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Abstract
This paper deals with a homogeneous Neumann problem of a nonlinear diffusion 
system involving variable exponents dependent on spatial and time variables and 
cross-diffusion terms. We prove the existence of weak solutions using Galerkin’s 
approximation and we derive suitable energy estimates. To this end, we establish 
the needed Poincaré type inequality for variable exponents related to the Neumann 
boundary problem. Furthermore, we show that the investigated problem possesses 
a unique weak solution and satisfies a stability estimate, provided some additional 
assumptions are fulfilled. In addition, we show under which conditions the solution 
is nonnegative.

Keywords Nonlinear parabolic equations · Existence · Uniqueness · p(x, t)-growth · 
Cross-diffusion
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1 Introduction

In this paper, we study a nonlinear parabolic system with nonstandard growth con-
dition, where the (weak) solution satisfies a homogeneous Neumann boundary 
condition, which is motivated by several issues and numerous applications. While 
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Dirichlet boundary conditions correspond to the perfectly conducting boundary, 
Neumann boundary conditions correspond to the perfectly isolating boundary (i.e. 
no-flux boundary condition). We want to highlight that one of the first existence 
result for a degenerate parabolic Neumann boundary value problem is available in 
[37]. In the following, we will prove the existence of (weak) solutions to the system 
we will describe below in detail. Furthermore, we will derive additional assumptions 
for which this system possesses a unique (weak) solution. Finally, we will establish 
under which condition the solution is nonnegative.

The investigation of parabolic problems like reaction–diffusion systems or evolu-
tionary equations is motivated amongst others by several applications. For instance, 
such equations and systems are important for the modelling of space- and time-
dependent problems, e.g. problems in physics and biology. In particular, evolution-
ary equations and systems can be used to model physical processes like heat con-
duction, diffusion processes or wave propagation, see e.g. [10, 27, 48]. The second 
interesting aspect here is the nonstandard growth setting. Such setting arises for 
instance by studying certain classes of non-Newtonian fluids such as electro–rhe-
ological fluids or fluids with viscosity depending on the temperature. In general, 
electro-rheological fluids are of high technological interest, because of their abil-
ity to change their mechanical properties under the influence of an exterior electro-
magnetic field [18, 46]. Many electro-rheological fluids are suspensions consisting 
of solid particles and a carrier oil. These suspensions change their material prop-
erties dramatically if they are exposed to an electric field. Known results concern 
the stationary case with p(x)-growth condition, are studied e.g. in [2, 3, 17, 20, 28, 
42]. Furthermore, for the restoration in image processing one also uses some dif-
fusion models with nonstandard growth condition [1, 16, 34, 44]. In the context of 
parabolic problems with p(x, t)-growth, applications are models for flows in porous 
media [6] or parabolic obstacle problems [21, 23, 24]. Moreover, in the last years 
parabolic problems with nonstandard growth condition arouse more and more inter-
est in mathematics, cf. [5, 11, 43, 47]. The third interesting aspect of this paper is 
the effect of a cross-diffusion term. Such a term is for example used to model the 
interaction between the species, which often leads to cross-diffusion effects [12, 13, 
38]. The difficulty here is that such an effect may lead to unexpected behaviour, see 
e.g. [15]. Finally, the study of a problem with cross-diffusion is motivated by the fact 
that parabolic problems with cross-diffusion play a crucial role in biological applica-
tions like epidemic diseases, chemotaxis phenomena, cancer growth and population 
development, cf. [30, 36].

Nowadays, there is a rich literature regarding nonstandard growth problem 
focused on the existence of (weak) solutions and their properties. For instance, theo-
rems of existence and uniqueness of weak solutions to the prototype problem, i.e. 
the parabolic p(x, t)-Laplacian

were proved in [7, 32] for a single equation and in [19] for systems of evolution 
p(x,  t)-Laplace equations. The problem with the Cauchy–Dirichlet boundary con-
dition was studied in [25], while in [29] the corresponding Neumann boundary 

ut − div
(|∇u|p(x,t)−2∇u) = f ,
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problem was considered, see also [40, 49]. Furthermore, in [25] an Aubin–Lions 
type theorem was established, which we will also use in this paper. In addition, 
the author of [25] considered more general vector-fields, which are related to the 
parabolic p(x,  t)-Laplacian, and inhomogeneities. Moreover, in [26] the existence, 
uniqueness and stability of a weak solution to the equation

where � ≥ 0 and the vector-field a(x, t, ⋅) satisfies certain p(x, t)-growth and monoto-
nicity conditions, cf. [25], was shown, see also [14] for p =constant. Additionally, in 
[8] it is shown that the solutions of a similar problem may vanish in finite time even 
if the equation combines the directions of slow and fast diffusion, and the extinction 
moment is estimated in terms of the data. Further, very recently the existence of 
weak solutions to a homogeneous Dirichlet problem of a nonlinear diffusion equa-
tion involving anisotropic variable exponents and convection was studied in [39].

1.1  Plan of the paper

The paper is organised as follows: The rest of this sections is focused on the for-
mulations of the problem, which we are going to study. Furthermore, we will refer 
some known results on nonstandard Lebesgue and Sobolev spaces, before we state 
some preliminary results and tools, which are needed to established our existence 
result. In Sect. 2, we will state our main result. Then, in Sect. 3, we prove the exist-
ence of weak solutions to the considered parabolic Neumann boundary problem 
using Galerkin’s approximation and we derive suitable energy estimates. Moreover, 
in Sect.  4, we will establish under which conditions the weak solution is unique. 
Finally, in Sect. 5, we will prove that the solution in nonnegative, provided certain 
assumptions are fulfilled.

1.2  Notation and formulation of the problem

In this paper, Ω ⊂ ℝ
n denotes a bounded Lipschitz domain of dimension n ≥ 2 and 

we write QT ∶= Ω × (0, T) for the space-time cylinder over Ω of height T > 0 . Here, 
ut or �tu respectively denote the partial derivative with respect to the time variable 
t and ∇u denotes the one with respect to the space variable x. Moreover, we denote 
by 𝜕PQT ∶= (Ω̄ × {0}) ∪ (𝜕Ω × (0, T)) the parabolic boundary of QT and we write 
z = (x, t) for points in ℝn+1 . The aim of this paper is the investigation of the follow-
ing Neumann problem:

ut − div(a(x, t,∇u)) = −�|u|p(x,t)−2u,

(1.1)

⎧⎪⎪⎨⎪⎪⎩

�tu = d1div(A1(x, t,∇u)) + div(�1(x, t)∇u + �2(x, t)∇v), (x, t) ∈ QT

�tv = d2div(A2(x, t,∇v)) + div(�3(x, t)∇u + �4(x, t)∇v) − ��u�q(x,t)−2u, (x, t) ∈ QT
�u

��
=

�v

��
= 0, (x, t) ∈ ST

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω
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with u0, v0 ∈ L2(Ω) , where ST ∶= �Ω × (0, T) , � denotes the exterior normal to the 
boundary �Ω and di > 0 , i = 1, 2 , � ≥ 0 with

which is the case if

Furthermore, the vector-fields Ai(x, t, ⋅) are assumed to be Carathéodory functions 
and satisfy the following coercivity, growth and monotonicity conditions:

where 0 < 𝜇i ≤ Li < ∞ , for almost every (x, t) ∈ QT and for every �, �� ∈ ℝ
n with 

hi ∈ Lp
�(x,t)(QT ) , where i = 1, 2 and Lp�(x,t)(QT ) denotes the nonstandard p(x, t)-Leb-

esgue space for p�(x, t) = p(x,t)

p(x,t)−1
 , which we will define later. In addition, the func-

tions �k(⋅) , k = 1,… , 4 are measurable functions satisfying

Moreover, the growth exponent p ∶ QT → [2,∞) satisfies the following conditions: 
There exist constants �1 and �2 , such that

hold for any choice of z1, z2 ∈ QT , where � ∶ [0,∞) → [0, 1] denotes a modulus 
of continuity. More precisely, we assume that �(⋅) is a concave, non-decreasing 
function with lim�↓0 �(�) = 0 = �(0). Moreover, the parabolic distance is given by 
dP(z1, z2) ∶= max{�x1 − x2�,

√�t1 − t2�} for z1 = (x1, t1), z2 = (x2, t2) ∈ ℝ
n+1 . In 

addition, for the modulus of continuity �(⋅) we assume the following weak logarith-
mic continuity condition

Similarly, the exponent q(x, t) is assumed to fulfil the conditions:

for any choice of z1, z2 ∈ QT.

