
Vol.:(0123456789)

Journal of Elliptic and Parabolic Equations (2020) 6:211–237
https://doi.org/10.1007/s41808-020-00065-x

1 3

Nonlocal evolution equations with p[u(x, t)]‑Laplacian 
and lower‑order terms

Stanislav Antontsev1,2,3 · Sergey Shmarev4 

Received: 18 February 2020 / Accepted: 6 April 2020 / Published online: 25 April 2020 
© Orthogonal Publisher and Springer Nature Switzerland AG 2020

Abstract
We study the homogeneous Dirichlet problem for a class of nonlocal singular para‑
bolic equations 

where 𝛺 ⊂ ℝ
d , d ≥ 2 , is a smooth domain, p[u] = p(l(u)) is a given function with 

values in the interval [p−, p+] ⊂ (
2d

d+2
, 2) , and l(u) = ∫

�

|u(x, t)|� dx , � ∈ [1, 2] , is a 

functional of the unknown solution. We prove the existence of a strong solution such 
that 

Conditions of uniqueness of strong solutions are obtained.

Keywords  Nonlocal equation · Singular parabolic equation · Variable nonlinearity · 
Strong solutions
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ut − div
(
|∇u|p[u]−2∇u

)
= f ((x, t), u, l(u)) inQT = � × (0, T),

ut ∈ L2(QT ), u ∈ L∞(0, T;W
1,2

0
(�)), |D2

ij
u|p[u] ∈ L1(QT ).
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1 3

1  Introduction

We study the homogeneous Dirichlet problem

where z = (x, t) ∈ QT = � × (0, T] , 𝛺 ⊂ ℝ
d , d ≥ 2 , is a domain with the boundary 

�� . The exponent of nonlinearity p is a functional of the unknown solution:

with some constants p± , 1 < p− ≤ p+ < 2 , � ∈ [1, 2] . It is assumed that f(z, s, r) is a 
Carathéodory function (measurable in z ∈ QT for every s, r ∈ ℝ and continuous in s, 
r for a.e. z ∈ QT ) subject to the following growth conditions:

We prove that problem (1) has a global in time strong solution. The results remain 
true for a wider class of functionals l(u). For example, we may take

The nonlocal evolution equations are widely used in modelling of various processes 
in physics and biology and are intensively studied, see, e.g., [1–4] and references 
therein. As for Eq. (1), we may regard it as the diffusion equation where the dif‑
fusion rate p and the nonlinear source f depend on the total mass of the substance 
given by l(u) with � = 1.

Nonlinear equations and system of equations whose structure may depend on 
the sought solution appear in the mathematical modelling of various real-life pro‑
cesses. In [5], a system of nonlinear equations, describing the stationary thermo-
convective flow of a non-Newtonian fluid, was considered. The models of a ther‑
mistor was studied in [6, 7]. The models of electro-rheological fluids in which the 
character of nonlinearity in the governing Navier–Stokes equations varies according 
to the applied electromagnetic field were considered in [8]. The functionals with the 
growth condition depending on the solution or its gradient are successfully used for 
denoising of digital images—see, e.g., [9–11] for the models based on minimization 
of functionals with p(|∇u|)-growth and [12] for a discussion of the model of image 
denoising based on the minimization of a functional with the nonlinearity depending 
on u.

(1)

⎧
⎪
⎨
⎪
⎩

ut − div
�
�∇u�p[u]−2∇u

�
= f (z, u, l(u)) inQT ,

u = 0 on �� × (0, T),

u(x, 0) = u0 in�,

(2)
p[u] = p(l(u)) ∶ ℝ ↦ [p−, p+] ⊂ (1, 2),

l(u) = ∫
𝛺

|u(x, t)|𝛼 dx ∶ L∞(0, T;L𝛼(𝛺)) ↦ ℝ,

(3)
there exists a function f0(z) ∈ L2(QT ), f0 ≥ 0 a.e. inQT , such that

|f (z, s, r)| ≤ f0(z) + N|s|𝜎(r)−1 for all s ∈ ℝ, r ∈ ℝ+,

whereN = const ≥ 0 and 𝜎(s) ∶ ℝ+ ↦ [𝜎−, 𝜎+] ⊂ (1,∞), 𝜎± = const.

l(u) = ∫
�

g(x)u(x, t) dx, with some g ∈ L�
�

(�), � ∈ [1, 2].
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By now, the equations that involve the p[u]-Laplace operators where studied only in 
papers [13, 14]. These work address elliptic equations similar to p(u)-Laplacian, with 
local or nonlocal dependence on u, but their approach to the problem is different. Since 
the p[u]-Laplace equation can not be interpreted as a duality relation in a fixed Banach 
space, the authors of [13] reduce the study to the L1 setting and obtain a solution using 
the Young measures. The authors of [14, 15] proceed in another way and develop the 
idea of [16] on the passing to the limit in a sequence of the form 

{
|∇vk(x)|qk(x)

}
 . Both 

works offer a discussion of the uniqueness issue.

2 � Assumption and results

2.1 � The function spaces

For convenience, we collect here the needed information on the Lebesgue and 
Sobolev spaces with variable exponents. For a detailed presentation of the theory of 
these spaces we refer to the monograph [17], see also [18, Ch.1].

Let 𝛺 ⊂ ℝ
d be a domain with the Lipschitz-continuous boundary �� . Given a 

measurable function p(x) ∶ 𝛺 ↦ [p−, p+] ⊂ (1,∞) , p± = const , the set

equipped with the Luxemburg norm

becomes a Banach space. The relation between the modular ∫
�

|f |p(x) dx and the 

norm follows from the definition:

In case of p(⋅) = const > 1 these inequalities transform into equalities. For all 
f ∈ Lp(⋅)(�) , g ∈ Lp

�(⋅)(�) with

the generalized Hölder inequality holds:

If p(x) is measurable and 1 < p− ≤ p(x) ≤ p+ < ∞ in � , then Lp(⋅)(�) is a reflexive 
and separable Banach space, and C∞

0
(�) is dense in Lp(⋅)(�).

Lp(⋅)(𝛺) =

{
f ∶ 𝛺 ↦ ℝ ∶ f is measurable on𝛺, ∫

𝛺

|f |p(x) dx < ∞

}

‖f‖p(⋅),𝛺 ∶= inf

�
𝛼 > 0 ∶ �

𝛺

����
f

𝛼

����

p(x)

dx ≤ 1

�

(4)min
�
‖f‖p

−

p(⋅)
, ‖f‖p

+

p(⋅)

� ≤ �
�

�f �p(x) dx ≤ max
�
‖f‖p

−

p(⋅)
, ‖f‖p

+

p(⋅)

�
.

p(x) ∈ (1,∞), p�(x) =
p(x)

p(x) − 1

(5)�
�

�f g� dx ≤
�

1

p−
+

1

(p�)−

�
‖f‖p(⋅)‖g‖p�(⋅) ≤ 2‖f‖p(⋅)‖g‖p�(⋅).



214	 S. Antontsev, S. Shmarev 

1 3

Let p1(x), p2(x) be measurable on � functions such that pi(x) ∈ [p−
i
, p+

i
] ⊂ (1,∞) 

a.e. in � . If p1(x) ≥ p2(x) a.e. in � , then the inclusion Lp1(⋅)(𝛺) ⊂ Lp2(⋅)(𝛺) is con‑
tinuous and

with a constant C = C(|�|, p±
1
, p±

2
).

