo. )
0 t 2

e In the case p =2 but D(B(O)%) % V), we assume
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T w(t)?
/O e dt < oo, 3)

for some € > 0.
Here w : [0, 7] — [0, o) is a non-decreasing function.
Let f € LP(0, 7;H) and one of the following conditions holds

1. for p>2, u, is in the real-interpolation space (V,D(A(O)))l_l’p and
u € (H,D(BO0)),_1 .
2. forp<2,uy€Vandu, € (H, D(B(O)))l_l’p.

Then (1) has maximal LP-regularity in . Assume in addition that D(B(t)%) =Y
for all ¢ € [0, 7] and w(f) < Ct¢ for some € > 0, then for all f € L*(0, r;H) and
Uy, u; € V, we prove that the solution u € H*(0, 7;H) N C1(0, 7;V).

By induction, our approach allows to consider Cauchy problems of order N for
any N > 3.

By using similar ideas as in [5, 12], we give examples for which the maximal
regularity fails.

We illustrate our abstract results by two applications in the final section. One of
them concerns the Laplacian with time dependent Robin boundary conditions on a
bounded Lipschitz domain €.

Notation We denote by L(E, F) (or L(E)) the space of bounded linear operators
from E to F (from E to E). The spaces L”(a, b;E) and W*?(a, b;E) or H(a, b;E) if
p = 2 denote respectively the Lebesgue and usual Sobolev spaces of order k of func-
tion on (a, b) with values in E. For u € W'P(a, b;E) we denote the first weak deriva-
tive by u’ and for u € W?”(a, b;E) the second derivative by u”’. Recall that the norms
of H and V are denoted by || - || and || - ||,,. The scalar product of H is (-, ) and the
duality V-V is (, ). We denote by m! the factorial of m.

Finally, we denote by C, C' or Cy, C|,c, ... all inessential constants. Their values
may change from line to line.

2 Maximal regularity for the damped wave equation in )/

In this section we prove maximal regularity in }’ for the Problem (1).

We start by recalling a well-known result for the first order non autonomous
problem.

Following [6], we introduce the following definition

Definition 2.1 Let (b(2)),¢(o 1 be a family of V-bounded, sesquilinear forms. A func-
tion ¢t — b(¢) is called relatively continuous if for each ¢ € [0, 7] and all € > O there
exists @ > 0, f > O such that for all u,v € V, s € [0, 7] and |t — s| < & implies that

|b(z, u,v) = b(s, u,v)| < (ellully + Bllully)IVIly-
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Maximal regularity for the damped wave equations 839

Theorem 2.2 Let (b(1)),c(0,) be a family of V-bounded, sesquilinear forms and
p € (1,00).
We assume one of the following conditions

e for p =2,t — b(t) is measurable,
o for p # 2,t — b(2) is piecewise relatively continuous.

Then for all u, € W, V)l__ » and f € IP(0,t;V) there exists a unique solution
ve MRV, V) =W'(Q,r; V) N L7(0, 7;V) to the problem

V(@) + B(ov() = f(r) t-ae.
{ v(0) = u;. @

In addition, there exists a positive constant C such that
Wlhow < Il + Wl
Y

Here, ”v”MRI’(V’V') = ”V”Wl:p(o,f;]/) + ”V”U((),T;v)-

Proof For the case p = 2 the result is due to Lions [16]. Since B(s) + v is the genera-
tor of an analytic semigroup in V' for all s € [0, 7], then for all u; € (V',V),_ 1 and

f€LPO,7;V),p € (1,00) there exists a unique solution v € MR’(V,V') to the
autonomous problem

w (@) + B(s)w(t) = f(t) t-a.e.
w(0) = u,. ®)

Now, we apply [6, Theorem 2.7] to get the desired result for p # 2. a
From [3, Theorem III 4.10.2] we have the following lemma

Lemma 2.3 Let E|, E, be two Banach spaces such that E, C E,. Then

W0, 7:E) N LP(0,7, Ey) < C([0, 71(Ey, Ey), 1 ).

We introduce the maximal regularity space
MRP(V,V,V) 1= W*(0,7;V)n W'P(0, 73)).
It is a Banach space for the norm
”u”MRP(V,V,V') = ”“N”U(O,T;V') + ”"‘”W""(O,T;V)'

Let v € MR’(V,V') be the solution of (4) for a giving u, € (V, V)l__p and

feLrr0,z;V). For uy€V and 1 €[0,7] we set w(t) =u,+ fo v(s)ds Then
w' () = v(t) and
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840 M. Achache

w' (1) + Bw' (1) = f(1) t-ae.
w(0) = uy,  Ww'(0) =u,. (6)

Moreover, we have the following estimate
Wllsre vy < C(””o”v + lluy ||(V,V)l_1p + ”f”U’(O,r;V))' (7
L

We note also that the solution of the Problem (6) is unique. Indeed, we suppose
there are two solutions w,, w,, thenw =w, —w, € MR*(V,V, V) is a solution to the
following problem

w' () + Bew'(t) =0 t-ae.
w(0) =0, w'(0)=0. 8)

Therefore for ¢ € [0, 7]
2Re / (W' (s), w'(s))ds + 2Re / (B(s)W (s), w'(s)) ds = 0.
0 0

Recall that w' € W'2(0, ;') N L*(0, 7;V). Then by using [10, Theorem 2, p. 477]
we obtain
1 12 d
2Re / W (s), W (5)) ds :/ =W ()| ds
0 0 ds

= W @I = v O
= WOl

The uniform quasi-coercivity of the forms (b(2)),¢(o | gives

t t
WO + 26 / W/ ()12 ds < 2v / W ()1 ds.
0 0

We conclude by Gronwall’s lemma that w/(r) = 0 for all ¢ € [0, 7], hence w(r) =0
and consequently w,(f) = w,(¢) for all 7 € [0, 7].
Using Lemma 2.3 and the Sobolev embedding we have

MR (V. V,V) & C'([0.71:V. V), 1) 0 €77 ([0, 7). ©

We define the associated trace space to MR?(V,V,V) by

TRP WV, V) := {(u(0),u'(0)) : u € MR'(V,V,V)},

endowed with norm
[1@(0), ' OD)ll 7gorryry = if{ IV Iproiyyy * V(O0) = u(0),V/(0) = ' (0)).

Note that (TR/’(V, V)l - ||TR,,(V,V)) is a Banach space.
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Maximal regularity for the damped wave equations 841

Proposition 2.4 For all p € (1, o0) we have
TRFOV, V) =V x (V, V),_1, with equivalent norms.
P
Proof The first injection TRP(V, V) < Vx (V, V), _ 1 is obtained by (9). For the

second injection “<” let us take u, € (V,)) -1 Then by [17, Corollary 1.14] there

exists w € MRP(V, V') such that w(0) = u. We set now u(t) = uy + w(s)ds, where
uy € V. Thenu € MRP(V,V,V') and

Netllpiro vy < C/<||Mo||v + ”W”MRP(V,V’))'

We note that the trace space associated to MRP(V,)) is isomorphic to the real inter-
polation space (V/, V)l (see [18, Chapter 1]). Then

inf{ ||u||MR,,(V,V’V) 2 u(0) = up, ' (0) = uy }
< (Nl + inf (vl oy = 90 = 1))
< C(“M()“v + lluy IIO/,V)IJ‘F).
Thus Vx (V. V),_1, & TREQV, V). 0

Remark 2.5 From the previous proposition and (9), we can deduce that the operator

MRP(V,V,V) = C([0, z];TRP(V, V)

u— (u,u)

is well defined and bounded.
Our main result on maximal I7-regularity in ) is the following.
Theorem 2.6 Let p € (1, 0). We assume one of the following conditions

o for p=2,t— b(t)is measurable.
e for p#2,t - b(t) is piecewise relatively continuous.