(1.2)

(1.3)∫Ω

u dx = ∫Ω

v dx = 0.

(1.4)Ai(x, t, �) ⋅ � ≥ �i|�|p(x,t),

(1.5)|Ai(x, t, �)| ≤ Li(hi + |�|p(x,t)−1),

(1.6)(Ai(x, t, �) − Ai(x, t, �
�))(� − ��) ≥ 0,

(1.7)0 < a0 ≤ 𝛼k(x, t) ≤ a1 < ∞, a0, a1 = constant for all (x, t) ∈ QT .

(1.8)2 ≤ 𝛾1 ≤ p(z) ≤ 𝛾2 < ∞ and |p(z1) − p(z2)| ≤ 𝜔(dP(z1, z2))

(1.9)lim sup
𝜌↓0

𝜔(𝜌) log

(
1

𝜌

)
< ∞.

(1.10)1 < q(z) ≤ 2 and |q(z1) − q(z2)| ≤ 𝜔(dP(z1, z2))
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1.3  Function spaces

The spaces Lp(Ω) , W1,p(Ω) and W1,p

0
(Ω) denote the usual Lebesgue and Sobolev spaces, 

while the nonstandard p(z)-Lebesgue space Lp(z)(QT ,ℝ
k) is defined as the set of those 

measurable functions v: QT → ℝ
k for k ∈ ℕ , which satisfy |v|p(z) ∈ L1(QT ,ℝ

k) , i.e.

The set Lp(z)(QT ,ℝ
k) equipped with the Luxemburg norm

becomes a Banach space. This space is separable and reflexive, see [4, 19]. For ele-
ments of Lp(z)(QT ,ℝ

k) the generalised Hölder’s inequality holds in the following 
form: If f ∈ Lp(z)(QT ,ℝ

k) and g ∈ Lp
�(z)(QT ,ℝ

k) , where p�(z) = p(z)

p(z)−1
 , we have

see also [4]. Moreover, the norm ‖ ⋅ ‖Lp(z)(QT )
 can be estimated as follows

Notice that we will use also the abbreviation p(⋅) for the exponent p(z). Next, we 
introduce nonstandard Sobolev spaces for fixed t ∈ (0, T) . From assumption (1.8) 
we know that p(⋅, t) satisfy |p(x1, t) − p(x2, t)| ≤ �(|x1 − x2|) for any choice of 
x1, x2 ∈ Ω and for every t ∈ (0, T) . Then, we define for every fixed t ∈ (0, T) 
the Banach space W1,p(⋅,t)(Ω) as

equipped with the norm

In addition, we define W
1,p(⋅,t)

0
(Ω) as the closure of C∞

0
(Ω) in W1,p(⋅,t)(Ω) 

and we denote by W1,p(⋅,t)(Ω)� its dual. For every t ∈ (0, T) the inclusion 
W

1,p(⋅,t)

0
(Ω) ⊂ W

1,𝛾1
0

(Ω) holds true. Furthermore, we denote by Wp(⋅)
g (QT ) the Banach 

space

equipped with the norm ‖u‖Wp(⋅)(QT )
∶= ‖u‖Lp(⋅)(QT )

+ ‖∇u‖Lp(⋅)(QT )
. If g = 0 we 

write Wp(⋅)

0
(QT ) instead of Wp(⋅)

g (QT ) . Here, it is worth to mention that the notion 
(u − g) ∈ W

p(⋅)

0
(QT ) or u ∈ g +W

p(⋅)

0
(QT ) respectively indicate that u agrees with g 

Lp(z)(QT ,ℝ
k) ∶=

{
v ∶ QT → ℝ

k is measurable in QT ∶ ∫QT

|v|p(z)dz < +∞

}
.

‖v‖Lp(z)(QT )
∶= inf

�
𝛿 > 0 ∶ �QT

����
v

𝛿

����
p(z)

dz ≤ 1

�

(1.11)
������QT

fgdz
�����
≤
�

1

�1
+

�2 − 1

�2

�
‖f‖Lp(z)(QT )

‖g‖Lp�(z)(QT )
,

(1.12)−1 + ‖v‖�1
Lp(z)(QT )

≤ �QT

�v�p(z)dz ≤ ‖v‖�2
Lp(z)(QT )

+ 1.

W1,p(⋅,t)(Ω) ∶= {u ∈ Lp(⋅,t)(Ω,ℝ) | ∇u ∈ Lp(⋅,t)(Ω,ℝn)}

‖u‖W1,p(⋅,t)(Ω) ∶= ‖u‖Lp(⋅,t)(Ω) + ‖∇u‖Lp(⋅,t)(Ω).

Wp(⋅)
g

(QT ) ∶=
{
u ∈ [g + L1(0, T;W1,1

0
(Ω))] ∩ Lp(⋅)(QT ) | ∇u ∈ Lp(⋅)(QT ,ℝ

n)
}
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on the lateral boundary of the cylinder QT , i.e. u ∈ W
p(⋅)
g (QT ) . In addition, we denote 

by Wp(⋅)(QT )
� the dual of the space Wp(⋅)

0
(QT ) . Note that if v ∈ Wp(⋅)(QT )

� , then there 
exist functions vi ∈ Lp

�(⋅)(QT ) , i = 0, 1,… , n , such that

for all w ∈ W
p(⋅)

0
(QT ) . Furthermore, if v ∈ Wp(⋅)(QT )

� , we define the norm

Notice, whenever (1.13) holds, we can write v = v0 −
∑n

i=1
∇ivi , where ∇ivi has to 

be interpreted as a distributional derivate. By

we mean that there exists wt ∈ Wp(⋅)(QT )
� , such that

see also [19]. The previous equality makes sense due to the inclusions

which allow us to identify w as an element of Wp(⋅)(QT )
� . Finally, we are in the situa-

tion to give the definition of a weak solution to the parabolic problem (1.1):

Definition 1.1 A pair of function (u,  v) is called a weak solution of (1.1) if 
and only if (u, v) ∈ (L∞(0, T;L2(Ω)) ∩Wp(⋅)(QT ))

2 and for every test function 
𝜙i ∈ C∞

0
(Ω̄ × [0, T)) , i = 1, 2 , the following equalities hold:

where  (1.3) and the initial value conditions u(⋅, 0) = u0(x) ∈ L2(Ω) , 
v(⋅, 0) = v0(x) ∈ L2(Ω) a.e. on Ω , i.e.

