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Abstract
As an application of the theory of linear parabolic differential equations on noncom-
pact Riemannian manifolds, developed in earlier papers, we prove a maximal regu-
larity theorem for nonuniformly parabolic boundary value problems in Euclidean 
spaces. The new feature of our result is the fact that—besides of obtaining an opti-
mal solution theory—we consider the ‘natural’ case where the degeneration occurs 
only in the normal direction.

Keywords  Degenerate parabolic boundary value problems · Riemannian manifolds 
with bounded geometry

Mathematics Subject Classification  35K65 · 35K45 · 53C44

1  Introduction

Of concern in this paper are linear second order parabolic differential equations 
which are not uniformly parabolic but degenerate near (some part of) the boundary. 
In the main body of this work such equations are studied in the framework of Rie-
mannian manifolds. Here we restrict ourselves to a simpler Euclidean setting.

We assume that �  is a bounded domain in ℝm , m ≥ 1 , with a smooth bound-
ary �� which lies locally on one side of � . We write

where �  , �0 , and �1 are pairwise disjoint and open and closed in �� with � ≠ ∅ . 
Either �0 or �1 , or both, may be empty in which case obvious adaptions apply (as is 
the case if m = 1 ). We denote by � the inner (unit) normal on �� and by � the trace 

(1.1)�� = � ∪ �0 ∪ �1,
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operator u ↦ u|�� . By  ⋅ or  (⋅|⋅) we denominate the Euclidean inner product in ℝm 
and ∶  stands for the Hilbert–Schmidt inner product in ℝm×m . Moreover, ∇u  is the 
m-vector of first order derivatives, and ∇2u  is the (m × m)-matrix of second order 
derivatives. As usual, Ck is used for spaces of Ck functions, B stands for ‘bounded’, 
and BUC for ‘bounded and uniformly continuous’.

We set

and consider on M a second order linear boundary value (BVP), denoted by (A,B) , 
where

and

on �M ∶= �0 ∪ �1 . It is assumed that

and

We also suppose that A is strongly elliptic, that is, there exists � ∶ M → (0, 1] such 
that

and that B is normal, which means

Note that B is the Dirichlet boundary operator on �0 and a first order boundary oper-
ator on �1.

We fix T ∈ (0,∞) and set J ∶= [0, T] . In this paper we develop an Lp Sobolev 
space theory for the parabolic BVP on M × J:

where �0 is the trace operator at t = 0 . Observe that (1.4) is not a BVP on � , since 
there is no boundary condition on �  . Also note that A  is not assumed to be uni-
formly elliptic.

M ∶= �⧵�

Au ∶= −a ∶ ∇2u + a1 ⋅ ∇u + a0u onM

Bu ∶=

{
�u on �0,

b ⋅ �∇u + b0�u on �1

(1.2)a = a∗ ∈ C(M,ℝm×m), a1 ∈ C(M,ℝm), a0 ∈ C(M),

b ∈ BC1(�1,ℝ
m), b0 ∈ BC1(�1).

(
a(x)�||�

) ≥ �(x) |�|2, x ∈ M,

(1.3)
|||
(
b(x)||𝜈(x)

)||| > 0, x ∈ 𝛤1.

(1.4)
�tu +Au = f on M × J,

Bu = 0 on �M × J,

�0u = u0 on M × {0},



125

1 3

Linear parabolic equations with strong boundary degeneration﻿	

In general, (1.4) will not be well-posed. We now introduce conditions for the 
behavior of a and a1 near �  which guarantee an optimal solvability theory. This 
is done by prescribing—by means of a singularity function—the way by which a 
and a1 vanish as we approach � .

We call a function

(strong) singularity function.

Example 1.1  Suppose s ∈ ℝ . Then the power function Rs ∶= (y ↦ ys) is a strong 
singularity function iff s ≥ 1 . Also y ↦ e−�y

−� is a strong singularity function if 
𝛽, 𝛾 > 0 . 	�  ◻

To specify the behavior of the coefficients of A near �  we choose a normal collar 
for it. This means that we fix 0 < 𝜀 ≤ 1 such that, setting

the map

is a smooth diffeomorphism. Hence

We select � ∈ C∞(M, (0, 1]) satisfying �(x) = dist(x,� ) for x ∈ S and set

We also define � ∈ C∞(S,ℝn) by extending the normal vector field from �  to S by 
setting

The operator A is said to be R-degenerate uniformly strongly elliptic on M if

The boundary value problem (A,B) is called R-degenerate uniformly strongly ellip-
tic on M if A has this property and B is normal. It is strongly degenerate near �  if 
(1.6) holds for some singularity function R.