The variable Sobolev space W1,p(⋅)

0
(�) is defined as the collection of functions

equipped with the norm

By Clog(�) we denote the set of functions continuous on � with the logarithmic 
modulus of continuity:

where � ≥ 0 satisfies the condition

It is known that for p(x) ∈ Clog(�) the set C∞
0
(�) is dense in W1,p(⋅)

0
(�) and the space 

W
1,p(⋅)

0
(�) coincides with the closure of C∞

0
(�) with respect to the norm (7).

We will use the notation p(z) ∈ Clog(QT ) for the functions p of the arguments 
z = (x, t) satisfying condition (8) in the cylinder QT = � × (0, T).

For the elements of W1,p(⋅)

0
(�) with p(x) ∈ C0(�) the Poincaré inequality holds:

An immediate consequence of the Poincaré inequality is that an equivalent norm of 
W

1,p()̇

0
(𝛺) can be defined by

Let p(x), q(x) ∈ C0(�) , 1 < p− ≤ p(x) ≤ p+ < ∞ , d ≥ 2 . If q(x) < dp(x)

d−p(x)
 in � , then 

the embedding W1,p(⋅)

0
(𝛺) ⊂ Lq(⋅)(𝛺) is continuous, compact, and

According to (6) W
1,p(⋅)

0
(𝛺) ⊂ W

1,p−

0
(𝛺) . If p− >

2d

d+2
 , then the embedding 

W
1,p−

0
(𝛺) ⊂ L2(𝛺) is compact.

Let us introduce the spaces of functions defined on the cylinder QT

(6)‖u‖p2(⋅),� ≤ C‖u‖p1(⋅),� ∀ u ∈ Lp1(⋅)(�)

W
1,p(⋅)

0
(�) =

{
u ∈ Lp(⋅)(�) ∩W

1,1

0
(�) ∶ |∇u|p(x) ∈ L1(�)

}

(7)‖u‖
W

1,p(⋅)

0
(�)

= ‖∇u‖p(⋅),� + ‖u‖p(⋅),�.

(8)|p(x2) − p(x1)| ≤ �(|x2 − x1|)

lim
𝜏→0+

𝜔(𝜏) ln
1

𝜏
= C < ∞, C = const.

(9)‖u‖p(⋅),� ≤ C(d,�)‖∇u‖p(⋅),�.

‖u‖
W

1,p(⋅)

0
(�)

= ‖∇u‖p(⋅),�.

‖v‖q(⋅),� ≤ C‖∇v‖p(⋅),� ∀v ∈ W
1,p(⋅)

0
(�).

�t(�) = {u ∶ � ↦ ℝ|u ∈ L2(�) ∩W
1,1

0
(�), |∇u|p(x,t) ∈ L1(�)}, t ∈ (0, T),

�(QT ) = {u ∶ (0, T) ↦ �t(�)| u ∈ L2(QT ), |∇u|p(x,t) ∈ L1(QT )}.
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Given a measurable in QT function u and a functional p, we define the set

If we denote p̃(x, t) = p[u(x, t)] , then �u(QT ) coincides with the space �(QT ) 
with the given variable exponent p̃(x, t) . The inclusion u ∈ �u(QT ) means that 
u ∈ L2(QT ) , |∇u|p̃(x,t) ∈ L1(QT ) and u = 0 on �� × (0, T).

Notation. Throughout the text we use the notation

where the exponent q may depend on t. By C we denote the constants which can be 
computed or estimated through the data of the problem, but whose precise values are 
unimportant. The value of C may differ from line to line even in the same formula.

2.2 � The main result and organization of the paper

Definition 1  A function u is called strong solution of problem (1) if 

1.	 u ∈ C0([0, T];L2(�)) ∩ L∞(0, T;W
1,2

0
(�)) , ut ∈ L2(QT );

2.	 ‖u(⋅, t) − u0‖2,� → 0 as t → 0+;
3.	 for every test-function � ∈ L2(QT ) ∩ L2(0, T;W

1,2

0
(�))

The main result of this work is given in the following theorem.

Theorem 1  Assume that

�u(QT ) =

{
v
||||
v ∈ L2(QT ), |∇v|p[u] ∈ L1(QT ),

v = 0 on �� × (0, T) in the sense of traces

}
.

|vxx|q =
d∑

i,j=1

|D2
xixj

v|q

(10)∫QT

(
ut� + |∇u|p[u]−2∇u ⋅ ∇�

)
dz = ∫QT

f (z, u, l(u))� dz.

(11)

(a) 𝛺 is a bounded domain with the boundary 𝜕𝛺 ∈ C2,

(b) u0 ∈ W
1,2

0
(𝛺),

(c) sup
ℝ

�p�(l)� ≤ C∗, C∗ = const.,

(d)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�f (z, s, r)� ≤ f0(z) + f1(z)�s�𝜎(r)−1

with f0 ∈ L
p−

p−−1 (QT ), f1 ∈ L∞(QT ), f0, f1 ≥ 0 a.e. inQT ,

‖f1‖∞,QT
≤ N = const ≥ 0,

𝜎(r) ∈ C0[0,∞), 𝜎 ∶ ℝ+ ↦ [𝜎−, 𝜎+], 𝜎± = const > 1

(e)

⎧
⎪
⎨
⎪
⎩

2d

d + 2
< p− ≤ p+ < 2,

1 < 𝜎
− ≤ 𝜎

+ ≤ min

�
2, 1 +

2(d + 1)

d

�
1 −

1

p−

��
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Then problem (1) has a strong solution in the sense of Definition 1 and the following 
estimate holds:

Remark 1  Condition (11) on �+ can be omitted if the sign of the nonlinear source 
f(z, u, l(u)) coincides with the sign of u(z). The assertion of Theorem remains true if, 
for example,

Organization of the paper. In Sect.  3 we consider the regularized non-singu‑
lar problem (13). The solution of problem (13) is obtained as the limit of the 
sequence of Galerkin’s approximations in the basis composed of the eigenfunc‑
tions of the Laplace operator. The bulk of Sect. 3 is devoted to deriving a priori 
estimates on the second-order space derivatives of the solutions of regularized 
problems, where we follow the technique developed in [19] for the given expo‑
nent p(x, t). In Sect. 4 we justify first the passage to the limit in the sequence of 
Galerkin’s approximations and obtain a solution of the regularized problem. We 
make use of monotonicity of the function �

�
(q, �)� = (�2 + |�|2)

q−2

2 � in � with a 
fixed q, continuity of �

�
(q, �)� with respect to q with a fixed � , and the fact that in 

the singular case, p+ < 2 , the solutions u
�
 of the regularized problems and their 

approximations possess extra regularity: ‖∇u
�
(t)‖2,� are uniformly bounded for 

all t ∈ (0, T).
To pass to the limit as � → 0 in the sequence {u

�
} of solutions of the regular‑

ized problems we use the a priori estimates of Sect. 3. The procedure of passing 
to the limit in � requires an additional step because now the exponent p

�
= p[u

�
] 

also depends on �.
The uniqueness is proven in Theorem 2 in Sect. 5. The study of uniqueness is practi‑

cally independent of the issue of existence and requires some additional assumptions 
on the structure of the equation.