(1.13)⟨⟨v,w⟩⟩QT
= ∫QT

�
v0w +

n�
i=1

vi∇iw

�
dz

‖v‖Wp(⋅)(QT )
� ∶= sup{⟨⟨v,w⟩⟩QT

�w ∈ W
p(⋅)

0
(QT ), ‖w‖Wp(⋅)

0
(QT )

≤ 1}.

w ∈ W(QT ) ∶=
{
w ∈ Wp(⋅)(QT )|wt ∈ Wp(⋅)(QT )

�
}

⟨⟨wt,�⟩⟩QT
= −∫QT

w ⋅ �tdz for all � ∈ C∞
0
(QT ),

Wp(⋅)(QT ) ↪ L2(QT ) ≅ (L2(QT ))
� ↪ Wp(⋅)(QT )

�

(1.14)
∫QT

u
��1

�t
−
[
d1A1(x, t,∇u) + �1(x, t)∇u + �2(x, t)∇v

]
⋅ ∇�1dz = ∫Ω

u�1dx
||||
T

0

,

(1.15)

∫QT

v
��2

�t
−
[
d2A2(x, t,∇v) + �3(x, t)∇u + �4(x, t)∇v

]
⋅ ∇�2 − �|u|q(x,t)−2u�2dz

= ∫Ω

v�2dx
||||
T

0

,

1

h ∫
h

0 ∫Ω

|u − u0|2dxdt → 0 and
1

h ∫
h

0 ∫Ω

|v − v0|2dxdt → 0 as h ↓ 0
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are fulfilled.

1.4  Preliminary results and tools

To derive our existence result, we will need the following Poincaré type estimate, 
which is a modification of the Poincaré type estimate from [22, Lemma 3.9].

Lemma 1.2 Let Ω ⊂ ℝ
n , n ≥ 2 , be a bounded Lipschitz domain. Assume that 

u ∈ L∞(0, T;L2(Ω)) ∩Wp(⋅)(QT ) with uΩ = 0 and p(⋅) satisfies the conditions (1.8) 
and (1.9). Then, there exists a constant c = c(n, �1, �2, diam(Ω),�(⋅)) , such that the 
following two Poincaré type estimates are valid:

and

Proof The proof of Lemma 1.2 is very similar to the proof of [22, Lemma 3.9]. To 
derive the needed Poincaré type estimate we apply the Gagliardo–Nirenberg’s ine-
quality from [41]. Then, we have to follow the proof of [22, Lemma 3.9] to derive 
the following estimate:

with a constant c = c(n, �1, �2,�(⋅)) . Notice that up to (1.18) both proofs are identi-
cally, the only difference is that we now have to apply

due to the Neumann boundary condition, where cp = cp(n, �1, diam(⋅)) and we have 
to use (1.2). Thus, we can estimate as follows

which proves (1.16). To complete the proof we now have to combine (1.16) and 
(1.12), which implies (1.17).   ◻

Remark 1.3 Notice that Lemma 1.2 is valid for a exponent function 
p ∶ QT → (

2n

n+2
,∞) , while the problem (1.1) requires the restriction p(x, t) ≥ 2 due 

to the cross-diffusion terms.

(1.16)�QT

�u�p(⋅)dz ≤ c

�
‖u‖

4�2

n+2

L∞(0,T;L2(Ω))
+ 1

��
�QT

�∇u�p(⋅) + 1dz

�

(1.17)‖u‖�1
Lp(z)(QT )

≤ c

�
‖u‖

4�2

n+2

L∞(0,T;L2(Ω))
+ 1

��
�QT

�∇u�p(⋅) + 1dz

�
.

(1.18)�QT

�u�p(⋅)dz ≤ c

�
‖u‖

4�2

n+2

L∞(0,T;L2(Ω))
+ 1

��
�QT

�∇u�p(⋅) + �u��1 + 1dz

�

‖u − uΩ‖L�1 (Ω) ≤ cp‖∇u‖L�1 (Ω)

�QT

|u|�1dz ≤ cp(n, �1, diam(⋅))�QT

|∇u|p(⋅) + 1dz,
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After proving the energy estimate for the (weak) solutions, we will derive 
from Lemma 1.2 the needed Lp(⋅)(QT )−bounds for the approximate solution to 
(1.1). This together with the following Aubin–Lions type Theorem [25, Theo-
rem  1.3] will guarantee the strong convergence of the approximate solution to 
the solution in Lp(⋅)(QT ) . The Aubin–Lions type Theorem reads as follows:

Theorem  1.4 Let Ω ⊂ ℝ
n be an open, bounded Lipschitz domain with n ≥ 2 and 

p(⋅) >
2n

n+2
 satisfying (1.8) and (1.9). Furthermore, define p̂(⋅) ∶ = max {2, p(⋅)} . 

Then, the inclusion W(QT ) ↪ Lp̂(⋅)(QT ) is compact.

Moreover, the next two lemmas, which are useful tools when dealing with 
p-growth problems, we will need to prove the uniqueness of the weak solution to 
system (1.1). Therefore, we define a function by

Moreover, we cite the following lemma from [33, Lemma 2.1], which is established 
for the case � ≥ 0 in [31] and in the case 0 > � > −1 in [33].

Lemma 1.5 There exists a positive constant, depending on � > −1 , such that for all 
A,B ∈ ℝ

k with A ≠ B , we have

with � ≥ 0 .   ◻

Since q(⋅) > 1 , we are able to choose � = q(⋅) − 2 > −1 . Choosing � = 0 and 
k = 1 , then we consider V(A) = |A|q(⋅)−2A . This allows to infer from Lemma 1.5 
the next lemma.

Lemma 1.6 There exists a constant c ∶= c(n, �1, �2) , such that for any A,B ∈ ℝ
k and 

1 < q(⋅) ≤ 2 , there holds

and

where A ≠ B .   ◻

We are using Lemma 1.6 only for 1 < q(⋅) ≤ 2 . However, Lemma 1.6 holds 
true for all 1 < q(⋅).

V𝜇,�(A) ∶= (𝜇2 + |A|2) �

2A for A ∈ ℝ
k, � > −1 and 𝜇 ≥ 0.

1

c
(�2 + |A|2 + |B|2) �

2 |A − B| ≤ |V�,�(A) − V�,�(B)| ≤ c(�2 + |A|2 + |B|2) �

2 |A − B|

1

c
(|A|2 + |B|2) q(⋅)−2

2 |A − B| ≤ |V(A) − V(B)| ≤ c(|A|2 + |B|2) q(⋅)−2

2 |A − B|

(|A|2 + |B|2) q(⋅)−2

2 |A − B|2 ≤ c(V(A) − V(B)) ⋅ (A − B),
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2  Statement of results

In this section we state the main results of this paper. The existence result reads as 
follows:

Theorem  2.1 Let Ω ⊂ ℝ
n be an open, bounded Lipschitz domain with n ≥ 2 , 

di > 0 , i = 1, 2 , � ≥ 0 and u(x, 0) = u0(x) ∈ L2(Ω), v(x, 0) = v0(x) ∈ L2(Ω), x ∈ Ω , 
where  the initial values are given. Furthermore, suppose that growth exponent 
p ∶ QT → [2,∞) satisfies (1.8) and (1.9), while q ∶ QT → (1, 2] satisfies (1.10) and 
(1.9). In addition, assume that the vector-fields Ai(x, t, ⋅) are Carathéodory func-
tions and satisfy the coercivity (1.4), growth (1.5) and monotonicity (1.6) conditions. 
Moreover, let �k(⋅) , k = 1,… , 4 be measurable functions satisfying (1.7). Then, 
there exists at least one (weak) solution (u, v) ∈ (L∞(0, T;L2(Ω)) ∩Wp(⋅)(QT ))

2 with 
(ut, vt) ∈ (Wp(⋅)(QT )

�)2 and uΩ = vΩ = 0 , cf. (1.2) or (1.3), to the homogeneous Neu-
mann problem (1.1), which satisfies the following energy estimate:

with a constant c = c(a0, a1, d1, d2, �,�1,�2, �1, �2, ‖u0‖L2(Ω), ‖v0‖L2(Ω), �QT �).