Let � ∶ V� → ℝ
m−1 , q ↦ z = (z2,… , zm) be a local coordinate system for �  . Set 

U𝜅 ∶= 𝜑−1([0, 𝜀) × V𝜆) ⊂ 𝛺 . Then

R ∈ C∞((0, 1], (0,∞)) with ∫
1

0

dy

R(y)
= ∞

S ∶= { q + y𝜈(q) ; 0 < y ≤ 𝜀, q ∈ 𝛤 },

(1.5)� ∶ S → [0, �] × � , q + y�(q) ↦ (y, q)

y = dist(x,� ) for x = q + y�(q) ∈ S.

r(x) ∶= R(�(x)), x ∈ M.

�(x) ∶= �(q), x = q + y�(q) ∈ S.

(1.6)

(i) A is strongly elliptic on M;

(ii) there exists � ∈ (0, 1) such that
(
a(x)�||�

) ≥ �
(
r2(x)�2 + |� |2

)

for all x ∈ S and � = ��(x) + � ∈ ℝ
m with

(
� ||�(x)

)
= 0.
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is a local boundary flattening chart for � . It follows from Sect. 7 that A� , the local 
representation of A|U� in the coordinate system � = (y, z) , is given by

where we use the summation convention with � and � running from  2 to  m. The 
operator A� on 𝜅(U𝜅) ⊂ ℍ

m is bc-regular if

We call A  R-degenerate bc-regular if

Remark 1.2  The ellipticity condition (1.6)(ii) is equivalent to the statement:
for each � of the from (1.7), the matrix [aij

�
] is symmetric and uniformly positive 

definite on �(U�) . 	�  ◻

Next we introduce weighted Sobolev spaces which are adapted to strongly 
degenerate differential operators. We assume throughout

The representation of u ∶ S → ℝ in the variables  (y, q) is denoted by �∗u , that is, 
�∗u = u◦�−1 . Given k = 0, 1, 2 and u ∈ C2(S),

The Sobolev space Wk
p
(S;R) is defined to be the completion in L1,loc(S) of the set of 

smooth compactly supported functions with respect to this norm.
We choose a relatively compact open subset U of M such that S ∪ U = M . Then 

the Sobolev space Wk
p
(M;R) consists of all u ∈ L1,loc(M) for which

It is a Banach space with the norm

whose topology is independent of the particular choice of S and U.

(1.7)� ∶= (id[0,�) × �)◦� ∶ U� → ℍ
m ∶= ℝ+ ×ℝ

m−1

(1.8)
A� = −

(
a
11

�
(R�y)

2 + 2a
1�

�
(R�y)�z� + a

��

�
�z� �z�

)

+ a
1

�
(R�y) + a

�

�
�z� + a

0

�
,

(1.9)a
ij

�
∈ BUC

(
�(U�)

)
, a

k

�
, a

0

�
∈ BC

(
�(U�)

)
, 1 ≤ i, j, k ≤ m.

(i) (1.2) applies;

(ii) A� is bc-regular for each boundary flattening chart of the form (1.7).

∙ 1 < p < ∞.

‖u‖Wk
p
(S;R) ∶=

k�

i=0

�

∫
�

0

‖(R(y)�y)i�∗u(y, ⋅)‖
p

Wk−i
p

(� )

dy

R(y)

�1∕p

.

u|S ∈ Wk
p
(S;R), u|U ∈ Wk

p
(U).

u ↦ ‖u�S‖Wk
p
(S;R) + ‖u�U‖Wk

p
(U),
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For a concise formulation of our solvability result for problem  (1.4) we recall 
some notation. Given Banach spaces E0 and E1 , L(E1,E0)  is the Banach space of 
bounded linear operators from E1 into E0 , and Lis(E1,E0) is the set of isomorphisms 
therein. As usual, E1 ↪ E0 means that E1 is continuously injected in E0 , and E1

d

↪E0 
indicates that E1  is also dense in  E0 . We write E1−1∕p for the real interpolation 
space (E0,E1)1−1∕p,p.