Let A(t) € LV, V) for all te [O 7] such that ||A@D)|l vy < h(0) for almost
every te€[0,7] and /0 tph(t)p 2 <oo. Then for all feL’0,t;V) and
(uy, uy) € TRP(V, V), there exists a unique solution u € MR'(V,V,V') to the
problem

(10)

u'(t) + BOuw' (1) + AQu(t) = f(t) t-ae.
u(0) = uy, '(0) =u,.

Moreover, there exists a positive constant C independent of uy, u, and f such that the
following estimate holds
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llaro o < €[Nt 1)l + gl | (an

As mentioned in the introduction, this theorem was proved by Batty, Chill
and Srivastava [9] but they consider only the case u, = u; = 0 and suppose that
t = ADl zy) € (0, 7).

Proof We introduce the subspace
MR’O’(V, V, V) i={ue MRV, V,V) : u0)=0,14(0) =0}.

We equip this subspace with the norm u — [|u” ||, .17y + 14/ [l 0.2 TO prove
existence and uniqueness of the solution we use the contraction fixed point theo-
rem and the existence of a solution in MR{(V,V, V) for Problem (6). Indeed, let
z € MRV, V, V) and v € MR;(V,V, V) be the solution of the problem

{W@+ww@=myAwm r-a.e.

v(0)=0, V(0)=0 (12)

for a given g € L(0, ;).

We consider the operator F :z—v. It follows by (7) that
F: MR'(;(V, VV) - MRS(V, V,V) is a bounded operator. Now, let
21,2 € MRO(V,V, V) and v, = Fz;, v, = Fz,. We set v =v; — vy, w = 7, — 2. Obvi-
ously, v satisfies

V() + By () = —A@)w(t) tae.
v(0)=0, V(0)=0. (13)

Therefore, by (7) we have

_ P p
”FZ] FZ2| MRg(V,V,V) S C”A(')W”U’(O,T;V’)

<c [ werimor;a
0

T
sC/ P~ dt||lw|” |
0 c'r (0,1Y)

T
<C [ h@petalz, -zl )
/ o1 = 22

We choose 7 small enough such that C /01 h(ty’t’~'dt < 1. Thus, F is a contraction
on the Banach space MRS(V, V, V). So by the contraction fixed point theorem, there
exists a unique solution to the problem

{W@+&W@+Am@=W)M&

W0)=0, V(0)=0 (14)

for all g € LP(0,7;V') and 7 > 0 small enough. In addition, we have from (7)
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Maximal regularity for the damped wave equations 843

”V”MRP(V,V,V') < Cllglllj’(O,r;V)'
Now, let  wuyu; € VX (V’»V)l_l,p- Since by Proposition 2.4,
B
TRRV V)=V x (V, V)l—l,p’ then there exists z € MRP(V,V,)') (with minimal
»

norm) such that z(0) = u, and z’(0) = u,. We set now u = z + v. Thus, u belongs to
MRP(V,V, V) and satisfies

W’ (@) + Bty (1) + Au(t) = f(r)  t-ae.
u(0) = uy,  4'(0) = uy, (15)

with f = g+ 7’ + BOZ + A()z € 70, T;V).
Therefore

”““MRP(V,V,V) < C(”V”MRP(V,V,V’) + ||Z||MRp(v,v,V')>
< € (gl + Ntos )y
< C<|lf||1y(o,1;1/) + | (g, ul)”TRl’(V,V’)>‘

This proves the desired a priori estimate and completes the proof when 7 is suffi-
ciently small. We note that by Remark 2.5, (u,u') € C([0, t];TRP(V, V). For arbi-
trary = > 0, we split [0, 7] into a finite number of subintervals with small sizes and
proceed exactly as in the previous proof. Finally, we stick the solutions to get the
desired result. O

3 Maximal regularity for the damped wave equation in {

Let A(f) and B(f) be as before. In this section we assume moreover that
IADI £y < M, forallz € [0, 7].
Let us define the spaces
MR(p, H) := {u € W?(0,7;H) n W0, 7:V) : BOu + AQu € LP(0,77H)}.
Tr(p, H) = {((0),u'(0)) : u € MR(p, H)},

endowed with norms

”M”MR(p,H) = ”u"”y:(o,r;ﬂ) + ||u”W1~P(O,T;V)
+ 1BOU' () + AOUuO 10 270)-
|| ((0), 14,(0))||Tr(p,H) ‘= inf{”V”MR(p,H) :
v € MR(p, H), v(0) = u(0),v'(0) = u’(0)}.
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844 M. Achache

Maximal [P-regularity in H for Problem (10) consists of proving exist-
ence and uniqueness of a solution u € MR(p, H) provided f € LP(0,7;H) and
(uo, Ltl) S Tr(p, H).

3.1 Preparatory lemmas

In this subsection we prove several estimates and most of the main arguments which
will play an important role in proofs of our main results.

Proposition 3.1 Maximal LP-regularity in 'H for the problem

V(@) + BV (1) + A@)v(t) = f(¢) t-a.e.
v(0) = uy, V(0)=uy + vy, (16)
is equivalent to maximal LP-regularity for the problem
(1) + (B(t) + Zy)l)u’(t) + (A(t) +yB@®) + v )u(t) =e7'f(t) t-ae.
u(0) =uy, u'(0)=u,
A7)

forally € C.

Proof Let v be the solution of (16) and y € C. We set u(t) = ¢ "'v(¢). By a simple
computation we obtain that u satisfies (17). In addition, f € LP(0, z;H) if and only
ift = e 7'f(t) € LP(0, t;H) and it is clear that v € W2P(0, 7;H) n W'P(0, 7;V) if and
only if u € W2P(0, 7;H) n WP (0, 7;V). O

We deduce that we may replace B(f) by B(t) + y. Therefore, we may suppose
without loss of generality that [H3] holds with v = 0. In particular, we may suppose
that B(7) and B(r) are invertible. We will do so in the sequel without mentioning it.

We note that for y > 0 big enough (y > max{ —=,v}) and ¢ € [0, 7], we have that
C(t) = A(®) + yB(t) + y*I is associated with a V- bounded coercive form c(¢) (i.e.,
satisfies [H3] with v = 0). In fact, let u € V. We get

Re c(t, u, u) = Re (A(H)u, u) + yRe b(t, u, u) + y*||ul|?
> —[lAD | g lulls, + v8llully, + ¢ = yw)llull?
= —M||ull3, + yllully, + 7> — yw)lull®
> (r6 = M)llull}

We denote by S, the open sector Sy = {z € C* : |arg(z)| < 0} with vertex 0.