Furthermore, the solution to the homogeneous Neumann problem (1.1) possesses 
a unique (weak) solution under certain assumption. The result reads as follows:

Theorem  2.2 Suppose that either q(⋅) ≡ 2 or � ≡ 0 . Under the assumptions of 
Theorem 2.1

i) and the additional assumption 

 for almost every (x, t) ∈ QT and for every �, �� ∈ ℝ
n the (weak) solution to the 

homogeneous Neumann problem (1.1) is unique, provided that 

ii) and in case that for k = 1,… , 4 we have 

 system (1.1) possesses a unique weak solution without further additional 
assumptions.

iii) and in case that we have 

 for all k = 1,… , 4 and (x, t) ∈ QT , and additionally 

(2.1)

sup
0≤t≤T �Ω

|u(⋅, t)|2 + |v(⋅, t)|2dx + �QT

|∇u|2 + |∇v|2 + |∇u|p(x,t) + |∇v|p(x,t)dz ≤ c

(2.2)(Ai(x, t, �) − Ai(x, t, �
�))(� − ��) ≥ �i|� − ��|2, i = 1, 2,

(2.3)a0 − a1 +min{d1�1, d2�2} ≥ 0.

(2.4)�k(x, t) = a0 = constant,

(2.5)0 < ak0 ≤ 𝛼k(x, t) ≤ ak1 < ∞, with ak0 , ak1 = constant
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 is satisfied, then system (1.1) possesses a unique weak solution.

Please compare the uniqueness result from [10], here a similar restriction occurs 
due to the term �|u|q(⋅)−2u . In addition, one can conclude from the proof of the The-
orem 2.2 immediately the following stability result:

Lemma 2.3 Under the assumptions of Theorem  2.2 with � = 0 , two unique 
weak solutions (u,  v) and (u1, v1) to system (1.1) with the different initial values 
(u0, v0) ∈ (L2(Ω))2 and (u10 , v10 ) ∈ (L2(Ω))2 satisfy the following stability estimate:

for all every t ∈ [0, T) , i.e. the solutions are controlled by their initial values 
completely.

Finally, we will show under which conditions the (weak) solution to the homoge-
neous Neumann problem (1.1) is nonnegative. The result reads as follows

Theorem  2.4 Under the assumptions of Theorem  2.1 and the additional assump-
tion that the initial values u0(x) ∈ L2(Ω) and v0(x) ∈ L2(Ω) are nonnegative, i.e. 
u0(x) ≥ 0 and v0(x) ≥ 0 , then the solution itself is nonnegative, provided either con-
dition (2.4) or condition (2.5) with (2.6) is satisfied. Furthermore, in both cases this 
solution is unique due to Theorem 2.2, provided q(⋅) ≡ 2 or � = 0.

3  Proof of the existence result

In this section, we prove our existence result utilising Galerkin’s approximations, cf. 
[9, 25, 50].

Proof of Theorem 2.1 The construction of a sequence of Galerkin’s approximations is 
as follows: First of all, we want to recall that Ω ⊆ ℝ

n is an open, bounded Lipschitz 
domain and due to the dense embeddings W1,s(Ω) ⊂ L2(Ω) and (L2(Ω))� ⊂ W−1,s� (Ω) 
one has the inclusions

where the injections are compact. Note that W1,s

0
(Ω) ⊂ W1,s(Ω) also holds true. 

Furthermore, it is known that for 1 < 𝛾1 ≤ s ≤ 𝛾2 < ∞ the space Ls(Ω) is a sepa-
rable and reflexive Banach space, and similarly, W1,s(Ω) is a separable and reflex-
ive Banach space. In the case of Dirichlet boundary values one would consider 
{wi(x)}

∞
i=1

⊂ W
1,𝛾2
0

(Ω) ⊂ W1,𝛾2 (Ω) , which is an orthonormal basis in L2(Ω) , while 

(2.6)a21 + a31 ≤ min{a10 , a40}

‖u(x, t) − u1(x, t)‖2L2(Ω) + ‖v(x, t) − v1(x, t)‖2L2(Ω) ≤ ‖u0(x) − u10
(x)‖2

L2(Ω)
+ ‖v0(x) − v10

(x)‖2
L2(Ω)

W1,s(Ω) ↪ L2(Ω) ≅ (L2(Ω))� ↪ W−1,s� (Ω),
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here one can follow the approach from [13], i.e. one considers the spectral problem: 
Find f ∈ W1,2(Ω) and � ∈ ℝ such that

where �̂� is the unit outward normal. Then, problem (3.1) possesses a sequence of 
nondecreasing eigenvalues {�i}∞i=1 and a sequence of corresponding eigenfunctions 
{wi(x)}

∞
i=1

 forming an orthogonal basis in W1,2(Ω) and an orthonormal basis in L2(Ω) 
( W1,𝛾2(Ω) ⊂ W1,𝛾1 (Ω) ⊆ W1,2(Ω) ⊂ L2(Ω) ), see also [35]. Next, fix a positive integer 
m and define the approximate solution to problem (1.1) in the following way:

where the coefficients c(m)
i

(t) and d(m)
i

(t) are defined via the identities

and

for i = 1,… ,m and t ∈ (0, T) with the initial conditions

Then, this generates a system of 2m ordinary differential equations

By [45, Theorem 1.44, p. 25] we know that, there is for every finite system (3.4) 
a solution (c(m)

i
(t), d

(m)

i
(t)) , i = 1,… ,m on the interval (0, Tm) ⊂ (0, T) for some 

Tm > 0 . Therefore, we multiply equation (3.2) by the coefficients c(m)
i

(t) and equation 
(3.3) by d(m)

i
(t) . Then, integrating the resulting equations over (0, �) for an arbitrarily 

� ∈ (0, Tm) and summing them over i = 1,… ,m . This yields

(3.1)
� ⟨∇f ,∇𝜂⟩ = 𝜆⟨f , 𝜂⟩ for all 𝜂 ∈ W1,2(Ω),

∇f ⋅ �̂� = 0 on 𝜕Ω,

u(m)(z) ∶=

m∑
i=1

c
(m)

i
(t)wi(x) and v(m)(z) ∶=

m∑
i=1

d
(m)

i
(t)wi(x),

(3.2)
∫Ω

u
(m)
t wi(x) +

[
d1A1(x, t,∇u

(m)) + �1(x, t)∇u
(m) + �2(x, t)∇v

(m)
]
∇wi(x)dx = 0

(3.3)

∫Ω

v
(m)
t wi(x) +

[
d2A2(x, t,∇v

(m)) + �3(x, t)∇u
(m) + �4(x, t)∇v

(m)
]
∇wi(x)dx

= −� ∫Ω

|u(m)|q(⋅)−2u(m) ⋅ wi(x)dx

c
(m)

i
(0) = ∫Ω

u0(x)wi(x)dx and d
(m)

i
(0) = ∫Ω

v0(x)wi(x)dx.