3 � Regularized problem

We will obtain a solution of the singular problem (1) as the limit when � → 0 of the 
family of solutions of the regularized problems

(12)
sup
(0,T)

‖∇u(⋅, t)‖2
2,�

+ ‖ut‖22,QT
+ �QT

�uxx�p[u] dz

≤ C
�
1 + ‖∇u0‖22,� + ‖f0‖ p−

p−−1
,QT

�
.

f (z, s, r) = f0(z) − f1(z)|s|�(r)−2s, f0 ∈ L
p−

p−1 (QT ), f1 ≥ 0 a.e. inQT .

(13)

⎧
⎪
⎨
⎪
⎩

u
𝜖t = div

�
(𝜖2 + ��∇u𝜖��

2
)
p[u𝜖 ]−2

2 ∇u
𝜖

�
+ f (z, u

𝜖
, l(u

𝜖
)) inQT ,

u
𝜖
= 0 on 𝜕𝛺 × (0, T),

u
𝜖
(x, 0) = u0(x) in𝛺, 𝜖 > 0.
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3.1 � Galerkin’s approximations

The solution of problem (13) is understood in the sense of Definition 1. It is constructed 
as the limit of the sequence of finite-dimensional approximations

where {�i} is the orthonormal basis of L2(�) composed of the eigenfunctions of the 
Dirichlet problem for the Laplace operator

The system 
�

1√
�i

�i

�
 forms an orthogonal basis of W1,2

0
(�) . Let us accept the 

notation

The coefficients ui,m(t) are defined as the solutions of the Cauchy problem for the 
system of m ordinary nonlinear differential equations

where the constants v(m)
i

 are the Fourier coefficients of u0 in the basis {�i}:

By the Carathéodory theorem for every finite m system (16) has a continuous solu‑
tion on an interval (0, Tm) . In the next subsection we derive the uniform estimates on 
u(m) and its derivatives, which show that the solutions of system (16) can be contin‑
ued to the interval (0, T).

3.2 � Uniform a priori estimates

Throughout this section we denote by u(m) the finite-dimensional Galerkin approxima‑
tion of the solution u

�
 of problem (13) with 𝜖 > 0 . We assume that the data of problems 

(13) satisfy conditions (11) of Theorem 1.

u
�
≡ u(x, t) = lim

m→∞
u(m), u(m) =

∞∑

i=1

ui,m(t)�i(x),

(14)(∇�i,∇�)2,� = �i(�i,�)2,� ∀� ∈ W
1,2

0
(�), i = 1, 2,… .

(15)
𝛾
𝜖
(q, �) =

(
𝜖
2 + |�|2

) q−2

2 , � ∈ ℝ
d, t ∈ (0, T), 𝜖 > 0, q ∈ (1, 2],

pm(t) = p[u(m)], u(m) =

m∑

i=1

ui,m(t)𝜓i(x).

(16)

u�
i,m
(t) = −∫

�

�
�
(pm(t),∇u

(m))∇u(m) ⋅ ∇�i dx

+ ∫
�

f (z, u(m), l(u(m)))�i dx,

ui,m(0) = u
(m)

0i
, i = 1, 2,… ,m,

u
(m)

0
=

m∑

i=1

u
(m)

0i
�i(x) → u0(x) in L2(�).
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Lemma 1  The solutions of problem (13) satisfy the following estimates:

with absolute constants M0,M
′
0
.

Proof  Multiplying the ith equation of (16) by u(m)
i

 and summing the results leads to 
the energy relation

where

Let us prove (18) first. By Young’s inequality, for every 𝛿 > 0

Estimate (18) follows if we take � = 1∕2 . Substituting (20) into (19) and dropping 
the second nonnegative term on the left-hand side we obtain the differential inequal‑
ity for y(t) = ‖u(t)‖2,�:

(17)
sup
(0,T)

‖u(m)(t)‖2
2,�

+ �QT

�
�
(pm(t),∇u

(m))�∇u(m)�2 dz

≤ C
�
1 + ‖u(m)

0
‖2
2,�

+ ‖f0‖22,QT

�
= M0,

(18)
�QT

|∇u(m)|pm(t) dz

≤ C

(
1 + �QT

�
�
(pm(t),∇u

(m))|∇u(m)|2 dz
)

= M�

0

(19)

1

2

d

dt

�
‖u(m)(t)‖2

2,�

�
+ ∫

�

�
�
(pm(t),∇u

(m))�∇u(m)�2 dx

= ∫
�

u(m)f dx =∶ I,

(20)

�I� ≤ �
�

�
f0�u(m)� + f1�u(m)��m(t)

�
dx

≤ 1

2
‖f0‖22,� +

1

2
‖u(m)‖2

2,�
+ N �

�

�u(m)��m dx

≤ C + ‖f0‖22,� + ‖u(m)‖2
2,�

, �m(t) = �(l(u(m))).

�QT

|∇u(m)|pm dz

= �QT

�
�
(pm(t),∇u

(m))
−

pm

2

(
�
�
(pm(t),∇u

(m))|∇u(m)|2
) pm

2 dz

≤ � �QT

(�2 + |∇u(m)|2)
pm

2 dz + C
� �QT

�
�
(pm(t),∇u

(m))|∇u(m)|2 dz

≤ � �QT

|∇u(m)|pm dz + C
�

(
1 + �QT

�
�
(pm(t),∇u

(m))|∇u(m)|2 dz
)
.
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Multiplying by e−2Ct and integrating we arrive at the estimate

Substituting it into (20), returning to (19) and integrating, we obtain (17). 	�  ◻

Corollary 1   

uniformly with respect to m and �.

Proof  The estimate follows from (18) because for 1 < p− ≤ p+ ≤ 2

	�  ◻

Lemma 2  The functions u(m) satisfy the estimate

with an independent of m and � constant M1.

Proof  Multiplying ith equation in (1) by �iu
(m)

i
 , summing up for i = 1,… ,m and 

then following the proof of [20, Lemma 2.2] we arrive at the equality

where

1

2
y�(t) ≤ C

�
1 + y(t) + ‖f0‖22,�

�
.

‖u(t)‖2
2,�

≤ ‖u0‖22,�e
2Ct + 2Ce2Ct �

t

0 �
�

�
1 + f 2

0

�
dz.

�QT

(�
�
(pm(t),∇u

(m))|∇u(m)|)(pm(t))� dz ≤ C

�
�
(pm(t),∇u

(m))|∇u(m)| ≤ (�2 + |∇u(m)|2)
pm (t)−1

2

≤ C(p±)
(
1 + |∇u(m)|pm(t)−1

)
.

(21)

sup
(0,T)

‖∇u(m)(⋅, t)‖2
2,�

+ �QT

�
(�2 + �∇u(m)�2)

pm(t)−2

2 �u(m)
xx

�2 + �u(m)
xx

�pm(t)
�
dz

≤ C

�
‖∇u0‖22,� + �QT

f
(p−)�

0
dz + 1

�
dz = M1

(22)
1

2

d

dt

�
‖∇u(m)‖2

2,�

�
+ ∫

�

�
�
(pm(t),∇u

(m))�u(m)
xx

�2 dx = −I − I
��

+ If ,

(23)I =∫
�

(p − 2)
(
�
2 + |∇u(m)|2

) pm (t)−2

2
−1

(
d∑

k=1

(
∇u(m) ⋅ ∇(Dku

(m))
)2
)
dx,
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It is straightforward to check that

By the Young inequality

According to condition (11) (e)

which yields the inequalities

(24)If = ∫
�

f (z, u(m), l(u(m)))�u(m) dx,

(25)
I
��

=∫
��

�
�
(pm(t),∇u

(m))

(
�u(m)(∇u(m) ⋅ �) − ∇u(m) ⋅ ∇(∇u(m) ⋅ �)

)
dS.

|I| ≤(2 − p−)�
�

�
�
(pm(t),∇u

(m))|u(m)
xx

|2 dx,

|If | ≤�
�

(
f0 + f1|u(m)|�m−1

)
|�u(m)|dx ≡ If0 + If1 .