Lemma 3.2 Foranyt € [0, 7], the opemtors —B(1) and B(t) generate strongly con-
tinuous analytic semigroups of angle y = 5 - arctan( ) on H and V', respectively.
In addition, there exist constants C and C,, mdependent of t, such that
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Maximal regularity for the damped wave equations 845

le™BO| 3p) < landlle‘ZB(’)Hﬁ(V) < Cfor allZ €S,.
| B(t)e B || 1 H) = andllB(t)e BON £y < for all s ER.

[[e” SB(I)”/;(HV) =
[|(z — B(t))~ 1||£(HV) < \/_andll(zl B())~ l||£(V 1 < \/lci_lzlforallzﬁSgwith
fixed 0 > y.

C

Iz = B()™! ”L((H,V),,/,;V) < #for all p €10,1],z ¢ Syand p € (1, ).
k +|z|) 2

6. All the previous estimates hold for B(t) + a with constants independent of a for

a>0.

el e

e

Proof For assertions 1-3 and 4, 6 we rgfer to [14, Proposition 2.1]. For assertion 5,
— -1 _Yo 1
observe that [[(zI — B(1)™ || ;31 < Wi and ||(zI = B®O)™ |z < 1+| I (see e.g.

[7, p. 3]) for all z & S, with fixed 8 > y. Then the claim follows immediately by
interpolation. O

For p € (1, ) and f € L”(0, 7;H) and for almost every ¢ € [0, 7] we define the
operator L by

t
L()(t) := B(t) / e =9BOF(5) ds.
0
The following result is Lemmas 2.5 and 2.6 in [14].

Lemma 3.3 Let p € (1, 0). Suppose that ||B(t) — B(s)|l sy < w(|t = s]), where
w : [0,7] — [0, ) is a non-decreasing function such that

/ malt<c>o
0 t

Then the operator L is bounded on 17(0, t;H).
Let p € (1, o0). We introduce the following assumptions

e for p #2 :t— b(¢)is relatively continuous and for p =2 : ¢t — b(¢) is measur-
able.

o |b(t,u,v) —b(s,u,v)| < w(t—sDlullyllvlly for allu,v € V.

o |A® = Al o1y < wlt = s,

where w : [0, 7] — [0, o0) is a non-decreasing function such that
Fw(D)
(18)
0 ﬁ

e For p # 2 (or p =2 with D(B(O)%) S V)

We assume in addition that
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Ty
/ max{p,2} dt < . (19)
0 t 2
e In the case where p =2, but D(B(O)%) Y
T w(r)?
/O e A< oo, (20)

for arbitrary small € > 0.

Let ¥ > 0 be sufficiently large such that C(f) = A(f) + yB(t) + y*I is associated
with a V-bounded coercive form ¢(f). We denote by C(¢) the part of C(¢) on H.

It is clear that |e(t, u, v) — c(s, u, v)| < (1 4+ y)w(|t — sD|[ully]Iv]ly for all u,v € V.

In the following we set B = B(0), B = B(0).

Next we define the operator B~2 € L()) by

~ix = l/ A+ B xdax e V),
7 Jo

see [4, (3.52)] or [21 (Sec. 26 p.- 69)]. Then (l’)’_i)2 l’)’l . Moreover, B~ 21s injec-
tive. One deﬁnes Bz by D(BZ) =R( _5) and Bz = (B72)"!, where R(B~ 2) is the
range of B~ 3 . Then —B2is a closed operator on V (in fact, the generator of a ana-
lytic semigroup). We have 5~ ix=Bix for all x€ H and Biis injective and
D(BZ) =R(B2), B> = (B~ 2) 1 It can happen that R(B™2) # V. The following is
easy to see using that (B~ 2)2 ~! is an isomorphism from V' onto V. For more
details and references, see [20, Chapter 8].

Lemma 3.4 We claim that

(1) V& D(B3) if and only if D(B*?) & V.
(2) If B = B*,we have D(B2) = D(B*2) =V and

1
Vellully, < 1B2ull < anuuV.

(3) D(B*) =[H, V], forall0 < a <3
4) DB < Vforall0<a <3

Proof Letu € D(B*).If V & D(BE) we have
2 1 L
[lull;, < gRe (B>u,B™>u)
1,,1 ol
< EIIBZMIIIIB 2ull
L
< CllullylIB = ul|.

Then by the density of D(B*) in D(B*%) we obtain
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1
llully < ClIB*2ull

for all u € D(B*7). Then D(B"3) & V.
Now, we assume that DgB*E) < V. It follows that B*_' € L(H, V).
Let x € H and write B*2x = B*B*~2x. We obtain

1
B2 xlly < 1Bl 1B 211y < MIB™3 | gy Il

The boundedness of norm implies B e L(H,V) and by duality we have
B2 € L(V,’H). Then V C D(B?) and we get for all x € V

2 2 L)
lxll= = I1lxll” + 1B2x|l3,
D(B?)

< (C+1IB3 |2

2
1)1

Thus, V & D(B ). This shows (1).
We assume now that B = B*. Because of the density of D(B) in VV and D(B ), we
getforallu e V

8llull;, < Re B(0, u, u)
= ||B2ul)?
< Mijull.

This shows (2).
For (3), we refer to [15, Theorem 3.1].
Let0 <a< % and u € D(B). We have

1 -
llull}, < EIIB1 “ull1B*ul|

1,.,1-
< <18 “ulllullyen,

€@ .
OB 22

where C(a) > 0 depending on a. Thus, for all u € D(B'~%)

llully, <
This shows (4). O
Next we set XP =) for all p € (1,2[ and X? = (), D(C(O)))1 for p>2.

Lemma3.5 Letu, € (H, D(B(O)))l and u, € X7, then the operators
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Ryu, (1) = B(t)e B Vu,
Ryuy (1) = e BOC(H)u,
are bounded from (H, D(B(0))),_1 ,p and X? into 17(0, t;H), respectively.
Remark 3.6 We note that the operator R, is already studied in [1, Theorem 2.2]. Here

we assume less regularity on the operators B(¢) with respect to ¢ compared with [1,
Theorem 2.2].