(3.4)

(
c
(m)

i
(t)
)�

= Fi(t, c
(m)

1
(t),… , c(m)

m
(t), d

(m)

1
(t),… , d(m)

m
(t)), c

(m)

i
(0) = ∫Ω u0(x)wi(x)dx,

(
d
(m)

i
(t)
)�

= Gi(t, c
(m)

1
(t),… , c(m)

m
(t), d

(m)

1
(t),… , d(m)

m
(t)), d

(m)

i
(0) = ∫Ω v0(x)wi(x)dx,

i = 1,… ,m.
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for a.e. � ∈ (0, Tm) . Furthermore, we can conclude the following estimate by apply-
ing the conditions (1.4) and (1.7):

for a.e. � ∈ (0, Tm) . Please notice that in the case p(⋅) ≡ 2 we can immediately 
absorb the term

on the left-hand side of the previous estimate using Cauchy’s inequality, provided

which finally yields

for a.e. � ∈ (0, Tm) . In case that p(⋅) ≥ 𝛾1 > 2 , we have to utilise Hölder’s inequality 
and Cauchy’s inequality to get the following inequality

∫Q�

u
(m)
t u(m) +

[
d1A1(x, t,∇u

(m)) + �1(x, t)∇u
(m) + �2(x, t)∇v

(m)
]
∇u(m)dz = 0,

∫Q�

v
(m)
t v(m) +

[
d2A2(x, t,∇v

(m)) + �3(x, t)∇u
(m) + �4(x, t)∇v

(m)
]
∇v(m)dz

= −� ∫Q�

|u(m)|q(⋅)−2u(m) ⋅ v(m)dz,

1

2 �
�

0

(
�t �Ω

|u(m)|2 + |v(m)|2dx
)
dt + a0 �Q�

|∇u(m)|2 + |∇v(m)|2dz

+min{d1�1, d2�2}�Q�

|∇u(m)|p(x,t) + |∇v(m)|p(x,t)dz

≤ − �Q�

(�2(x, t) + �3(x, t))∇u
(m)∇v(m)dz − � �Q�

|u(m)|q(⋅)−2u(m) ⋅ v(m)dz

≤2a1 �Q�

|∇u(m)||∇v(m)|dz + � �Q�

|u(m)|q(⋅)−1|v(m)|dz

2a1 ∫Q�

|∇u(m)||∇v(m)|dz

c̄∗ ∶= a0 − a1 +min{d1𝜇1, d2𝜇2} ≥ 0,

1

2 �
𝜏

0

(
𝜕t �Ω

|u(m)|2 + |v(m)|2dx
)
dt + c̄∗ �Q𝜏

|∇u(m)|2 + |∇v(m)|2dz ≤ 𝛽 �Q𝜏

|u(m)|q(⋅)−1|v(m)|dz

2a1 �Q�

|∇u(m)||∇v(m)|dz ≤ 2a1

(
�Q�

|∇u(m)|2dz
) 1

2
(
�Q�

|∇v(m)|2dz
) 1

2

=

(
4a2

1

a0 �Q�

|∇u(m)|2dz
) 1

2
(
a0 �Q�

|∇v(m)|2dz
) 1

2

≤ 2a2
1

a0 �Q�

|∇u(m)|2dz + a0

2 �Q�

|∇v(m)|2dz.
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Furthermore, by Young’s inequality with 2∕p(⋅) + (p(⋅) − 2)∕p(⋅) = 1 , we can esti-
mate as follows

where

with � ∶= 2∕min{d1�1, d2�2} . This implies

for a.e. � ∈ (0, Tm) , where

Furthermore, for all p(⋅) satisfying (1.8) and (1.9) we have by Cauchy’s inequality 
the following:

provided 2(q(⋅) − 1) ≤ 2 , i.e. 1 < q(⋅) ≤ 2 , with constants

and

Using Gronwall’s inequality, we finally can conclude that

2a2
1

a0 �Q𝜏

|∇u(m)|2dz = �Q𝜏

2a2
1

a0

(
2

min{d1𝜇1, d2𝜇2}

) 2

p(⋅)

((
min{d1𝜇1, d2𝜇2}

2

) 1

p(⋅) |∇u(m)|
)2

dz

≤ min{d1𝜇1, d2𝜇2}

𝛾1 �Q𝜏

|∇u(m)|p(x,t)dz + c̄†|Q𝜏 |,

c̄† ∶=
𝛾2

𝛾1 − 2
max

⎧
⎪⎨⎪⎩

�
2a2

1

a0

� 𝛾2

𝛾1−2

,

�
2a2

1

a0

� 𝛾1

𝛾2−2
⎫
⎪⎬⎪⎭
max

�
𝜃

2

𝛾1−2 , 𝜃
2

𝛾2−2

�

�
𝜏

0

(
𝜕t �Ω

|u(m)|2 + |v(m)|2dx
)
dt + �Q𝜏

|∇u(m)|2 + |∇v(m)|2 + |∇u(m)|p(⋅) + |∇v(m)|p(⋅)dz

≤ c̄‡

(
𝛽 �Q𝜏

|u(m)|q(⋅)−1|v(m)|dz + c̄†|Q𝜏 |
)

c̄‡ ∶=
2𝛾1

𝛾1 − 1
max

{
1,

1

min{a0, d1𝜇1, d2𝜇2}

}
.

�
�

0

(
�t �Ω

|u(m)|2 + |v(m)|2dx
)
dt ≤ C �Q�

|u(m)|q(⋅)−1|v(m)| + 1dz

≤ C �Q�

|u(m)|2(q(⋅)−1) + |v(m)|2 + 1dz

≤ C1 �Q�

|u(m)|2 + |v(m)|2dz + C2|Q� |,

C1 ∶=

{
2𝛽 ⋅max

{
1, 1∕c̄∗

}
, if p(⋅) ≡ 2 and c̄∗ ∶=

(
a0 − a1 +min{d1𝜇1, d2𝜇2}

) ≥ 0,

2𝛽 ⋅ c̄‡, if p(⋅) ≥ 𝛾1 > 2

C2 ∶=

{
0, if p(⋅) ≡ 2 and c̄∗ ∶=

(
a0 − a1 +min{d1𝜇1, d2𝜇2}

) ≥ 0,

2𝛽 ⋅max{1, c̄†}, if p(⋅) ≥ 𝛾1 > 2.
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for a.e. � ∈ (0, Tm) , cf. [7, 9]. Thus, we can extend (0, Tm) to (0, T), which yields

with a constant c = c(a0, a1, d1, d2, �,�1,�2, �1, �2, ‖u0‖L2 , ‖v0‖L2 , �QT �) , cf. [25]. 
This together with Lemma 1.2, we have that u(m) and v(m) are uniformly bounded in 
L∞(0, T;L2(Ω)) ∩Wp(⋅)(QT ) , provided u(m)

Ω
= v

(m)

Ω
= 0 , which implies the weak con-

vergences for the sequences 
{
u(m)

}
 and 

{
v(m)

}
 up to a subsequence

To be able to prove the strong convergence

using Theorem 1.4, we first have to prove that

To this end, we define a subspace of the set of admissible test functions

since Wp(⋅)

0
(QT ) ⊂ Wp(⋅)(QT ) . Then, we choose test functions

Note that �t� and 𝜕t�̃� exist, since the coefficients �i(t) and �̃�i(t) lie in C1([0, T]) . 
Thus, we have

sup
0≤�≤Tm �Ω

|u(m)(⋅, �)|2 + |v(m)(⋅, �)|2dx + �Q�

|∇u(m)|2 + |∇v(m)|2dz

+ �Q�

|∇u(m)|p(⋅) + |∇v(m)|p(⋅)dz

≤Tm exp(C1Tm)�Ω

|u0(x)|2 + |v0(x)|2dx + TmC2|Q� |

(3.5)

sup
0≤t≤T �Ω

|u(m)(⋅, t)|2 + |v(m)(⋅, �)|2dx + �QT

|∇u(m)|2 + |∇v(m)|2dz

+ �QT

|∇u(m)|p(x,t) + |∇v(m)|p(x,t)dz

≤T exp(C1T)�Ω

|u0(x)|2 + |v0(x)|2dx + TC2|QT | ≤ c

{
u(m) ⇀∗ u and v(m) ⇀∗ v weakly* in L∞(0, T;L2(Ω)),

∇u(m) ⇀ ∇u and ∇v(m) ⇀ ∇v weakly in Lp(⋅)(QT ,ℝ
n).

u(m) → u and v(m) → v strongly in Lp(⋅)(QT )

�tu
(m) ⇀ �tu and �tv

(m) ⇀ �tv weakly inWp(⋅)(QT )
�.