If0 ≤ �
�

f0|u(m)xx
| dx ≤ � �

�

|u(m)
xx

|pm(t) dx + C(�)�
�

f
p�
m
(t)

0
dx

≤ � �
�

�
�
(pm(t),∇u

(m))
−

pm (t)

2

(
�
�
(pm(t),∇u

(m))|u(m)
xx

|2
) pm (t)

2 dx

+ C(�, p±)

(
1 + �

�

f
(p−)�

0
dx

)

≤ � �
�

�
�
(pm(t),∇u

(m))|u(m)
xx

|2 dx + C�(�)�
�

(�2 + |∇u(m)|2)
pm(t)

2 dx

+ C��(�)

(
1 + �

�

f
(p−)�

0
dx

)
,

If1 ≤ � �
�

�
�
|u(m)

xx
|2 dx + C(�)�

�

f 2
1

(
�
2 + |∇u(m)|2

) 2−pm(t)

2 |u(m)|2(�m−1) dx

≤ � �
�

�
�
|u(m)

xx
|2 dx + C �

�

((
�
2 + |∇u(m)|2

) pm (t)

2 + N
pm

pm−1 |u(m)|
(�m−1)pm

pm−1

)
dx

≤ � �
�

�
�
|u(m)

xx
|2 dx + C(�,N)�

�

(
1 + |∇u(m)|pm(t) + |u(m)|

(�m−1)pm

pm−1

)
dx.

1 < 𝜎
− ≤ 𝜎

+ ≤ 1 +
2(d + 1)

d

(
1 −

1

p−

)
,

� = d

(
1

2
−

pm − 1

(�m − 1)pm

)
∈ [0, 1],

�

2

(�m − 1)pm

pm − 1
≤ 1.
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Using the Gagliardo-Nirenberg interpolation inequality we estimate

with a constant C = C(p±, �±,M0) independent of u(m) . Gathering the above inequal‑
ities we obtain

with an arbitrary 𝛿 > 0 . Adding J to the both sides of (19), choosing � appropriately 
small and using (18), we arrive at the inequality

with a constant C which does not depend on m and � . It is known (see [21, Ch.1, 
Sec.1.5] for the case d = 2 and [20, Lemma A.1] for the general case d ≥ 3 ) that if 
�� ∈ C2 , then there exist constants K,K′ , depending on �� , such that

Inequality (27) can be written in the form

To estimate the integral over �� we use the inequality that follows from [22, Theo‑
rem 1.5.1.10]: there exists a constant L = L(d,�) such that for every � ∈ (0, 1)

Combining (28) and (29) with 2�1−
1

p+ CK� ≤ 1 , we obtain the inequality

(26)�
�

�u(m)�
(�m−1)pm

pm−1 dx ≤ C‖∇u(m)‖
�
(�m−1)pm

pm−1

2,�
‖u(m)‖

(�m−1)pm

pm−1
(1−�)

2,�

≤ C
�
1 + ‖∇u(m)‖2

2,�

�

J = �
�

|u(m)
xx

|pm(t) dx ≤ � �
�

�
�
|u(m)

xx
|2 dx + C(�)�

�

(
�
2 + |∇u(m)|2

) pm(t)

2 dx

≤ � �
�

�
�
|u(m)

xx
|2 dx + C� �

�

(
|∇u(m)|2 + 1

)
dx.

(27)

1

2

d

dt

�
‖∇u(m)‖2

2,�

�
+ �

�

�
�
�
(pm(t),∇u

(m))�u(m)
xx

�2 + �u(m)
xx

�pm(t)
�
dx

≤ C

�
1 + �I

�
� + �

�

f
(p−)�

0
dx + �

�

�∇u(m)�2 dx
�

|I
��
| ≤ K �

��

�
�
(z,∇u(m))

(
∇u(m) ⋅ �

)2
dS ≤ K�

(

�
��

|∇u(m)|pm dS + 1

)
.

(28)

d

dt

�
‖∇u(m)‖2

2,�

�
+ �

�

�
�
�
(z,∇u(m))�u(m)

xx
�2 + �u(m)

xx
�pm

�
dx

≤ C

�

�
��

�∇u(m)�pm dS + �
�

f
(p−)�

0
dx + �

�

�∇u(m)�2 dx + 1

�
.

(29)�
��

|∇u(m)|pmdS ≤ L

(
�
1−

1

p+ �
�

|u(m)
xx

|pmdx + �
−

1

p− �
�

|∇u(m)|pmdx
)
.
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To complete the proof, we multiply this inequality by e−Ct , integrate in t the result‑
ing differential inequality for ‖∇u(t)‖2

2,�
e−Ct , and plug in estimates (17), (18). 	�  ◻

Lemma 3  The functions u(m) satisfy the estimates

with an independent of m and � constant M2.

Proof  Estimates (30) follow upon multiplication the ith equation of (16) by u�
i,m
(t) 

and summation of the results. Following the proof of [20, Lemma 2.4] we arrive at 
the relations: for every t ∈ [0, T]

with C = C(C∗, p−, �+,N) . Since pm < 2 by assumption, it follows that pm

pm−1
≥ 2 , 

which allows one to estimate the last term by virtue of (26) and (21). Using the 
formula

and (17) we have:

d

dt
‖∇u(m)‖2

2,�
+ �

�

�
�
�
(z,∇u(m))�u(m)

xx
�2 + �u(m)

xx
�pm

�
dx

≤ C

�

�
�

�
�∇u(m)�pm + �∇u(m)�2

�
dx + �

�

f
(p−)�

0
dx + 1

�

≤ C

�
‖∇u(m)‖2

2,�
dx + �

�

f
(p−)�

0
dx + 1

�
.

(30)‖u(m)t ‖2
2,QT

+ sup
(0,T)��

(�2 + �∇u(m)�2)
pm (t)

2 dx ≤ M2

(31)

‖u(m)t (t)‖2
2,�

+
d

dt

�

�
�

�
�
2 + �∇u(m)�2

� pm (t)

2 dx

�

= −�
�

dpm(t)

dt

�
�
2 + �∇u(m)�2

� pm (t)

2

p2
m
(t)

�
1 −

pm(t)

2
ln
�
�
2 + �∇u(m)�2

��
dx

+ �
�

fu
(m)
t dx ≤ C

����
dpm(t)

dt

����

�
1 + �

�

�∇u(m)�pm(t) dx

+ �
�

�
�
2 + �∇u(m)�2

� pm(t)

2 ln2
�
�
2 + �∇u(m)�2

�
dx
�

+ �‖u(m)t (t)‖2
2,�

+ C(�)

�
‖f0‖22,� + �

�

�u(m)�2(�m−1) dx
�

(|u|�)t =
(
(u2)

�

2

)

t
=

�

2
(u2)

�

2
−12uut = �ut|u|�−1signu
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Then

For every 0 < 𝜇 < min{p−∕2, (2 − p+)∕2},

Gathering (33) with (21) we obtain the estimate

for all t ∈ (0, T) . By Young’s inequality

(32)

����
dpm(t)

dt

����
= �

����
p�
�
‖u(⋅, t)‖�

�,�

�����
������

�u(m)��−1u(m)t signu dx
����

≤ �C∗‖u
(m)
t ‖2,�

�

�
�

�u(m)�2(�−1) dx
� 1

2

≤ �C∗���
1−
�

2 ‖u(m)t ‖2,�‖u(m)‖
�−1

2

2,�
≤ C‖u(m)t ‖2,�.