Proof Firstly, we note that in the case p < 2 we have (H, D(B(0))),_: = (H, Vg1 W
(see [13, (p. 5)]). Then by Lemma 3.2 ’ ’

C
4]

-
[I(A1 = B(0)) “LI((H,D(B(O)))FLH;V) =
X

oW
<=

In the case p > 2, the embedding (H, D(B(0))),_1 2 V holds. In fact, we use the

inclusion properties of the real interpolation spaces [17, Proposition 1.1.4] to obtain
(H,DBO)), -1, = (H, DBO)) 1411,

P
& (H. DBOD 1111,

= D(BO) "),

withe < 3 — [1)
The embedding D(B(O)]_(E +€)) & Y (see Proposition 3.4) gives
. C
[|(AI — B(0)) ||£((H!D(B(O)))1_1,,2W < m
L

We consider now the case D(B(O)%) < V. One has

(AT = BO)) " uy s

< Gl @I = BOY il o1

L (A = BO) BO):u, |

1
< C,||B(0)2
< CUBO oty

1
< Collug i

A Ypmo?y

For the other case (D(B(O)%) % V), since D(B(O)l%) < Y for all € > 0 (see Proposi-
tion 3.4) then
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(AL = BO) ™ uy I,

< C1BO) | ) IIB(O) (A = B0))' BO) > u |

LOH.DBO) S
1

< Cﬁ”ul”D(BO 1.
-3 0)2)

We write

Rl Uy = <B(t)e—tB(t) _ B(O)e—tB(O) ) u, + B(O)e—tB(O)u1

Choose a contour I" in the positive half-plane and write by the holomorphic func-
tional calculus for the sectorial operators B(), B(0)

Bt — B0y = L / A = B (B = BO) )4 = BOY
2ri Jr
Therefore
1B@e™ Ouy = BOe™ Oy |
<C / |2l VANT = BOD ™l somon, v
0 o
X NCAL = BU)™ Nl o) dIANBE) = BO gy
XNl wowoy, -
P’

Then

o for p#2or p=2with D(B(O)%) < Y, we have
|(B()e™™? — B(0)e Py, || < C m:V((tl)l sl 2e.psom, )

t

e for p =2 and D(B(O)%) % V), we get
IB@e ™ — BO)e Oy || < cW“Z |

. DBO)?)

On the other hand, since B(0) is invertible, it is well-known that
t — B(0)e Oy, € 17(0,7;H) if and only if u; € (H, D(B(0)),_1 , (see e.g. [17,

Proposition 5.1.1]) and we have
~B(0) _ p P
[ 10O~ B0t < Wl -
P

Then
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e for p # 2 (or p = 2 with D(B(O)%) < V), we have

T
w(t)y’
||R1M1||u<o,r;m5c[< ; df) +1]””1”(HD(B<0))> ! < .
0 fﬂd (2 1)

e if p=2and D(B0)?) % V, we have

w(t)2 1
IRl < C[( [ Sar) 4 1]l

This proves that R is bounded from (H, D(B(0))),_: 1nto L0, t;H).

Now, we consider the operator R, with p < 2. Clearly
lle™OC@uell < 1le™™ Nl g7 20 IC@uU Iy

C
< — lluglly-

Vi

Therefore ||Ryu || 10.r.2¢) < Clluglly-
Now for p > 2, we write
R,uy(t) = B{)e PO B(t)~' C(t)uy,
= B(Oe B B(t)" (C(1) — C(0))u,
+ B(t)e OB~ = B0)"HC(0)u,
+ B(Oe O B0)'C(0)u,
=1+ L)+ L(@).

Fori = 1ori = 2, we have the following estimate

L)l < CW(l)lle_’B(’)Hc(v,H)||“o||v
W( )

— ”Mo”v

=V

Then
W(t)”
Wil .00 < C' [/ ||u0||V
0
We note that
. J D(CO) - H

o) : { Vy > V.

Therefore

D(CO) |y ,,) = V. D(C(0))yg s
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where C(0) |(V’,H)W, is the part of C(0) on (V/, H),w-
Thus, '

BO)'C(0) € L((V.DICON, 1 (V. DBOY, 1) ).

Observing that for 7 € [0, 7], I;(1) = R;B(0)"'C(0)uy(f). Using the first part of the
proposition, we obtain

-1
”I3||U(0,T;H) < C11B(0) C(O)MOH(HD(C(O)))I_LF
P’

< Cllugllw.oicon, -
P’

This shows that t = R,u,(f) € L7(0, 7;H) and then the lemma is proved. O

3.2 The main result

Our aim in this subsection is to prove maximal LP-regularity in H for the second
order Cauchy problem (16).
Our main result is the following.

Theorem 3.7 For all f e [P(0,7;H) and u, € (H,D(B(O)))l_l’p,uo € XP, with
p € (1, ), there exists a unique solution v € MR(p, H) to the problem

{ V() + BV () + A@)v(t) = f(£) t-ae.

v(0) = up,  V'(0) = uy +yup. 2

In addition, there exists a positive constant C such that
||V||MR(p,H) < C(““l”(H,D(B(O)))I_lF + llugllxr + |V||U(O,T;H)>~
P

Proof Let felrO,t;H) and (ug, u;) € (XP X (H,D(B(O)))l_l’p) Cc
Vx (V,V)I_L,,,) Recall that by Theorem 2.6 there exists a unique

v e W (0, T;FV) N W'(0, ;V) solution to Problem (21). Then by Proposition 3.1,
there exists a unique u € W>?(0, ;') n W'#(0, 7;)) solution to Problem (17).

For simplicity of notation, we write B(¢) instead of B(r) + y.

Fix 0 < ¢ < 7. We get from the equation in (17)

t 12
B(t) / e~ B0y (5) ds + B(1) / e IBOB(s) (s) ds
© ’ , (22)
+ B(1) / e~ =9BOC(s)u(s) ds = B(7) / e~ =980 (5) ds.
0 0

Here g(s) = e7"°f(s) for almost every s € [0, 7].
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Hence,
B / e~ IBOY! (5 ds + B(1) / e PO B (sl (s) ds
0 0
+B() / e_(’_s)B(’)<C(s) . C(t))u(s) ds
0
+ B(@) / e~ IBOC(Hu(s) ds
0

t
= B(1) / e~ =980 g (5) ds.
0

Integrating by parts, we obtain

B(r) / e IBOY (5) ds = B(ow! (1) — B(t)e™™Vu’ (0)
0
—B(t) [ e "IPOB@ (s) ds
0

and
B@) / e~ IBOC(Hu(s) ds = COut) — e BOC(H)u(0)
0

t
- / e IBOC(tyd (s) dis.

0

Combining (24) with (25) and (23), we have

Bl (1) — B(ye®Ou, — Br) / e 1=9B0) <B(t) - B(s))u'(s) ds
0

+B(1) / e_(’_S)B(’)(C(s) - C(t))u(s) ds
0
+ COu®) — e BOC(t)uy — / e~ =9BOC(H) (5) ds
0

t
= B() / e =B o(s) ds.
0

Therefore
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Bt (t) + C(t)u(r) = B()e Bu, + eBOC(1)u,,
+ B() / e~ IBOB(r) = B(s)B(s)~ (B(s)u' (s) + C(s)u(s)) ds
0
- B() / e~ IBOB(r) — B(s)B(s)~ C(s)uls) ds + / e~ 9BOCHY (5) ds
0 0
+ B(5) / e~ IBOC(1) = Cls))u(s) ds
0

t
+ B(t) / e~ =9BO o(s5) ds.
0

This allows us to write

I — OBy + CHu) )
= B(t)e BOu, + ¢~ BOC(1)u,

— B() / PRGOLD (B(t) - B(s)>6(s)-10(s)u(s) ds
o , 27)
+ B(1) / ¢~ (=9BO) (ca) - C(s))u(s) ds + / e~ =IBOC(5) (5) dis
0 0
t
+ B9 / e =B o(s) ds,
0
where for almost every ¢ € [0, 7]

(Oh)(®) = B(1) / e~ IBOB(r) — B(5))B(s) " h(s) ds.
0

Then, if I — Q is invertible on L7(0, 7;H) we obtain

B®Ou' () + C(tH)u(r)