Wm(QT ) ∶ =

{
𝜂 ∶ 𝜂 =

m∑
i=1

𝜓iwi, 𝜓i ∈ C1([0, T])

}
⊂ Wp(⋅)(QT ),

𝜑(z) =

m∑
i=1

𝜓i(t)wi(x) ∈ Wm(QT ), �̃�(z) =

m∑
i=1

�̃�i(t)wi(x) ∈ Wm(QT ).
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and

From this we can conclude that

with a constant c1 = c1(a0, a1, d1, d2,�1,�2, �1, �2, ‖u0‖L2 , ‖v0‖L2 , �QT �, L1, ‖h1‖Lp�(⋅) ) , 
where we applied the generalised Hölder’s inequality (1.11), the growth condition 
(1.5), the condition (1.7), (1.12), the fact p�(x, t) ≤ 2 ≤ p(x, t) and the energy esti-
mate (3.5). Similarly, we can deduce that

with a constant

where we also used the Poincaré type estimate (1.17) with u(m)
Ω

= v
(m)

Ω
= 0 . This 

shows that

with ‖u(m)t ‖Wp(⋅)(QT )
� ≤ c1 and ‖v(m)t ‖Wp(⋅)(QT )

� ≤ c2 . Summarising, we have the weak 
convergences for the sequences 

{
u(m)

}
 and 

{
v(m)

}
 (up to a subsequence):

∫QT

u
(m)
t �dz = −∫QT

u(m)�tdz + ∫Ω

u(m)�dx
||||
T

0

= −∫QT

d1A1(x, t,∇u
(m)) ⋅ ∇�dz

−∫QT

[
�1(x, t)∇u

(m) + �2(x, t)∇v
(m)

]
⋅ ∇�dz

∫QT

v
(m)
t �̃�dz = −∫QT

v(m)�̃�tdz + ∫Ω

v(m)�̃�dx
||||
T

0

= −∫QT

d2A2(x, t,∇v
(m)) ⋅ ∇�̃�dz

− ∫QT

[
𝛼3(x, t)∇u

(m) + 𝛼4(x, t)∇v
(m)

]
⋅ ∇�̃�dz

+ 𝛽 ∫QT

|u(m)|q(⋅)−2u(m)�̃�dz.

������QT

u
(m)
t �dz

�����
≤�QT

�d1A1(x, t,∇u
(m))� ⋅ (� + �∇��)dz

+ �QT

��1(x, t)∇u(m) + �2(x, t)∇v
(m)� ⋅ (� + �∇��)dz

≤�QT

�
d1L1(h1 + �∇u(m)�p(⋅)−1) + a1(�∇u(m)� + �∇v(m)�)� ⋅ (� + �∇��)dz

≤
�

1

�1
+

�2 − 1

�2

�
‖d1L1(h1 + �∇u(m)�p(⋅)−1) + a1(�∇u(m)� + �∇v(m)�)‖Lp�(x,t)(QT )

× ‖�‖Wp(⋅)(QT )
≤ c1‖�‖Wp(⋅)(QT )

������QT

v
(m)
t �̃�dz

�����
≤ c2‖�̃�‖Wp(⋅)(QT )

c2 = c2(a0, a1, d1, d2, �,�1,�2, �1, �2, ‖u0‖L2 , ‖v0‖L2 , �QT �, L2, ‖h2‖Lp�(⋅) , diam(Ω),�(⋅)),

u
(m)
t ∈ Wp(⋅)(QT )

� and v
(m)
t ∈ Wp(⋅)(QT )

�
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provided u(m)
Ω

= v
(m)

Ω
= 0 . Moreover, by Theorem  1.4 we can conclude that the 

sequences 
{
u(m)

}
 and 

{
v(m)

}
 (up to a subsequence) converges strongly in Lp(⋅)(QT ) 

to some function u, v ∈ W(QT ) with uΩ = vΩ = 0 . Thus, we have the desired 
convergences

In addition, the growth assumption on Ai(z, ⋅) and the estimate (3.5) imply that the 
sequences 

{
A1(z,∇u

(m))
}
m∈ℕ

 and 
{
A2(z,∇v

(m))
}
m∈ℕ

 are bounded in Lp�(⋅)(QT ,ℝ
n) . 

Consequently, after passing to a subsequence once more, we can find limit maps 
A10

,A20
∈ Lp

�(⋅)(QT ,ℝ
n) with

The next aim is to show that

By the method of construction [7], we have from (3.2) and (3.3) for all test function 
�i ∈ Ws(QT ) , i = 1, 2 with s ≤ m for an arbitrary fixed m ∈ ℕ that

and

Then, passing to the limit m → ∞ we get

and

⎧
⎪⎨⎪⎩

u(m) ⇀∗ u and v(m) ⇀∗ v weakly* in L∞(0, T;L2(Ω)),

∇u(m) ⇀ ∇u and ∇v(m) ⇀ ∇v weakly in Lp(⋅)(QT ,ℝ
n),

u
(m)
t ⇀ ut and v

(m)
t ⇀ vt weakly inWp(⋅)(QT )

�,

{
u(m) → u and v(m) → v strongly in Lp(⋅)(QT ),

u(m) → u and v(m) → v a.e. in QT .

(3.6)
A1(z,∇u

(m)) → A10
as m → ∞,

A2(z,∇v
(m)) → A20

as m → ∞.

A10
= A1(x, t,∇u) and A20

= A2(x, t,∇v) for almost every (x, t) ∈ QT .

(3.7)

−∫QT

u
(m)
t �1 +

[
d1A1(x, t,∇u

(m)) + �1(x, t)∇u
(m) + �2(x, t)∇v

(m)
]
∇�1dz = 0

(3.8)

−∫QT

v
(m)
t �2 +

[
d2A2(x, t,∇v

(m)) + �3(x, t)∇u
(m) + �4(x, t)∇v

(m)
]
∇�2dz

= � ∫QT

|u(m)|q(⋅)−2u(m) ⋅ �2dz.

(3.9)−∫QT

ut�1 +
[
d1A10

+ �1(x, t)∇u + �2(x, t)∇v
]
∇�1dz = 0
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for every �i ∈ Ws(QT ) , i = 1, 2 . According to the monotonicity assumption (1.6), 
we also know that

for every �i ∈ Ws(QT ) , i = 1, 2 . Choosing �1 = (u(m) − �1) and �2 = (v(m) − �2) with 
�i ∈ Ws(QT ) , i = 1, 2 as admissible test functions, we can conclude from (3.7), (3.8) 
and (3.11) that

and

which implies

and

where �1 = (u(m) − �1) and �2 = (v(m) − �2) with �i ∈ Ws(QT ) , i = 1, 2 . Next, testing 
(3.9) and (3.10) with �1 = (u(m) − �1) and �2 = (v(m) − �2) with �i ∈ Ws(QT ) , i = 1, 2 
we can deduce by subtracting (3.9) and (3.10) from (3.12) and (3.13), respectively, 
and passing to the limit m → ∞ that

(3.10)

−∫QT

vt�2 +
[
d2A20

+ �3(x, t)∇u + �4(x, t)∇v
]
∇�2dz = � ∫QT

|u|q(⋅)−2u ⋅ �2dz

(3.11)
�QT

d1
(
A1(x, t,∇u

(m)) − A1(x, t,∇�1)
)
⋅ ∇(u(m) − �1)dz ≥ 0

�QT

d2
(
A2(x, t,∇v

(m)) − A2(x, t,∇�2)
)
⋅ ∇(v(m) − �2)dz ≥ 0

−�QT

u
(m)
t �1 +

[
d1A1(x, t,∇u

(m)) + �1(x, t)∇u
(m) + �2(x, t)∇v

(m)
]
∇�1dz

+�QT

d1
(
A1(x, t,∇u

(m)) − A1(x, t,∇�1)
)
⋅ ∇�1dz ≥ 0

−�QT

v
(m)
t �2 +

[
d2A2(x, t,∇v

(m)) + �3(x, t)∇u
(m) + �4(x, t)∇v

(m)
]
∇�2dz

−� �QT

|u(m)|q(x,t)−2u(m) ⋅ �2dz + �QT

d2
(
A2(x, t,∇v

(m)) − A2(x, t,∇�2)
)
⋅ ∇�2dz ≥ 0,

(3.12)