Suppose E1

d

↪E0 and A ∈ L(E1,E0) . Then A is said to have maximal  Lp regular-
ity if, for each (f , u0) ∈ Lp(J,E0) × E1−1∕p , the linear evolution equation in E0,

has a unique solution u ∈ Lp(J,E1) ∩W1
p
(J,E0) depending continuously on (f , u0) . 

By Banach’s homomorphism theorem this is equivalent to

This concept is independent of T.
Henceforth, we express maximal Lp regularity more precisely by saying

is a pair of maximal regularity for A. It is known that this condition implies that −A , 
considered as a linear operator in E0 with domain E1 , generates a strongly continu-
ous analytic semigroup on E0 , that is, in L(E0) = L(E0,E0) . For all this we refer to 
Chapter III in [2].

We suppose:

Then

is a closed linear subspace of W2
p
(M;R),

and

Hence the parabolic BVP (1.4) can be interpreted, using standard identifications, as 
the linear evolution equation in Lp(M;R):

�u + Au = f on J, �0u = u0,

(� + A, �0) ∈ Lis(Lp(J,E1) ∩W1
p
(J,E0), Lp(J,E0) × E1−1∕p).

(Lp(J,E1) ∩W1
p
(J,E0), Lp(J,E0))

(1.10)

(i) R is a strong singularity function.

(ii) (A,B) is an R-degenerate

uniformly strongly elliptic BVP on M.

(iii) A is R-degenerate bc-regular.

W2
p,B

(M;R) ∶= { u ∈ W2
p
(M;R) ; Bu = 0}

W2
p,B

(M;R)
d

↪Lp(M;R) ∶= W0
p
(M;R),

A ∶= A|W2
p,B

(M;R) ∈ L(W2
p,B

(M;R),Lp(M;R)).
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Now we can formulate our well-posedness result for (1.4).

Theorem 1.3  Let (1.10) be satisfied. Then

is a pair of maximal regularity for A.

Proof  See Sect. 7. 	�  ◻

Remark 1.4 

(a)	 This theorem has an obvious generalization to situations in which R varies from 
connected component to connected component of �  . It also applies verbatim to 
strongly elliptic systems.

(b)	 The weighted Sobolev space W2
p
(M;R) satisfies embedding theorems analogous 

to the familiar ones for the unweighted spaces W2
p
(M) . This implies, in particu-

lar, that the solution u and its first derivatives are Hölder continuous if p > m . 
We refrain from giving details, since we would need to introduce appropriately 
weighted Hölder spaces.

	   It is also possible to establish a Hölder space analog of Theorem 1.3, as well 
as optimal solvability results for nonautonomous problems in parabolic space-
time settings of the type W2,1

p
(M × J;R) . All this will be found in the forthcoming 

book [9].
(c)	 For simplicity, we have restricted ourselves to bounded domains. However, Theo-

rem 1.3 remains valid if it is only assumed that �� is uniformly regular in the 
sense of Browder [13] (also see [25, IV.§4] and Sect. 2 below).

	�  ◻

It is worthwhile to have a closer look at a simple model problem, taking the 
last remark into account.

Example 1.5  Let � ∶= [0, 1] ×ℝ
m−1 . Then ��  is the union of �0� ∪ �1� with 

�i� = {i} ×ℝ
m−1 . Set � ∶= �0� (identified with  ℝm−1 ) and fix s ≥ 1 . On 

M ∶= (0, 1] ×ℝ
m−1 consider the Dirichlet BVP (As, �) with

where �m−1 is the Laplace operator on ℝm−1 . Since |sys−1| ≤ s on M, it is obvious that 
(As, �) is Rs-degenerate strongly uniformly elliptic on M. Here we can take S = M . 
Note that

�u + Au = f on J, �0u = u0.

(Lp(J,W
2
p
(M;R)) ∩W1

p
(J, Lp(M;R)), Lp(J, Lp(M;R)))

(1.11)
As ∶= −(ys�y(y

s�y) + �m−1)

= −(y2s�2
y
+ �m−1) − (sys−1)ys�y,
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with z ∈ ℝ
m−1.

The operator As can be rewritten as

�gs
 being the Laplace–Beltrami operator on (0, 1] for the metric gs = y−2s dy2 (see 

(6.1). 	�  ◻

The interpretation  (1.12) is the first pivotal step on the way to an efficient and 
successful handling of strongly degenerate parabolic BVPs. The second step, which 
takes the theory off the ground, is the proof (in Sect. 5) that ((0, 1], gs) is a uniformly 
regular Riemannian manifold (in the sense of Sect. 2).