28
= (1= 07 [Ruty + Rosy + Wy + L4 + L + Watw] @, 2

here R, and R, are as in Proposition 3.5, L as in Proposition 3.3 and
Wi ()(0) 2= =B(0) /0 e IBOB() = Bls)) B Clou(s) s,
W,u)(t) == B() /0 te‘("s)B(’)(C(t) — C(s))u(s) ds,
Lyu(t) := /0 t e~ =IBOC(Hy (s) ds.
Now, we prove the boundedness of Q, W,, W, L, on L’(0, z;H) for p € (1, o). Let

h € I7(0, t;H). We have
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=s) (G

t
_ _ =9 3y
em @l < /O 1B S gy lle™ T o 20

X ||1B(s) = BO oy 1B ™ | g 1)1l dis (29)
<c / )1 BG) ) i A1 ds.
0 (1—s)

Now, once we replace B(s) by a + B(s), (29) is valid with a constant independent of
a > 0 by Proposition 3.1). using the estimate

Il (@l + B(s) ™| <<
L(H,V) \/&

in (29) for a + B(s), we see that

@D < Ca™2 / W= ) ds.
0 (t—s)2

Therefore, by using Young’s inequality we obtain

T
_1 w(s)
1Ol 2r 0,07 < Ca 2/0 7 ds.
§2

Using the assumption on w and taking a large enough makes Q strictly contractive,
so that (I — Q)~!is bounded on I7(0, 7;) by the Neumann series.
For W;, withi = 1,2 we have

" w(s)
“Wi(”)”lp(o,r;H) < Cl / 3 ds ”u”Lw(o,r;v)-
0 g2
The Sobolev embedding gives
Fw(s)
Wl 0.1y < C/ — ds |lullwis.c)-
0 §2

The following estimate holds for L,

ILaull e < CoV/TlH Nipo ey
As a result, we obtain from (28), (11) and the previous estimates
ICCu + BOW N 10,230
< (e + 8l

+ ”Ifllll(H,D(B(O)))l_lp + llugllx»)
L,

<C (“f”[p(o,fﬂ-t) + ”’41 ”(H»D(B(O)))l,lp + ””()pr)-
i
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Then u'" = g — C()u— B()u' € [7(0,t;H) and consequently u € MR(p, H) which
implies that the Problems (17) and (21) have maximal I”-regularity in H. This fin-
ishes the proof of the theorem. O

Following [2, Definition 3.4], we introduce the following definition

Definition 3.8 We say that (B(1)),¢(o, satisfies the uniform Kato square root prop-
erty if D(B(t)2) = V for all ¢ € [0, 7] and there are ¢;, ¢! > 0 such that for allv € V

1
crlvlly < IB@2 vl < vl (30)

The uniform Kato square root property is obviously satisfied for symmetric
forms (see Lemma 3.4(2)). It is also satisfied for uniformly elliptic operators (not
necessarily symmetric)

d
B(t) = = )’ 0(ay(t,x)d)

k=1

on L*(RY) since ||Vul|, is equivalent to ||B(t)%u||2 with constants depending only on
the dimension and the ellipticity constants, see [8].
From [1, Lemma 4.1] we have the following lemma

Lemma 3.9 Suppose (30). Then forall f € L,(0,7;H),0 <s <t <,

t
i / e BOLPrlly < CIfll oy
s

In the next result we prove maximal L’-regularity where we improve the
assumption on u, and prove that the solution belongs to CY([0,7],V). More
precisely

Theorem 3.10 We assume the uniform Kato property (30) and the following two
conditions that for all s,t € [0, 7]

1. |B(t’ u, V) - b(si u, v)| S W(lt - sl)”u“V”V“V’ Wlth wl [09 T] - [09 OO) is a non-
decreasing function such that

/ @dt<oo, w(t) < ct®, (31)
0 ¢2

for an arbitrary € > 0.
2. |JA® = Al zwyry < wollt = sD), with wy = [0, 7] = [0, 00) is @ non-decreasing
function continuous at 0 and satisfies

2
7wt 7w (1)
/—Wos()dmoo, / Ot dt < . (32)
0 0

12
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Then for all f € L*(0, t;H) and (uy, u,) € V X V, there exists a unique u € MR(2, H)
be the solution to the Problem (21). Moreover,u € c'([o, Tl;V).
Remark 3.11 We note that if w(¢) < Ct2* and w (1) < C't2** for some & > 0, then
the assumptions (31), (32) are satisfied.
Proof Firstly, we set wi (1) = wo(0) + yw(t). It is clear that
le(t, u,v) — e(s,u, v)| < w (|t =sD|lullyllvll, and w, satisfies the same conditions
with w,.
From (27) we have
(- Q)(B(.)u’ + C(.)u)(t) = B()e B 0u, + e BOC(1)u,
t
— B( / e—“—%’m(sa) - B(s)>6(s)—10(s)u(s) ds
0
t
+ B() / e—<f—5>3<f>(0(s) - C(t))u(s) ds
0
t
+ / e IBOCH (5) ds
0
t
+ B(?) / e =980 (5) ds,
0
such that

(Oh)(1) = B(1) / e =IBOB(r) — B(s)B(s) ' h(s)ds, t € (0, 7).
0

To prove maximal L?-regularity we follow the same proof as in Theorem 3.7. The
main difference is to prove that t — R,u (1) = e BOC(H)u, € L*(0, 7;H).
Observing that

Ryuy (1) = e~ BOC(1)u,

= e BOC(t) — C0)uy + e BOCO)u,. (33)

For the first term in the RHS of (33), we have
/ lle=O(C@) = CO)u|I> dr
0

T
< /O Je B2, 100 = CONR, ol

Tw (t)2
< C/ ‘t d [lug|1?
0

We write

e BOCOYuy = eBOCO0)uy — e BOC0)uy + e BOC0)u,,.
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The functional calculus for the sectorial operators B(f), B(0) gives

w(?)
] ||Mo||v~

12

“e—tB(z)C(O)uO — e_lB(O)C(O)Mo” <c

Clearly,
¢ BOCOY, = B0): e PO B0) > C(O)u,.

We note that by [2, Lemma 3.5] we have the quadratic estimate, namely
10O < e (34)
0

forall x € ‘H.
Hence,

/ e 50Oy |2
0
= / 1B(0)3 e~ B(0) ™3 C(O)u ||2dt
0

< || BO) 7 COu, 1%

Since D(BO0):)=V, we have DB0)1)=H and BO): e LNV, H) (see
Lemma 3.4).
Therefore

/0 e BOCO, I di < Cllug 2.

Then ||Ryupll 12007 < Clluplly, and maximal L?-regularity holds in 7. Thus,
u € MR2,’H).

We proceed to show that u’ € L*(0, 7;)).