−�QT

u
(m)
t �1 +

[
d1A1(x, t,∇�1) + �1(x, t)∇u

(m) + �2(x, t)∇v
(m)

]
∇�1dz ≥ 0

(3.13)

−�QT

v
(m)
t �2 +

[
d2A2(x, t,∇�2) + �3(x, t)∇u

(m) + �4(x, t)∇v
(m)

]
∇�2dz

− � �QT

|u(m)|q(⋅)−2u(m) ⋅ �2dz ≥ 0,
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for all �i ∈ Ws(QT ) , i = 1, 2 . Then, choosing �1 = u ± ��1 and �2 = v ± ��2 with 
arbitrary �i ∈ Wp(⋅)(QT ) finally yields

Passing to the limit � ↓ 0 , then implies

The last step in our existence proof is to check if the initial value condition is satis-
fied, which is similar to [9, 13]. Consider functions

where � i
k
∈ C1([0, T]) . Then, choose test functions from (3.14) with �i(⋅, T) = 0 . 

Thus, we can conclude from (3.7) and (3.8), integrating by parts and passing to the 
limit m → ∞ the following:

where we used u(m)(⋅, 0) → u0 as m → ∞ , cf. [25], and similarly

On the other side hand we know from (3.9) and (3.10) that

and

− �QT

d1(A1(x, t,∇�1) − A10
)∇(u − �1)dz ≥ 0,

− �QT

d2(A2(x, t,∇�2) − A20
)∇(v − �2)dz ≥ 0

− ��QT

d1(A1(x, t,∇(u ± ��1)) − A10
)∇�1dz ≥ 0,

− ��QT

d2(A2(x, t,∇(u ± ��2)) − A20
)∇�2dz ≥ 0.

A10
= A1(x, t,∇u) and A20

= A2(x, t,∇v) for almost every (x, t) ∈ QT .

(3.14)�i(x, t) =

m∑
k=1

� i
k
(t)wk(x) i = 1, 2,

∫QT

u�1t − d1A1(x, t,∇u) ⋅ ∇�1 −
[
�1(x, t)∇u + �2(x, t)∇v

]
⋅ ∇�1dz = ∫Ω

u0 ⋅ �1(x, 0)dx

∫QT

v�2t − d2A2(x, t,∇v) ⋅ ∇�2 −
[
�3(x, t)∇u + �4(x, t)∇v

]
⋅ ∇�2dz =∫Ω

v0 ⋅ �2(x, 0)dx

−� ∫QT

|u|q(⋅)−2u�2dz.

∫QT

u�1t − d1A1(x, t,∇u) ⋅ ∇�1 −
[
�1(x, t)∇u + �2(x, t)∇v

]
⋅ ∇�1dz = ∫Ω

(u ⋅ �1)(x, 0)dx
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Finally, since �i are arbitrary we have that u(⋅, 0) = u0 and v(⋅, 0) = v0 , which com-
pletes the proof.   ◻

Remark 3.1 There are some additional assumptions one can make to weaken the 
condition on the exponent q(x, t): 

i) For a modified version of problem (1.1), i.e. 

 we do not need Gronwall’s inequality to derive the energy estimate (3.5), since 
we would have 

 for any 1 < q(x, t) < ∞ , cf. Lemma 1.6, instead of 

 Thus, we don’t need the restriction 1 < q(x, t) ≤ 2.
ii) An other approach would be the following: Assume that there exist constants q− 

and q+ , such that 1 < q− ≤ q(x, t) ≤ q+ ≤ p(x, t) , then we can conclude that 

 with constants c1 , c2 and c3 dependent on (n, q−, q+, diam(Ω), �1, �2) , where we 
used Hölder’s, Poincaré’s and Young’s inequality to derive this estimate. To be 
able to absorb these terms on the left-hand side the structure constants of system 
(1.1) have to satisfy 

∫QT

v�2t − d2A2(x, t,∇v) ⋅ ∇�2 −
[
�3(x, t)∇u + �4(x, t)∇v

]
⋅ ∇�2dz =∫Ω

(v ⋅ �2)(x, 0)dx

−� ∫QT

|u|q(⋅)−2u�2dz.

⎧⎪⎪⎨⎪⎪⎩

�tu = d1div(A1(x, t,∇u)) + div(�1(x, t)∇u + �2(x, t)∇v) − �u�q(x,t)−2u + �v�q(x,t)−2v, (x, t) ∈ QT

�tv = d2div(A2(x, t,∇v)) + div(�3(x, t)∇u + �4(x, t)∇v) + �u�q(x,t)−2u − �v�q(x,t)−2v, (x, t) ∈ QT

�u

��
=

�v

��
= 0, (x, t) ∈ ST

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

−�Q�

(|u(m)|q(x,t)−2u(m) − |v(m)|q(x,t)−2v(m))(u(m) − v(m))dz ≤ 0

∫Q�

|u(m)|q(x,t)−2u(m)v(m)dz.

�Q�

|u(m)|q(x,t)−2u(m)v(m)dz ≤
(
�Q�

|u(m)| q(x,t)−1

q+−1
q+

dz

) q+−1

q+
(
�Q�

|v(m)|q+dz
) 1

q+

≤
(
c1 �Q�

|∇u(m)|q+ + 1dz

) q+−1

q+
(
c2 �Q�

|∇v(m)|q+dz
) 1

q+

≤ q+ − 1

q+
c1 �Q�

|∇u(m)|p(x,t)dz + c2

q+ �Q�

|∇v(m)|p(x,t)dz + c3|Q� |
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 where 

 Thus, we don’t need again the restriction 1 < q(x, t) ≤ 2 , but other restrictions 
on the system coefficients.

4  Proof of the uniqueness result

Now, we are in the situation to prove the uniqueness of the weak solution to problem 
(1.1) according to Theorem 2.2.

Proof of Theorem 2.2 For the proof of uniqueness, we assume that there exist two 
pairs of solutions (u, v) and (u1, v1) with the same initial value (u0, v0) . Therefore, we 
choose �1 = u − u1 and �2 = v − v1 as admissible test functions.

i) Subtracting the weak formulation for (u1, v1) from the weak formulation for 
(u, v), [cf. (1.14) & (1.15)] and using integration by parts, we get

where we applied the monotonicity condition (2.2) and (1.7). Similarly, we have

Combining these estimates, using Cauchy’s and Hölder’s inequality, we get

⎧⎪⎨⎪⎩

c̄∗ ≥ max

�
q+ − 1

q+
c1,

c2

q+

�
, if p(⋅) ≡ 2 and c̄∗ ∶=

�
a0 − a1 +min{d1𝜇1, d2𝜇2}

� ≥ 0,

1 ≥ c̄‡ ⋅max

�
q+ − 1

q+
c1,

c2

q+

�
, if p(⋅) ≥ 𝛾1 > 2,

c̄‡ ∶=
2𝛾1

𝛾1 − 1
max

{
1,

1

min{a0, d1𝜇1, d2𝜇2}

}
.