Although there has been done much work on degenerate parabolic differential 
equations, there are only very few papers known to us dealing with strong boundary 
degenerations. We mention, in particular, Fursikov [16], Vespri [29], Krylov [22], 
Krylov and Lototsky [23], Lototsky [26], Kim [18], and Fornaro, Metafune, and Pal-
lara [15]. In all but [16, 22], and [23], uniform boundary degenerations of type Rs , 
s ≥ 1 , are being considered. This means that the ellipticity condition

is imposed. Vespri, Fornaro et al., and also Kim, consider the operator

in M = � , which means that � = �� , with smooth coefficients, and a uniformly 
positive definite diffusion matrix a. They study Ãs on the weighted Sobolev space

Fornaro et  al. give a new, functional analytically based proof for Vespri’s result 
which says that −Ãs generates a strongly continuous analytic semigroup on Lp(�) . In 
a preparatory step they consider, in the setting of Example 1.5, the operator

with a constant vector a1 and show that it has maximal Lp(M) regularity. That proof 
uses the fact that second order equations are considered. It is not applicable to sys-
tems or higher order problems. There is no maximal regularity result for the general 
case. It should be mentioned that Vespri studies Hölder space settings also.

Kim [18] proves a maximal regularity theorem by employing weighted Bessel 
potential spaces, introduced originally by Krylov [21, 22] in connection with sto-
chastic evolution equations. Krylov considers the half-space ℍm and s = 1 , and uses 
basically the fact that a logarithmic change of variables reduces the weighted spaces 
to the standard Bessel potential spaces on ℝm . Kim’s proof is in the spirit of the 
classical theory of partial differential equations. He employs a priori estimates due 

Lp(M;Rs) = Lp(M, y−sdy dz)

(1.12)As = −(y2s�gs
+ �m−1),

(1.13)(a(x)�||�) ≥ ��2s(x) |�|2, x ∈ M,

(1.14)Ãsu ∶= −�2sa ∶ ∇2u + �sa1 ⋅ ∇u + a0u

W̃2
p
(�;�s) ∶= { u ∈ Lp(�) ; �s�iu, �

2s�j�ku ∈ Lp(�), 1 ≤ i, j, k ≤ m}.

(1.15)−y2s�m + ysa1 ⋅ ∇
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to Krylov [22] and versions of the Krylov spaces for bounded domains, established 
by Lototsky [26]. A similar approach is used by the latter author for a related degen-
erate operator. However, Lototsky builds on techniques from stochastic differential 
equations.

Parabolic equations with strong boundary degeneration occur, in particular, in 
connection with Ito stochastic parabolic equations (e.g., Lototsky [27], Krylov and 
Lototsky [23, 24], Kim and Krylov [19, 20], and the references therein).

The obvious difference between (1.13) (resp. (1.14)) and (1.6) is the fact that, in 
the former case, the diffusion and drift coefficients decay uniformly in all variables, 
whereas in (1.6) only a degeneracy in the normal direction is taken into account. 
This sticks out particularly clearly by comparing (1.11) with (1.15). Our approach 
seems to be more natural since, a priori, there is no reason to expect that tangential 
derivatives blow up near �  . (See [23] for a similar remark.)

The only results for parabolic equations with degeneracies in normal directions 
only are in [16, 22, 23]. Fursikov establishes an L2 theory for general parabolic sys-
tems of arbitrary order which are of the type of Euler’s differential equation. This 
means that, in the model half-space case, �y carries the weight y. He uses a logarith-
mic change of variables and builds on the work of Agranovich and Vishik [1]. Kry-
lov [22], resp. Krylov and Lototsky [23], establish a maximal regularity theory in 
the case of the one-dimensional half-line, resp. ℍm , in the weighted Bessel potential 
spaces introduced in [21], resp. [22]. Our paper is the first one in which the case of a 
general domain, in fact, a general Riemannian manifold, is being handled.

Section 2 contains a brief review of the relevant facts on uniformly regular Rie-
mannian manifolds. In Sect. 3 we present the corresponding function space settings. 
In the subsequent section we recall the maximal regularity theorem for second order 
uniformly parabolic BVPs on uniformly regular Riemannian manifolds.

In Sect.  5 we introduce uniformly regular Riemannian manifolds with strong 
boundary singularities. Then, in Sect. 6, we prove a renorming theorem for Sobolev 
spaces on manifolds with strong boundary singularities. In the final section we 
investigate the concepts of uniform ellipticity and bc-regularity in the framework of 
strong boundary degeneracy and prove Theorem 1.3.