Fix 0 <t < r and use (26), we obtain

W' (1) = —=B(t) "' Ctyu(t) + e POB(t) "' C(t)u,
+e B0y, + / e IBOB(1) — B(s))u (s) ds
0
+ / e~ =IBOC(r) — C(s))u(s) ds (35)
0
+/ e_(’_X)B(’)B(t)_IC(t)u’(s)ds+/ e~ =980 o(5) ds.
0 0

Now, we define the operator K in L*(0, 7;))) by
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K(h)(@) = / e IBOB(t) — Bls)h(s) ds,

0

where ¢ € [0, 7]. Taking the norm in V), it follows that
t
KDl < / le™ V5O 2oy 1B@) = B oy 1Al ds
0

w(t —
<c / T 5 1l

where C is a positive constant independent of 7. Now, we take = small enough such
that C/7 [ 22 ds < ¢, with0 < ¢ < 1.
\'2

We conclude that ||K(h)|| ;1) < ¢llhll;<(.:)) and hence I — K is invertible on
L*®(0, ;).
Using (35), we get

I = K)@)(t) = =By~ Ctyu() + PO B)™ Coyug
b0+ [ IR - Couts s
0

t
+ / e IIBOBW) T ey (5) ds + / e 0g(s) ds.
0 0

Therefore for r small enough and by using Lemma 3.9 we obtain
”u/”Lw(o,T;V) < C<||u||Loo(o,T;V) + lluglly + Ny Iy + ||g||l_2(0,r;7-t)
wi (D)
+ “u/”LZ(O,‘r;V) + / T dl ”u”Loo(OT V))

Since ' € L*(0, 7;)) n C([0, t];H), we have by [2, Lemma 3.7] that /(r) € V for
all t+ € [0, 7]. Now, for 7 arbitrary we split (0, 7) into small intervals and proceed
exactly as in the previous proof. In order to obtain a solution u € WH®(0, 7;V), we
glue the solutions on each-interval.

We fix s and 7 in [0, 7] such that s < . We get from the equation in (17)

/ t e™IBOY (1) di + / t e~ IBOB (1) dl

N

t t
+ / e BOCu(l) di = / e 0 0g(Dydl.

N

(36)

Hence,
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/ t e~ DBOY (1 dl + / t e IBOBI (1) dl

s S

+ / o~ (t=DB() <C(l) - C(t)>u(l) dl

' 37
+ / e~ DBOCyu(l) dl
lS
= / e IBOe(1)dl.
By performing an integration by parts we have
t
/ e—(t—l)B(t)ull(l) dl = M,(t) _ e—(t—x)B(t)u/(s)

t
- / e IPOBM (1) di

N

and

/ e~ PEOC(u(l) di = B~ Coyu(r) — e IBOB@) T Cltyu(s)
S | 39)
_/ e_(;_l)B(t)B(t)—lC(t)u/(l)dl-

s

Combining (39) with (38) and (37), we obtain

u' (@) —u'(s)
= (=B~ 'Cu(t) + e IPOB@) I Ctuls))

+ (e7UPOY (5) = (9)) + / e IBOB() — By (1) dl

R

N / e~ =DBOC(r) = Cull) di

¢ t
+ / e_(t_l)g(;)B(t)—lC(t)u/(l) dl + / e—(t—l)B(l)g(l) dl
1= K (4,5) + Ky(t,9) + K3 (1, 5) + Ky (1, 5) + K5(1,5) + Ky (2, 5).

Observing that
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e IBOBNIC()u(s) — B(E) ' Ctu(t)
= [e7UIBO — e~ =IBO] B(1) I C(s)u(s)
+ e TBOBN ™ = Bs)™HC(s)uls)
- (B0~ = Bls)"HC(nu) (40)
+ B(s)™ (C(s)u(s) — Cu(t))
+ B(s)" (e7 B — DC(s)u(s)
=105, 0+ L(s, ) + I;(s, 1) + 1,(s, 1) + Is(s, 1).

We write by the functional calculus for the sectorial operators B(f), B(s)

e TIB0 — o (7IB0) = L / e A= B) T (B(1) — B(s))(A — B(s))™" dA,
2mi r

where I = 05, is the boundary for an appropriate sector S,, with 6 € (0, %). Then
11, (s, Dl
= 170 — ) By Csyu(s)

= 2i I / e~ = B®)"N(B(1) — B(5))(A — B(s))"' B(t)"' C(s)u(s) dAll,,
T r

< / IO G BN o 1A = B6) ™ L2y dl Al
T
X ||1B(t) = B($)l oy 1B@ ™' C)uls)ly,
<cwli—s) / e8] 127 d1A] )l
r

LGN

< 9)
=y

where € is an appropriate small positive constant and ¢, > 0 depending on &.
Now the fact w(f) < ct* for some € > 0 imply that ||/,(s, #)||, > Oast — .
For i = 2,3, we have immediately

7(s, DIy < CIB@) = B vy lell Lo s -

For the last terms in (40) we get
11,5, DIy, < CiIC()uls) — C(Ou@)||y-
I15(s, Dl < Coll (775 = 1) Cls)us)llys-

Since t — C(u(t) € C([0,7];)) and by the strong continuity of the semigroup
r — e ™9 onV one has

lle= 98D By~ Cs)u(s) — BE) ' COu@|l,, = 0

ast — s. Therefore || K, (t,5)|[, = Oast — s.
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We write
1Ky (8, )y = [I[e" 25O — i ()],
< |[e” 9B — = =9BOW/ ()], + ([[e” 95 — 1 (5)| -

We estimate the first term on the RHS. By using again the functional calculus for the
operators B(f), B(s) we have

w(t —s)
(t—9)¢

” [e—(t—S)B(t) _ e—(t—x)B(S)]ul (S) “ y S C’

llu' ()1l
for appropriate small ¢’ > 0.
By the strong continuity of the semigroup r — ¢~ on V one has

Ile™59) — ' ()], - 0 as t — s.

Therefore | K, (¢, s)||,, = O as t — .
Taking the norm in V), we obtain

B@) = BON ey
O e s
N

! w(t—=1)
sq/ T

"NC@® = CDll gy
Ky < € |
"wi(t=10
< Cz/ ltT dl ||u||L°°(s,I;V)'

I1Ks(t,9)lly < C3(t = 5) |t | 09

where C,, C,, C; are a positive constants independents of s and ¢.
By using Lemma 3.9 we get

“Ké(t’ S)“V < C||g||L2(s,z;V)'

Hence, ||u'(7) — u/(s)||, = 0 as t — s. This proves that «’ is right continuous for the

norm of V.
It remains to prove left continuity of i’
Fix 0 < s <t < 7. We integrate the Eq. (17) from s to ¢ to obtain

" t

/ e_(Z_S)B(S)uN(l)dl'i'/ e—(l—s)B(s)B(l)ul(l) dl

s , S '
+/6%M%wmm=/éww%mﬂ

Now, by integration by parts we get
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U (s) = e B (1) — B(s)™' e BOC@yu(r) + B(s) ™ Cltus)

42 / e~ =98 (B (1) + C(Dul)) dl
N / e~ =989) (B(s) = By (1) dl
_ / e~ =959(C(1) — eyl i

' t
- / e OB Cod (1) dl ~ / eI g () dl.