����
dpm(t)

dt

����

�������
�
�

�
�
2 + �∇u(m)�2

� pm(t)

2

p2
m
(t)

dx

�������

≤ C

(p−)2
‖u(m)t ‖2,�

�
1 + �

�

�∇u(m)�pm(t) dx
�

≤ C�

�
1 + sup

(0,T)��

�∇u(m)�2 dx
�
‖u(m)t ‖2,� ≤ C‖u(m)t ‖2,�,

1

2

����
dpm(t)

dt

����
������

1

pm(t)

�
�
2 + �∇u(m)�2

� pm (t)

2 ln2
�
�
2 + �∇u(m)�2

�
dx
����

≤ C��‖u(m)t ‖2,� �
�

�
�
2 + �∇u(m)�2

� pm(t)

2 ln2
�
�
2 + �∇u(m)�2

�
dx = I.

(33)
s

pm(t)

2 ln2 s ≤
{

s
pm (t)−𝜇

2

(
s𝜇∕2 ln2 s

)
if s ∈ (0, 1),

s
pm (t)+𝜇

2

(
s−𝜇∕2 ln2 s

)
if s > 1

≤ C(𝜇, p±)(1 + s
p++𝜇

2 ) ≤ C(1 + s).

(34)

�
�

�
�
2 + �∇u(m)�2

� pm (t)

2 ln2
�
�
2 + �∇u(m)�2

�
dx

≤ C �
�

(1 + �∇u(m)�2) dx

≤ C

�
‖∇u0‖22,� + �QT

f
(p−)�

0
dz + 1

�

(35)

I ≤ C‖ut(t)‖2,�
�
‖∇u0‖22,� + �QT

�f �(p−)� dz + 1

�

≤ �‖ut(t)‖22,� + C�

�
‖∇u0‖22,� + �QT

f
(p−)�

0
dz + 1

�2

.
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Plugging (35), (17) and (18) into (31) with a sufficiently small � , we rewrite (31) in 
the form

for every t ∈ [0, T] with a constant depending on � , p± , C∗ , |�| . Inequality (30) fol‑
lows after integration in time. 	�  ◻

Corollary 2  Under the conditions of Lemma 3

	 (i)	 pm(t) ∈ C1∕2([0, T]) and

with an independent of m and � constant C,
	 (ii)	  

and the sequence {u(m)} is compact in Lq(QT ) , 2 < q <
2(d+1)

d−1
.

Proof  By virtue of (30) and (32), for every 0 ≤ � ≤ t ≤ T

with an independent of m and � constant C. The second assertion follows from the 
embedding theorem. 	�  ◻

4 � Passing to the limit

4.1 � Strong solution of the regularized problem

Lemma 4  If the data satisfy conditions (11), then the regularized problem (13) has a 
strong solution u

�
= lim u(m) as m → ∞ . The solution satisfies the estimate

1

4
‖u(m)t (t)‖2

2,�
+

d

dt

�

�
�

�
�
2 + �∇u(m)�2

� pm (t)

2 dx

�

≤ C
�
1 + ‖∇u0‖22,� + ‖f0‖

(p−)�

(p−)�,QT

�

‖pm(t)‖C1∕2([0,T]) ≤ C

u(m) ∈ W1,2(QT ) ∩ L∞(0, T;W
1,2

0
(�)) ∩ L

2(d+1)

d−1 (QT ),

�pm(t) − pm(�)� =
������

t

�

dpm(s)

dt
ds
�����

≤ C �
t

�

‖u(m)t ‖2,� ds ≤ C�‖u(m)t ‖2,QT
�t − ��

1

2

(36)‖u
�t‖22,QT

+ ess sup
(0,T)

‖∇u
�
(⋅, t)‖2

2,�
+ �QT

�u
�xx�p[u� ] dz ≤ M3.
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For the sake of simplicity of notation, throughout this subsection we omit the subindex 
� and denote by u(z) the limit of the sequence {u(m)} , which approximates the solu‑
tion of the regularized problem (13). The uniform estimates (17), (18), (21), (30) allow 
one to extract from {u(m)} a subsequence (which we assume coinciding with the whole 
sequence) such that for some u ∈ W1,2(QT ) ∩ L∞(0, T;W

1,2

0
(�)) ∩ L

2(d+1)

d−1 (QT ) and 
� ∈ (L(p[u])

�

(QT ))
d

The first relation follows from Corollary  2. The second and third follow directly 
from (21) and (30). Let us check the last relation. According to [23, Th.5], the 
sequence {u(m)} is relatively compact in C([0, T];L2(�)):

Due to (38), for every t ∈ [0, T] there exists

whence, by continuity of p(⋅),

Fix some � ∈ (0, 1∕2) . By Corollary  2 the sequence {pm(t)} is equicontinous in 
C0,1∕2[0, T] . It follows then that {pm(t)} is precompact in C0,�[0, T]:

Let us notice that

with

It is easy to see that

(37)

u(m) → u ∈ Lq(QT )with 2 < q <
2(d + 1)

d − 1
,

u
(m)
t ⇀ ut in L

2(QT ),

∇u(m) ⇀ ∇u in (L2(QT ))
d,

𝛾
𝜖
(pm(t),∇u

(m))∇u(m) ⇀ 𝜒 in (L(p[u])
�

(QT ))
d.

(38)u(m) → u inC([0, T];L2(�)) and a.e. in QT .

(39)lim
m→∞

‖u(m)(⋅, t)‖�
�,�

= ‖u(⋅, t)‖�
�,�

pm(t) = p
�
‖u(m)(⋅, t)‖�

�,�

�
→ p

�
‖u(⋅, t)‖�

�,�

�
= p[u] ∀t ∈ [0, T].

(40)pm(t) → p(t) ≡ p[u] inC0,𝛽[0, T] ⊂ Clog[0, T].

(
�
�
(pm(t),∇u

(m))|∇u(m)|
)(p[u])� ≤ C

(
1 + |∇u(m)|pm(t)−1

) p[u]

p[u]−1

≤ C
(
1 + |∇u(m)|�m(t)

)

�m(t) = (pm(t) − 1)
p[u]

p[u] − 1
.

𝜆m(t) < 2 ⇔ pm(t) +
2

p[u]
< 3 ⇔

(p[u] − 1)(p[u] − 2) < p[u](p[u] − pm(t)),
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which is true for all sufficiently big m because for 1 < p− ≤ p+ < 2 and pm(t) → p[u] 
uniformly in [0, T]

as m → ∞ . Hence,

and

by virtue of (21). These arguments prove the following assertion.

Lemma 5  If conditions (11) are fulfilled, then there exist u ∈ L2(QT ) ∩ L∞(0, T;W
1,2

0
(�)) 

and � ∈ (L(p[u])
�

(QT ))
d such that relations (37) are fulfilled and

with a constant C depending only on the data.