2 � Uniformly regular Riemannian manifolds

In this section we recall the definition of uniformly regular Riemannian manifolds 
and collect those properties of which we will make use. Details can be found in 
[3–5], and in the comprehensive presentation [9]. Thus we shall be rather brief.

We use standard notation from differential geometry and function space theory. In 
particular, an upper, resp. lower, asterisk on a symbol for a diffeomorphism denomi-
nates the corresponding pull-back, resp. push-forward (of tensors).

By c, resp. c(�) etc., we denote constants  ≥ 1 which can vary from occurrence to 
occurrence.

Assume S is a nonempty set. On the cone of nonnegative functions on S we define 
an equivalence relation  ∼ by f ∼ g iff f (s)∕c ≤ g(s) ≤ cf (s) , s ∈ S.
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An m-dimensional manifold is a separable metrizable space equipped with an 
m-dimensional smooth structure. We always work in the smooth category.

Let M be an m-dimensional manifold with or without boundary. If �  is a local 
chart, then we use U� for its domain, the coordinate patch associated with � . The 
chart is normalized if �(U�) = Qm

�
 , where Qm

�
= (−1, 1)m if U ⊂ M̊ , the interior 

of M, and Qm
�
= [0, 1) × (−1, 1)m−1 otherwise. An atlas � is normalized if it consists 

of normalized charts. It is shrinkable if it normalized and there exists r ∈ (0, 1) such 
that { �−1(rQm

�
) ; � ∈ �} is a covering of M. It has finite multiplicity if there exists 

k ∈ ℕ such that any intersection of more than k coordinate patches is empty.
The atlas � is uniformly regular (ur) if

Two ur atlases � and �̃ are equivalent if

This defines an equivalence relation in the class of all ur  atlases. An equivalence 
class thereof is a ur structure. By a ur manifold we mean a manifold equipped with 
a ur  structure. Each ur  atlas � defines a unique ur  structure, namely the equiva-
lence class to which it belongs. Thus, if we need to specify the ur structure, we write 
(M,�) for the ur manifold and say its ur structure is induced by �.

Let (M,�) be a ur manifold. A Riemannian metric g on M is ur if

where gm ∶= (⋅|⋅) = dx2 is the Euclidean metric1 on ℝm and (i) is understood in the 
sense of quadratic forms. This concept is well-defined, independently of the spe-
cific � . A  uniformly regular Riemannian (urR) manifold, (M, g) = (M,�, g) , is  a 
ur manifold, M = (M,�) , endowed with a urR metric.

In the following examples we use the natural ur  structure (e.g.,  the product 
ur structure in Example 2.1(c)) if nothing is mentioned.

Example 2.1 

(a)	 Each compact Riemannian manifold is a urR manifold and its ur structure is 
unique.

(2.1)

(i) it is shrinkable and has finite multiplicity;

(ii) �̃◦�−1 ∈ BUC∞(�(U��̃),ℝ
m) and

‖�̃◦�−1‖k,∞ ≤ c(k), �, �̃ ∈ �, k ∈ ℕ, where U��̃ ∶= U� ∩ U�̃ .

(i) there exists k ∈ ℕ such that each coordinate patch of�

meets at most k coordinate patches of �̃, and vice versa;

(ii) condition (2.1) (ii) holds for all (�, �̃) and (�̃, �) belonging to � × �̃.

(i) �∗g ∼ gm, � ∈ �;

(ii) ‖�∗g‖k,∞ ≤ c(k), � ∈ �, k ∈ ℕ,

1  As usual, we use the same symbol for a Riemannian metric and its restrictions to submanifolds.
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(b)	 Let � be a bounded domain in ℝm with a smooth boundary such that � lies 
locally on one side of it. Then (�, gm) is a urR manifold.

(c)	 If (Mi, gi) , i = 1, 2 , are urR manifolds and at most one of them has a nonempty 
boundary, then (M1 ×M2, g1 × g2) is a urR manifold.

(d)	 Assume (M, g) is a urR manifold with a nonempty boundary. Denote by g�M the 
Riemannian metric on �M induced by g. Then (�M, g�M) is a urR manifold.