N s
Hence,
W' (s) —u'(t) = e B (1) — /(1)

— B(s) e BOC)u(r) + B(s) " C(H)u(s)

+2 / e~ IBO B (1) + C(Du(l)) dl
" / e~ 9B (B(s) — B)u' (1) dl
_ / e~ =9BO(C(1) = Ceyyu(l) dl

¢ t
- / e BOB(s) oyl (1) dll — / ™Dy dl.

s s

We now proceed analogously as the proof of the right continuity of «’, we obtain that
' @t) — ' ()|, > 0 ass—t

We have proved that «’ is left continuous in V and finally u € C'([0, 7];V). Therefore

v € C'([0, 7];V). This finishes the proof of the theorem. O

For higher order equations we have

Theorem 3.12 Let (A,(1)cio.ricniny N € N* such that A1) € LWV, V) for all
i € [1,N]and || A;(0)|l zvyy < M. We suppose that (Ay(t)),epo. is associated with V
-bounded quasi-coercive forms and for alli € [1,N]

IA,() = A9l 2oy < Kt —5]°

for some K > 0 and a > % We assume in addition that (Ay(t) + V)0 1 Satisfies the
uniform Kato property (30). Then for all f € L*(0,7;H) and uy, ... ,uy_, € V there
exists a unigue u € WN2(0, 7;H) N C¥1(0, 7;V) be the solution to the problem
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uM(t) + Ay OuN=D(0) + Ay (OuN=2(@0) + - + A, (Ou@) = f(t) t-ae.
u™=-D(0) = Un_1s .-, u(0) = u.
41
In addition, there exists a positive constant C independent of uy, ..., uy_, and f such
that

i=0

N-1
lellywvao.ernev-100m) < C<Z llot;lly + |lf||L2(0,T;H)>'

Proof We give only the main ideas of the proof. We prove the theorem by induction.
In case N = 1 the result follows from [1, Theorem 4.2]. The theorem holds for N = 2
by Theorem 3.10. Now, we assume that the theorem is true at order N — 1 where N is
an arbitrary positive integer. By integration and following the same strategy of proof
as in Theorem 2.6 we prove maximal I’-regularity in ) for the Cauchy problem
(41) and we have u € WN2(0, 7;V') n WN-12(0, 7;)).

Let y > 0 and set v(¢) = e~ ""u(t). By Leibniz’s rule and using the Eq. (41) we get
that v is the solution to the problem
Y1) + (Ay(®) + Ny Dy () + TEE Cov (@) = e7'f () t-ace. "
vO0) = v = Ty Ci—p) Ty, k€ [0.N — 1], (42)
where  C(1) = (0T (-1¥Hel c;")yN-fl + XN Oy T A (@), forall
JEION—1land C!" = 7 (n':'ii)' . Here v is the derivative of order ;.

We assume now that y > %, then Cy_,() = Ay(t) + Nyl is associated with V
-bounded coercive form for all r € [0, 7].

By performing an integration by parts as in (24), (25) we obtain

Co 1 (VD@ + Cpy (VY2 (E) + -+ + Co(t)(F)

— CN_] (t)e—lCN,l(l)VN_l + e—lCN—l([) <C] (I)VO + e+ CN—Z(I)VN—2>
t
+Cy_y (0 / e 0(Cyy (1) = Cyy (9 )V V) ds
° t
+ CN—l (t)/ e~ =91 (1) <CN_2(I) _ CN_2(S))V(N_2)(S) ds
0 t
+ e+ CN—l(t)/ e—(t—S)CN—l(l)(CO(t) — CO(S))V(S) ds
0
t
* / e Oy (5) + ++ + Cya ™ (s) ) s
0
t
+CN_1(I)/ e~ 0107751 (5) dis.
0

We now proceed analogously to the proof of Theorem 3.10 to prove maximal L?
-regularity in . The details are left to the reader. O
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4 Counter-examples

In this section we give some examples where the maximal regularity fails.
Let

c:VxV->C

be bounded coercive form and let C is the operator associated to ¢ in) andC = C |y, .
We introduce the following space

L*(0,7:D(C)) := {u € L*(0,7;H) : Cu € L*(0, ;H)},
with norm
el 20,00 2= NCull 20,2:00)-
Let us consider the space
MR-2,H) := {u € W20, 7;H) n W0, 7;V) : Cu+u') € L*(0,7;H)}
endowed with norm
Nellyre a0 2= 10" 202000 + 1CQ + 1D 20,230)-
We define the associated trace space by
TR.(2, H) = {(u(0), 4’ (0)) : u € MR-(2,’H)},
with norm

Nl Gt )7z 2.3y = inf{lletllpgr 2.3y * o = u(0), u' (0) = u; }.

Proposition 4.1 We have

5

Proof Let us first prove that TR (2, H) C D. Indeed, let u € MR~(2,H) and we set
v=u+u'.Then

v € L0, 7:D(C)) n W20, 77H)

and by Lemma 2.3 one has v € C([0, z[;(H, D(C)) 1 ,).
Moreover, v(0) € (H, D(C))l,z, u(0) +u'(0) € (H, D(C))ly2 and u(0) € V.

Thus, TR.(2,’H) € D.

We next prove D C TR (2, H). Indeed, let (u,,u;) € D. By [17, Corollary 1.14],
there exist v € L*(0, 7;D(C)) n W'2(0, 7;H) such that v(0) = u, + u,.

Now, we set
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u(t) = e ug + / v(s)ds, te][0,r].
0

We conclude that u(0) = u,, ' (f) = —e"uy + v(r) and '(0) = u,. Furthermore
u€ W0, 7;H)nWh0,7;V)  and  u+u € L*0,7;:D(C)).

Thus D C TR (2, H). Then the claim follows immediately. O

4.1 Dier’s counter-example

The example below is inspired by [5] who considered the first order Cauchy problem.
According to [19], there exist Hilbert spaces V,H wilth V <, 'H and a V-bounded
coercive form b : Vx V — C such that D(B2) # D(B*2), where B is the associated
operator with b on V' and B is the restriction of B to H.
We define the symmetric forme : VXV — Cby

c(v,w) = % [B(v, w) + b(w, v)].

Let C be the associated operator with the form ¢. We set C = C |, is the part of C in

H.
It follows that

D(C3) = D(C*3) = V.

Let¢p € MRg(2, H) such that (¢(0), ¢’(0)) = (0,u,)andu, € D(B%) \V (D(Bl*%) \ V).
Note lsuch u, exists since from Lemma 3.4 or [15, Theorem 1] either D(B2) \ V or
D(B*7) \ V is not empty.

We set v(¢) = —t2¢(1 — t) with ¢ € [0, 1], one has V/(f) = =2tp(1 — 1) + 2¢'(1 — 1)
withv/(0) = 0,v(0) = 0and v(1) = 0,V/(1) = u;.

Remark 4.2 Note that by Proposition 4.1 we have (0,u;) € TRy(2,’H) but
0,u;) & TR.(2, H).

We define the non-autonomous forms
a(ty, ) = 1][0,1|(t)b(‘, )+ 1][1,2|(t)c('s )s
where 1 is the indicator function and we denote by .A(¢) the associated operator to

a(®)in V.
Set

0 otherwise . (43)

Let u be the solution to the problem
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{ W'(t) + AW (1) + Au(t) = f(1)  t-ae. 4

u©0)=0, u'(0)=0,

with ¢ € [0,2]. Then by Theorem 2.6 we get u € W>2(0,2;) n W'2(0,2;)).
Moreover, u ||y = v, u'(1) = u; and u(1) = 0. We put now w(r) = ulp =1,
one has w(0) = 0 and w'(0) = u,.
Since (0, u;) & TR.(2, H), we obtain that w & MR-(2,’H) and w is the solution to
the following problem on L(0, 1;))

{waﬂ4mun+mm=o t-a.e. 45)

w(0)=0, w\(0)=uy,.