By (11) (d), (38), (39) f (z, u(m), l(u(m))) → f (z, u, l(u)) for a.e. z ∈ QT . Since 
�m(t) ≤ �

+ ≤ 2 , the functions Fm = f (z, u(m), l(u(m))) are uniformly bounded in 
L2(QT ) , whence Fmk

⇀ F in L2(QT ) for a subsequence {u(mk)} . It is necessary then 
that F = f (z, u, l(u)) a.e. in QT.

By the method of construction of u(m) , for every finite m and 
� ∈ Pk ≡ span{�1,… ,�k} , k ≤ m,

Relations (37) and (41) allow one to pass in (42) to the limit as m → ∞ , which leads 
to the equality

Lemma 6  For every u ∈ L2(0, T;W
1,2

0
(�)) there exists a sequence {�N} , �N ∈ PN 

such that �N → u in �u(QT ).

(p[u] − 1)(p[u] − 2) ≤ (p− − 1)(p+ − 2) < 0 while p[u](p[u] − pm(t)) → 0

(
�
�
(pm(t),∇u

(m))|∇u(m)|
)(p[u])� ≤ C

(
1 + |∇u(m)|2

)

�QT

(�
�
(pm(t),∇u

(m))|∇u(m)|)(p[u])� dz ≤ C

(41)�QT

(�
�
(p[u],∇u)|∇u|)(p[u])� dz ≤ C, (p[u])� =

p[u]

p[u] − 1

(42)∫QT

(
u
(m)
t � + �

�
(pm(t),∇u

(m))∇u(m) ⋅ ∇� − f (z, u(m), l(u(m)))�
)
dz

= 0.

(43)∫QT

(
ut� + � ⋅ ∇� − f (z, u, l(u))�

)
dz = 0 ∀� ∈ Pk.



227

1 3

Nonlocal evolution equations with p[u(x, t)]-Laplacian an…

The assertion follows from the inclusion L2(0, T;W1,2

0
(𝛺)) ⊂ �u(QT ) and the fact 

that the system {�
−

1

2

i
�i} is an orthonormal basis of W1,2

0
(�) . Taking �N for the test-

function in (43) and letting N → ∞ we obtain the equality

Let us return to (42) and take for the test-function � = u(m) : for every � ∈ Pk with 
k ≤ m

We will use the following well-known inequality: if q ∈ (1, 2] , then for all �, � ∈ ℝ
d , 

� ≠ � and 𝜖 > 0

By virtue of (46) for every � ∈ Pk with k ≤ m

Because of (40)

as m → ∞ uniformly in QT . It follows from (21), (48) and (37) that

(44)∫QT

utu dz + ∫QT

� ⋅ ∇u dz = ∫QT

f (z, u, l(u))u dz.

(45)

0 = ∫QT

u
(m)
t u(m) dz + ∫QT

�
�
(pm(t),∇u

(m))|∇u(m)|2 dz

− ∫QT

f (z, u(m), l(u(m)))u(m) dz

= ∫QT

u
(m)
t u(m) dz + ∫QT

�
�
(pm(t),∇u

(m))∇u(m) ⋅ ∇(u(m) − �) dz

− ∫QT

f (z, u(m), l(u(m)))u(m) dz

+ ∫QT

�
�
(pm(t),∇u

(m))∇u(m) ⋅ ∇� dz.

(46)(�
�
(q, �)� − �

�
(q, �)�) ⋅ (� − �) ≥ (q − 1)(1 + |�|2 + |� |2)

q−2

2 |� − � |2.

(47)

�QT

�
�
(pm,∇u

(m))∇u(m) ⋅ ∇(u(m) − �) dz

= �QT

(�
�
(pm,∇u

(m))∇u(m) − �
�
(pm,∇�)∇�) ⋅ ∇(u(m) − �) dz

+ �QT

�
�
(pm,∇�)∇� ⋅ ∇(u(m) − �) dz

≥ �QT

�
�
(pm,∇�)∇� ⋅ ∇(u(m) − �) dz.

(48)�m(∇�) ≡ �
�
(pm(t),∇�)∇� − �

�
(p[u],∇�)∇� → 0
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because

Let us accept the notation �̃ = L2(0, T;W
1,2

0
(�)) . Using (47) in (45) and then letting 

m → ∞ we find that for � ∈ Pk with any k ∈ ℕ

By Lemma 6 we may take � = �
(k) ∈ Pk ∩ �̃ and then let k → ∞ . Plugging (44) 

we arrive at the inequality

Take � = u + �� with an arbitrary � ∈ �̃ and 𝜆 > 0 . Simplifying and then letting 
� ↓ 0 we obtain the inequality

Since � is arbitrary, it is necessary that I(u,� , �) = 0 for all � ∈ �̃ , whence

Estimate (36) follows from the uniform in m and � estimates (17), (18), (21), (30).

4.2 � Strong solution of the singular problem

Let u
�
 be the strong solution of problem (13) with 𝜖 > 0 obtained as the limit of the 

sequence of Galerkin’s approximations (see Lemma  4). The functions u
�
 satisfy the 

independent of � estimates (36). Therefore, there exist functions u and � such that, up to 
a subsequence,

�QT

�
�
(pm(t),∇�)∇� ⋅ ∇(um − �) dz

= �QT

�m(∇�) ⋅ ∇(um − �) dz + �QT

�
�
(p[u],∇�)∇� ⋅ ∇(um − �) dz

≡ J1 + J2 → �QT

�
�
(p[u],∇�)∇� ⋅ ∇(u − �) dz asm → ∞

J1 ≤ ‖�m(∇�)‖∞,QT
‖∇(um − �)‖1,QT

≤ C‖�m(∇�)‖∞,QT
→ 0,

J2 → �QT

�
�
(p[u],∇�)∇� ⋅ ∇(u − �) dz.

0 ≥ �QT

utu dz + �QT

�
�
(p[u],∇�)∇� ⋅ ∇(u − �) dz

− �QT

f (z, u, l(u))u dz + �QT

� ⋅ ∇� dz.

0 ≥ �QT

(�
�
(p[u],∇�)∇� − �) ⋅ ∇(u − �) dz ∀� ∈ �̃.

I(u,� , �) ≡ �QT

(�
�
(p[u],∇u)∇u − �) ⋅ ∇� dz ≤ 0 ∀� ∈ �̃.

(49)∫QT

(
ut� + �

�
(p[u],∇u)∇u ⋅ ∇� − f (z, u, l(u))�

)
dz = 0.
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Moreover, u ∈ C0([0, T];L2(�)) . For every 𝜖 > 0 the function u
�
 satisfies equality 

(49): ∀� ∈ �̃

Since u
�
→ u in C0([0, T];L2(�)) , then ‖u

�
(⋅, t)‖�

�,�
→ ‖u(⋅, t)‖�

�,�
 for every t ∈ [0, T] 

and

by continuity. As in Corollary 2, one may check that the functions p
�
(t) ∶= p[u

�
] are 

equicontinuous in C0,1∕2[0, T] : by Lemma 4

with an independent of � constant C′ . Hence,

It follows that C∞(QT ) is dense in �̃ , �u(QT ) and �u
�
(QT ) with every � . Let 

�
�
∈ C∞(QT ) and �

�
→ u in �̃ as � → 0 . Repeating the proof of Lemma 5 we find 

that � ∈ (L(p[u])
�

(QT ))
d , and by (50)

Taking �
�
 for the test-function in (51) and letting � → 0 we obtain

Letting now � → 0 we arrive at the equality

(50)

u
𝜖
→ u ∈ Lq(QT ), 2 < q <

2(d + 1)

d − 1
,

u
𝜖t ⇀ ut in L

2(QT ),

∇u
𝜖
⇀ ∇u in (L2(QT ))

d,

𝛾
𝜖
(p[u

𝜖
],∇u

𝜖
)∇u

𝜖
⇀ 𝜒 in (L1(QT ))

d.