0 = �QT

(u − u1)t(u − u1) + d1(A1(x, t,∇u) − A1(x, t,∇u1))∇(u − u1)dz

+ (�1(x, t)∇(u − u1) + �2(x, t)∇(v − v1))∇(u − u1)dz

≥ �QT

(u − u1)t(u − u1) + �2(x, t)∇(v − v1)∇(u − u1) + (a0 + d1�1)|∇(u − u1)|2dz,

0 = �QT

(v − v1)t(v − v1) + d2(A2(x, t,∇v) − A2(x, t,∇v1))∇(v − v1)dz

+ (�3(x, t)∇(u − u1) + �4(x, t)∇(v − v1))∇(v − v1)dz

+ �QT

(|u|q(⋅)−2u − |u1|q(⋅)−2u1)(v − v1)dz

≥ �QT

(v − v1)t(v − v1) + �3(x, t)∇(u − u1)∇(v − v1) + (a0 + d2�2)|∇(v − v1)|2dz

+ � �QT

(|u|q(⋅)−2u − |u1|q(⋅)−2u1)(v − v1)dz.



705

1 3

Existence of weak solutions to a certain homogeneous parabolic…

Using again Cauchy’s inequality and (1.7) we further can conclude that

For q(⋅) ≡ 2 for all 𝛽 > 0 and under the assumption (2.3), we can immediately con-
clude that

and by means of Gronwall’s inequality (differential form) we gain

for every t ∈ (0, T) , since u(x, 0) − u1(x, 0) = 0 and v(x, 0) − v1(x, 0) = 0 . For � = 0 
the uniqueness follows similarly.

The proof of ii) is similar to the proof of i), but we use the monotonicity condi-
tion (1.6). Thus, we derive at

which implies similarly the uniqueness (as above) due to the assumption that 
a0 = �k(x, t) = a1 =const. Thus, we neither need (2.2) nor (2.3).

Finally, the proof of iii) is now trivial and remains to the reader. This completes 
the proof.   ◻

The proof of the stability estimate of Lemma 2.3 is very similar to the proof of 
the uniqueness Theorem 2.2.

�

(
�QT

||||u|
q(⋅)−2u − |u1|q(⋅)−2u1|||

2

dz

) 1

2
(
�QT

|v − v1|2dz
) 1

2

≥ �QT

(u − u1)t(u − u1) + (v − v1)t(v − v1)

+ (�2(x, t) + �3(x, t))∇(v − v1)∇(u − u1)dz

+ (a0 +min{d1�1, d2�2})�QT

|∇(u − u1)|2 + |∇(v − v1)|2dz.

�

(
�QT

||||u|
q(⋅)−2u − |u1|q(⋅)−2u1|||

2

dz

) 1

2
(
�QT

|v − v1|2dz
) 1

2

dz

≥ 1

2 �
T

0

(
d

dt �Ω

|u − u1|2 + |v − v1|2dx
)
dt

+ (a0 − a1 +min{d1�1, d2�2})�QT

|∇(u − u1)|2 + |∇(v − v1)|2dz.

�
T

0

d

dt

�
‖v − v1‖2L2(Ω) + ‖u − u1‖2L2(Ω)

�
dt ≤ � �

T

0

‖v − v1‖2L2(Ω) + ‖u − u1‖2L2(Ω)dt

0 ≤ ‖u − u1‖2L2(Ω) + ‖v − v1‖2L2(Ω) ≤ 0

� �QT

||||u|
q(⋅)−2u − |u1|q(⋅)−2u1||||v − v1|dz ≥ 1

2 �
T

0

(
d

dt �Ω

|u − u1|2 + |v − v1|2dx
)
dt

+ (a0 − a1)�QT

|∇(u − u1)|2 + |∇(v − v1)|2dz,
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Proof of Lemma 2.3 We assume that there exist two pairs of solutions (u,  v) and 
(u1, v1) with the different initial values (u0, v0) ∈ (L2(Ω))2 and (u10 , v10 ) ∈ (L2(Ω))2 . 
Then, following the proof of Theorem 2.2, we can conclude for � = 0 that

which implies

for a.e. t ∈ [0, T) .   ◻

5  Proof of the nonnegativity of the weak solutions

Our finally aim is to prove of the nonnegativity of the weak solutions.

Proof of Theorem  2.4 Consider u− ∶= min{u, 0} and v− ∶= min{v, 0} with 
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 , x ∈ Ω . Choosing �1 = u− and �2 = v− in 
(1.14) and (1.15), integrating over Ω instead of ΩT and integration by parts yields

and

Please note that we have Ai(x, t, �) ⋅ �
− ≥ 0 either due to the coercivity con-

dition (1.4), since Ai(x, t, �) ⋅ �
− = Ai(x, t, �) ⋅ � or Ai(x, t, �) ⋅ �

− = 0 , since 
�− = min{�, 0} = 0 . Furthermore, we know that

due to the fact if u− = 0 or v− = 0 , then we also have ∇u− = 0 or ∇v− = 0 , respec-
tively and therefore, ∇u ⋅ ∇u− = 0 or ∇v ⋅ ∇v− = 0 . Otherwise, i.e. if u− = u or 
v− = v we have also ∇u ⋅ ∇u− = |∇u|2 or ∇v ⋅ ∇v− = |∇v|2 . Therefore, we can con-
clude by means of the coercivity condition (1.4), (1.7) and either (2.4) or (2.5) with 
(2.6) and the abbreviation a0 = min{�10 , �40} that

1

2 �
T

0

�
d

dt
‖u − u1‖2L2(Ω) + ‖v − v1‖2L2(Ω)

�
dt ≤ 0,

0 ≤ ‖u − u1‖2L2(Ω) + ‖v − v1‖2L2(Ω) ≤ ‖u0 − u10‖2L2(Ω) + ‖v0 − v10‖2L2(Ω)

∫Ω

ut�1 +
[
d1A1(x, t,∇u) + �1(x, t)∇u + �2(x, t)∇v

]
⋅ ∇�1dx = 0

∫Ω

vt�2 +
[
d2A2(x, t,∇v) + �3(x, t)∇u + �4(x, t)∇v

]
⋅ ∇�2 + �|u|q(x,t)−2u�2dx = 0.

∇u ⋅ ∇u− = ∇u− ⋅ ∇u− = |∇u−|2 and ∇v ⋅ ∇v− = ∇v− ⋅ ∇v− = |∇v−|2
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where we used Hölder’s inequality, Young’s inequality, the fact that ∇u− is either ∇u 
or 0 and ∇v− is either ∇v or 0. This implies

for all t ∈ [0, T) . Finally, by the fact that u− = v− = 0 at t = 0 , since 
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 , the last inequality implies that 
‖u−‖L2(Ω) = ‖v−‖L2(Ω) = 0 for all t > 0 . Therefore, the solution (u, v) is nonnegative.  
 ◻

Acknowledgements Open Access funding provided by University of Oslo (incl Oslo University Hos-
pital). G.A. is supported by DST/SERB, Grant number EMR/2015/001908. A.E. wishes to thank Erik 
Wahlén and the Centre of Mathematical Sciences, Lund University, Sweden for hosting him during his 
research stay in 2020 supported by the Kristine Bonnevie scholarship 2020. The authors wish to thank the 
anonymous referee for her/his careful reading of the original manuscript and their comments that eventu-
ally led to an improved presentation.

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen 
ses/by/4.0/.

1

2

�
d

dt �Ω

�u−�2 + �v−�2dx
�
+ a0‖∇u−‖2L2(Ω) + a0‖∇v−‖2L2(Ω)

+min{d1�1, d2�2}�Ω

�∇u−�p(⋅) + �∇v−�p(⋅)dx

≤ −�Ω

(�2(x, t)∇v∇u
− + �3(x, t)∇v

−∇u)dx

+ � �Ω

�u−�q(⋅)−1 ⋅ v−dx
≤ a0‖∇u−‖2L2(Ω) + a0‖∇v−‖2L2(Ω)
+ � �Ω

�u−�q(⋅)−1 ⋅ v−dx,

1

2

(
d

dt �Ω

|u−|2 + |v−|2dx
)

≤� �Ω

|u−|q(⋅)−1 ⋅ v−dx ≤ 0.
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