Thus, w & W22(0, 1;H) and u & W32(0,2;H).

4.2 Fackler’s counter-example

Proposition 4.3 For all t € (0, ) there exist a Gelfand triple V < H < V and a
V-bounded coercive, symmetric, non-autonomous forms

a,b:[0,7] X VXV - C,

with t = a(t,u,v),b(t,u,v) € C%([O, 7)), for all u,v € V such that the second order
Cauchy problem (21) does not have maximal L*-regularity in 'H.

Proof According to [13, Theorem 5.1], there exist a Gelfand triple V & H & V' and
a bounded coercive, symmetric, non-autonomous form

a:[0,7]xVXxV—>C

with t - a(t,u,v) € C%([O, 7]) for all u,v €V, such that the first order Cauchy
problem

' (t) + A(Du(t) = f(r) t-ae.
{mm:o (46)
does not have maximal L>regularity in 7, or equivalently, there exists
f€eL?0,7;H) such that ue WL20,7;V)NL*0,7;V) but u & W20, 7;H).
Now, we take b(f) = a(r)+I and we set v(f) = fot e~ =9y(s)ds. Consequently,
v(®) + V' (t) = u(?) and so V' (1) + V" () = v’ (¢).

We get by Theorem 2.6 that v € W>2(0, 7;V) n W'2(0, 7;)) is the unique solu-
tion to the problem

V(@) + (A@) + DV () + A@v(t) = f(r) t-ae. 4
W0) =0, V(0)=0. 47)
Note that u € W"2(0, 7;H) if and only if v € W>2(0, 7;H).
Let the form a(-) and V,H be as in [13, Theorem 5.1]. Then there exists
f € L*0, t;H) such that u & W'-2(0, 7;H), where u is the solution to Problem (46).
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It follows that v/ & W22(0, 7;H) and so Problem (47) does not have maximal L?
-regularity in H. O

5 Applications

This section is devoted to some applications of the results given in the previous sec-
tions. We give examples illustrating the theory without seeking for generality.

5.1 Laplacian with time dependent Robin boundary conditions

Let Q be a bounded domain of R?, with Lipschitz boundary I". Denote by o the
(d — 1)-dimensional Hausdorff measure on I'. Let

B, B i [0,7] X' > R

be bounded measurable functions which are (% + £)-Holder continuous w.r.t. the first
variable with € > 0, i.e.,

1B.(t. 0) — Bi(s.0)| < K|t — 5|3+

fori=1,2,witht,s € [0,7],0 €l"and K > 0.
We consider the forms a, b

a,b:[0,7] x H'( Q) xH'(Q) - R
defined by

a(t,u,v):/Vqudx+/ﬁ1(t, Juvdo
Q r

and

B(t,u,v)=/Vqudx+/ﬁ2(t,.)uvda.
Q r

The forms a, b are H'(Q)-bounded, quasi-coercive and symmetric. The first state-
ment follows readily from the continuity of the trace operator and the boundedness
of §;, i = 1,2. The second one is a consequence of the inequality

2 2 2
[ s < elllfy g, + €.l

which is valid for all € > 0 (C, is a constant depending on €). Note that this is a con-
sequence of compactness of the trace as an operator from H'(Q) into L*(T", do).

Let A(z) be the operator associated with a(z, -, -) and B(¢) the operator associated
with B(z, -, -). Note that the part A(¢) in H := L*(Q) of A(¢) is interpreted as (minus)
the Laplacian with time dependent Robin boundary conditions:
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ov+pt)v=0 onT.

Here we use the following weak definition of the normal derivative. Let
v € H'(Q) such that Av € L*(Q). Let h € L*(T,do). Then d,v = h by definition if
Jo VvVwdx + [, AvWwdx = [ hwdo for all w € H'(Q). Based on this definition,
the domain of A(¢) is the set

DA(®)) = {u€ H'(Q) : Au € L*(Q), o,u+ p,(t,.)u =0}

and for u € D(A(¢)) the operator is given by A(f)u := —Au. The same definition for
the operator B(?).
In the next proposition we suppose that w, € (LZ(Q),D(B(O)))I_l,p, wy € H(Q)
forp<2andw, € (LZ(Q),D(B(O)))I_ip, wy € (Hl(Q),D(A(O)))l_lp for p > 2.
p’ p’
We note that for p < 2

(),

2 2 1 2(1_71:)’2
L), DB0)),_1 , = (L(Q), H (Q))z(l_%),,, =B,

(1--), . .
where B, " (€)is the classical Besov space.

Proposition 5.1 For all f € [7(0,t;H), there exists a unique solution of the
problem

w'(@) — Aw' (1) — Aw(r) = f(r) t-ae.
w(0) =wy, w(0)=w,, (48)
0,(W (1) + w(®)) + By (2, W (@) + p,t, )w(@®) =0 on T,

where w € W?P(0,7;L2(Q)) N W'(0,7;HY(Q)) and for p>2, we have
w e CY([0, 7];H (Q)).

The proposition follows from Theorems 3.7 and 3.10.

Maximal LP-regularity for the Laplacian with time dependent Robin boundary
condition with g, = f, and wy, = w; = 0 was previously proved in [9] and maximal
L?-regularity with t — B,(t,-), (t,) € C! was proved in [11].

5.2 Elliptic operators on RY
Let H = L>(R%) and V = H'(R?). Suppose that a;k e L*(I x RY), where I = [0, 7]
and j,k e (1,...,d), [ € (1,2) and there exists a constant « > 0, such that

d

> a5 2 alé) (1€l xe R, £eC?).
jk=1

We define the forms
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d
I _ I 5
a'(t,u,v) = Z /Rd ajk(t, x)0;u 0,V dx

Jk=1

with domain V = H'(R?). For each ¢, the corresponding operator is formally given
by

d

AW ==Y o (1,209 = —div((ajk(t, -))jkv).

Jk=1

Proposlition 5.2 Let uyu; € H'(R?Y and feL*0,t;L*RY) and if
a]l.k € C:*(LL®(RY)  for  some e>0, there exists a unique
u € H*(ILA(RY) n C'(I;HY (RY)) such that

Wt — div((a}k(t, -))jkVu/(t)> - div((ajzk(t, -))jkVu(t)> =/ rae o
u0) = uy, u'(0)=u,.

It is clear that
! ! ! Lie
la’(z,u,v) — a'(s,u,v)| < C |t =527 |ullylv]ly,

where

I _ L.
C'= Sjl:lkp ”ajk( 5 )“C%%U;Lm(Rd))‘

As we already mentioned before, the uniform Kato square root property required in
Theorem 3.10 is satisfied in this setting, see [8, Theorem 6.1]. Then Proposition 5.2
follows from Theorem 3.10.
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