(51)∫QT

(
u
�t� + �

�
(p[u

�
],∇u

�
)∇u

�
⋅ ∇� − f (z, u, l(u))�

)
dz = 0.

p
�
(‖u

�
(⋅, t)‖�

�,�

�
→ p

�
‖u(⋅, t)‖�

�,�

�
as � → 0

(52)

�p
�
(t) − p

�
(�)� =

������
t

�

dp
�
(s)

ds
ds
�����
≤ � sup

ℝ

�p���
t

�
�
�

�u
�t��u��−1 dxds

≤ C(�,C∗)‖u�t‖2,QT

�

�
t

�
�
�

�u
�
�2(�−1) dz

� 1

2

≤ C sup
(0,T)

‖u
�
(t)‖�−1

2,�
�t − ��1∕2 ≤ C��t − ��1∕2

(53)p[u
�
] → p[u] inC0,�[0, T]with some � ∈ (0, 1∕2).

∫QT

�
�
(p[u

�
],∇u

�
)∇u

�
⋅ ∇�

�
dz → ∫QT

� ⋅ ∇�
�
dz as � → 0.

∫QT

(
ut��

+ � ⋅ ∇�
�
− f (z, u, l(u))�

�

)
dz = 0.
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Choosing u
𝜖
∈ �� ⊂ �u

𝜖
(QT ) for the test-function in (51) we obtain

Let us take 𝜓 ∈ C∞([0, T];C∞
0
(𝛺)) ⊂ �� with any 𝜖 > 0 . By (46)

We omit the proof of the convergence

which follows, save some minor details, the arguments of [20]. It follows from (54) 
and (55) as � → 0 that for every � ∈ C∞(0, T;C∞

0
(�))

Let us take � ≡ �
�
+ �� where 𝜆 = const > 0,

Inequality (56) takes the form

(54)∫QT

(utu + � ⋅ ∇u − f (z, u, l(u))u) dz = 0.

(55)∫QT

u
�tu� dz + ∫QT

(�
�
(�

�
(p[u

�
], ,∇u

�
)∇u

�
⋅ ∇u

�
− f (z, u

�
, p[u

�
])u

�
) dz = 0.

�QT

�
�
(p[u

�
],∇u

�
)∇u

�
⋅ ∇u

�
dz

≥ �QT

(
|∇�|p[u�]−2∇� − �

�
(p[u

�
],∇�)∇�

)
⋅ ∇(u

�
− �) dz

+ �QT

�
�
(p[u

�
],∇�)∇� ⋅ ∇(u

�
− �) dz

+ �QT

�
�
(p[u

�
],∇u

�
)∇u

�
⋅ ∇� dz ≡ J.

J → ∫QT

� ⋅ ∇� dz + ∫QT

|∇�|p[u]−2∇� ⋅ ∇(u − �) dz as � → 0

(56)

0 = �QT

utu dz − �QT

fu) dz + lim
�→0�QT

�
�
(p[u

�
],∇u

�
)∇u

�
⋅ ∇u

�
dz

≥ −�QT

� ⋅ ∇u dz + �QT

� ⋅ ∇� dz

+ �QT

|∇�|p[u]−2∇� ⋅ ∇(u − �) dz

= �QT

(
|∇�|p[u]−2∇� − �

)
⋅ ∇(u − �) dz.

� ,�
�
∈ C∞([0, T];C∞

0
(�)) and �

�
→ u in �̃ as � → 0.
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By the generalized Hölder inequality (5)

while

Hence,

Simplifying and letting � → 0+ we obtain the inequality

Because of the density of smooth functions in �̃ , this inequality is possible only if

Returning to (51) and passing to the limit as � → 0 we find that for every test-func‑
tion � ∈ �u(QT )

J1 + J2 ≡ �QT

(
|∇(�

�
+ �� |p[u]−2∇(�

�
+ ��) − �

)
⋅ ∇(u − �

�
) dz

− ��QT

(
|∇(�

�
+ �� |p[u]−2∇(�

�
+ ��) − �

)
⋅ ∇� dz ≤ 0.

�J1� ≤ 2‖u − �
�
‖
�u(QT )

����∇(��
+ �� �p[u]−2∇(�

�
+ ��) − �

���p�[u],QT

≤ 2‖u − �
�
‖
�u(QT )�

����∇(��
+ �� �p[u]−1���p�[u],QT

+ ‖�‖p�[u],QT

�

≤ C‖u − �
�
‖
�u(QT )

�
1 + ‖�‖p�[u],QT

+ �QT

�∇�
�
�p[u] dz + �QT

��∇� �p[u] dz
�

≤ C‖u − �
�
‖
�̃

→ 0 as � → 0,

J2 → −�∫QT

(
|∇(u + �� |p[u]−2∇(u + ��) − �

)
⋅ ∇� dz.

��QT

(
|∇(u + �� |p[u]−2∇(u + ��) − �

)
⋅ ∇� dz ≥ 0.

�QT

(
|∇u|p[u]−2∇u − �

)
⋅ ∇� dz ≥ 0 ∀� ∈ C∞([0, T];C∞

0
(�)).

∫QT

(
|∇u|p[u]−2∇u − �

)
⋅ ∇� dz = 0 ∀� ∈ �̃.

∫QT

(
ut� + |∇u|p[u]−2∇u ⋅ ∇� − f (z, u, l(u))�

)
dz = 0.
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5 � Uniqueness of strong solutions

Theorem  2  Assume that p(⋅) , l(u) satisfy conditions (2) and sup
ℝ+

p�(s) < ∞ . If 
f(z, s, r)

then problem (1) has at most one strong solution in the class of functions

Proof  Let ui ∈ S be two different strong solution of problem (1). Denote

The function u = u1 − u2 ∈ S ⊂ �� can be taken for for the test-function in the inte‑
gral identities (44) for ui . Combining these identities we arrive at the equality

with

We will prove first that the strong solution is unique on a time interval [0, T∗] with 
some T∗ depending only on the data. Writing

and using inequality (46) we transform (58) into the form

where

(57)sup
QT×ℝ×ℝ+

(||||
𝜕f

𝜕u

||||
+
||||
𝜕f

𝜕l

)|||||
≤ K < ∞,

S =
{
v ∶ v ∈ C([0, T];L2(�)) ∩ L∞(0, T;W

1,2

0
(�)), vt ∈ L2(QT )

}
.

pi = p[ui], f i = f (z, ui, l(ui)), i = 1, 2.

(58)
1

2
‖u(t)‖2

2,�
+ ∫

Qt

�
�∇u1�p1−2∇u1 − �∇u2�p2−2∇u2

�
⋅ ∇u dz = D(t)

D(t) = ∫
Qt

(
f 1 − f 2

)
u dz.

(|∇u1|p1−2∇u1 − |∇u2|p2−2∇u2) ⋅ ∇u

= (||∇u1||
p2−2∇u1 −

||∇u2||
p2−2∇u2) ⋅ ∇u

+ (||∇u1||
p1−2∇u1 −

||∇u1||
p2−2∇u1) ⋅ ∇u

(59)
1

2
‖u(t)‖2

2,�
+ (p−

2
− 1)�

Qt

��∇u�2 dz ≤ I(t),

� = (1 + ||∇u1||
p2 + ||∇u2||

p2 )
p2−2

p2 ,

I(t) = ∫
Qt

(||∇u1||
p2−2∇u1 −

||∇u1||
p1−2∇u1) ⋅ ∇u dz.
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By Young’s inequality

with

and any 𝛿 > 0 . Plugging (60) into (59) and choosing � appropriately small, we 
rewrite (60) in the form

For every q, r > 1 and � ∈ ℝ
d , |�| ≠ 0,

By the Lagrange theorem there exists � ∈ (0, 1) such that

It follows that at every point z ∈ QT either |∇u1| = 0 and

or |∇u1| ≠ 0 and

with p = �p1 + (1 − �)p2 , � ∈ (0, 1) . Recall that the exponents p1 , p2 are independ‑
ent of x. By Young’s inequality, for a.e. t ∈ (0, T)

with a constant C′ depending on d, p± and the constant in (17). Using the classical 
Hölder’s inequality and then (62) we obtain

(60)|I(t)| ≤ � �
Qt

�|∇u|2 dz + C(�)J(t)

J(t) = ∫
Qt

|||
||∇u1||

p1−2∇u1 −
||∇u1||

p2−2∇u1
|||
2

�
−1 dz

(61)
1

2
‖u(t)‖2

2,�
+ (p− − 1 − �)�

Qt

�∇u�2� dz ≤ C(�)J(t) + D(t).

||||�|
q−2

� − |�|r−2�||| =
||||
(
|�|q−1 − |�|r−1

) �

|�|
||||

≤ ||||�|
q−1 − |�|r−1|||

||||
�

|�|
||||
=
||||�|

q−1 − |�|r−1|||.

||||�|
q−1 − |�|r−1||| = |�|�q+(1−�)r−1| ln |�|||q − r|.

|||
||∇u1||

p1−2∇u1 −
||∇u1||

p2−2∇u1
||| = 0,

(62)
|||
||∇u1||

p1−2∇u1 −
||∇u1||

p2−2∇u1
||| ≤ |∇u1|p−1||ln ||∇u1||||||p1 − p2

||

‖�−1‖
2

2−p2

2

2−p2
,�

= �
�

�
1 + �∇u1�p2 + �∇u2�p2

� 2

p2 dx

≤ C �
�

(1 + �∇u1�2 + �∇u2�2) dx ≤ C�
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with a constant C = C(C�, p±) and the exponent p = �p1 + (1 − �)p2 where 
� = �(t) ∈ (0, 1) . Set

The assumption pi ≤ p+ < 2 yields the inequality

Let us also claim that

that is,

Condition (64) is surely fulfilled on a sufficiently small time interval (0, T∗) with 
T∗ defined through the data. Indeed: repeating the derivation of (52) we obtain the 
inequalities

with a constant C′ depending only on u0 , f and d. It follows that

for t < T∗ =

(
2−p+

2C�

)2

 . We will use inequality (33) in the following form: if � ∈ (0, 1) 
is so small that �(1 + �) ≤ 2 , then for every 𝜉 > 0

with a constant C = C(�) . This inequality together with (21) imply that for a.e. 
t ∈ (0, T∗)

(63)

J(t) ≤ �
t

0

����
���
��∇u1��

p1−2∇u1 −
��∇u1��

p2−2∇u1
���
2���� 2

p2(t)
,�

‖�−1‖ 2

2−p2(t)
,� dt

≤ C �
t

0

��p1 − p2
��
2

�

�
�

�
�∇u1�p−1��ln ��∇u1����

� 4

p2 dx

� p2

2

dt

� =
4(p − 1)

p2
= (�p1 + (1 − �)p2 − 1)

4

p2
.

𝜅 ≤ 4(p2 − 1)

p2
< 2 if p2 ≥ p1.

𝜅 < 2 if p1 ≥ p2,

(64)p1 − p2 < 2 − p+ ≤ 2 − p1 if p1 ≥ p2.

|pi(t) − pi(�)| ≤ C�|t − �|
1

2 ∀ t, � ∈ [0, T]

|p1(t) − p2(t)| ≤ |p1(t) − p[u0]| + |(p2 − p[u0]| ≤ 2C�t
1

2 < 2 − p+

(𝜉| ln 𝜉|)𝜅 =

{
𝜉
𝜅(1+𝜇)(𝜉−𝜇 ln 𝜉)𝜅 if 𝜉 > 1,

𝜉
𝜅(1−𝜇)(𝜉𝜇| ln 𝜉|)𝜅 if 𝜉 ∈ (0, 1]

≤ C(1 + 𝜉
2)

�

�
�

�
�∇u1�

����
ln ��∇u1��

1

p−1

����

� 4(p−1)

p2

dx

� p2

2

≤ C

⎛
⎜
⎜
⎝
1 + �

�

�∇u1�2dx
⎞
⎟
⎟
⎠

p+

2

≤ C,
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whence

By Hölder’s inequality and due to the assumption � ∈ [1, 2]

To estimate the term D(t) in (58) we use the inequalities

with the constant K from condition (57) and

whence

It follows now from (58), (61) and (65), (66) that u = u2 − u1 satisfies the inequality

By the Gronwall lemma ‖u(t)‖2
2,�

= 0 for t ∈ [0, T∗) , which means that 
u2(x,T

∗∕2) = u1(x,T
∗∕2) in � . Let us take T∗∕2 for the initial instant and con‑

sider problem (1) in the cylinder � × (T∗∕2,T) . As is already shown, the condition 
u2(x,T

∗∕2) − u1(x,T
∗∕2) = 0 in � yields the equality u2 = u1 in � × (T∗∕2, 3T∗∕2) . 

Repeating these arguments, in a finite number of steps of the length T∗ we will 
exhaust the interval (0, T). The proof of Theorem 2 is completed. 	�  ◻

Funding  The first author was supported by the Research Project No. 19-11-00069 of the Russian Science 
Foundation, Russia, and by the Project UID/MAT/04561/2019 of the Portuguese Foundation for Science 

(65)J(t) ≤ C

t

�
0

||p1 − p2
||
2
dt, t < T∗.

�p2 − p1� ≤ C‖u2 − u1‖2,�
�

�
�

�
�u2�2(�−1) + �u1�2(�−1)

�
dx

� 1

2

≤ C‖u2 − u1‖2,�
�
1 + ‖u2‖

2(�−1)

2,�
+ ‖u1‖

2(�−1)

2,�

� 1

2

≤ C‖u2 − u1‖2,�.

|f (z, u1, l(u1)) − f (z, u2, l(u2))| ≤ K
(
|u| + |l(u1) − l(u2)|

)

��l(u1) − l(u2)
�� ≤ C(�)‖u(⋅, t)‖2,�

�
‖u1(⋅, t)‖�−12,�

+ ‖u2(⋅, t)‖�−12,�

�

≤ C�‖u(⋅, t)‖2,�,

(66)�D� ≤ K

�
‖u(⋅, t)‖2

2,�
+ C� �

�

�u(s, t)�‖u(⋅, t)‖2,�ds
�

≤ C‖u(⋅, t)‖2
2,�

.

(67)‖u(t)‖2
2,�

≤ C

t

�
0

‖u(�)‖2
2,�

d�, t ∈ (0, T∗).
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