(e)	 Set Jk ∶= (k − 1, k + 1) and �k(s) ∶= s − k  for s ∈ Jk and k ∈ ℤ . Then 
{ �k ; k ∈ ℤ} is a ur atlas for ℝ which induces the canonical ur structure. Its 
restriction { �k|ℝ+ ; k ∈ ℕ } is a ur atlas for ℝ+ inducing the canonical ur struc-
ture on ℝ+ . Unless explicitly said otherwise, ℝ and ℝ+ are always given the 
canonical ur structure. Then (ℝ, dx2) and (ℝ+, dx

2) are urR manifolds. Thus it 
follows from Example 2.1(c) that (ℝm, gm) and (ℍm, gm) are urR manifolds.

(f)	 Let M be a manifold, N a topological space, and f ∶ N → M a homeomorphism. 
Let � be an atlas for M. Then f ∗� ∶= { f ∗� ; � ∈ � } is an atlas for N which 
induces the smooth ‘pull-back’ structure on N. If � is ur, then f ∗� also is ur.

	   Suppose (M, g) = (M,�, g) is a urR manifold. Then 

is a urR manifold and the map f ∶ (N, f ∗g) → (M, g) is an isometric diffeomor-
phism. 	�  ◻

It follows from these examples, for instance, that the cylinders ℝ ×M1 or ℝ+ ×M2 , 
where Mi are compact Riemannian manifolds with �M2 = � , are urR manifolds. More 
generally, Riemannian manifolds with cylindrical ends are urR manifolds (see [5], 
where many more examples are discussed).

Without going into detail, we mention that a Riemannian manifold without 
boundary is  a urR manifold iff it has bounded geometry (see [4] for one half of 
this assertion and [14] for the other half). Thus, for example, (ℍ̊m, gm) is not a urR 
manifold.

A  Riemannian manifold with boundary is  a urR manifold iff it has bounded 
geometry in the sense of Schick [28] (also see [10–12, 17] for related definitions). 
Detailed proofs of these equivalences will be found in [9].

3 � Function spaces

Let (M, g) be a Riemannian manifold. We consider the tensor bundles

and

f ∗(M, g) = f ∗(M,�, g) ∶= (N, f ∗�, f ∗g)

T1
0
M ∶= TM, T0

1
M ∶= T∗M, T0

0
∶= ℝ,

T𝜎
𝜏
M ∶= (TM)⊗𝜎 ⊗ (T∗M)⊗𝜏 , 𝜎, 𝜏 ≥ 1,



133

1 3

Linear parabolic equations with strong boundary degeneration﻿	

endow T�
�
M with the tensor bundle metric g𝜏

𝜎
∶= g⊗𝜎 ⊗ g∗⊗𝜏 , �, � ∈ ℕ , and set2

By ∇ = ∇g we denote the Levi–Civita connection and interpret it as covariant 
derivative. Then, given a smooth function u on M, ∇ku ∈ C∞(T0

k
M) is defined by 

∇0u ∶= u , ∇1u = ∇u ∶= du , and ∇k+1u ∶= ∇(∇ku) for k ∈ ℕ.
Let � = (x1,… , xm) be a local coordinate system and set �i ∶= �∕�xi . Then

where

are the Christoffel symbols. It follows that

and

As usual, dvolg =
√
g dx is the Riemann–Lebesgue volume element on U�.

Let �, � ∈ ℕ , put V ∶= T�
�
M , and write |⋅|V ∶= |⋅|g�

�
 . Then D(V) is the linear sub-

space of C∞(V) of compactly supported sections.
For 1 ≤ q ≤ ∞ we set

Then

is the usual Lebesgue space of Lq  sections of  V, and Lq(M, g) = Lq(V , g) for 
V = T0

0
M = ℝ . If k ∈ ℕ , then

and

(3.1)|a|g�
�
=
√

(a|a)g�
�
∶=

√
g�
�
(a, a), a ∈ C(T�

�
M).

∇1u = 𝜕iu dx
i, ∇2u = ∇iju dx

i ⊗ dxj = (𝜕i𝜕ju − 𝛤 k
ij
𝜕ku)dx

i ⊗ dxj,

� k
ij
=

1

2
gk�(�igj� + �jgi� − �

�
gij), 1 ≤ i, j, k ≤ m,

(3.2)|∇u|2
g1
0

= |∇u|2
g∗
= gij�iu�ju

(3.3)|∇2u|2
g2
0

= gi1j1gi2j2∇i1i2
u∇j1j2

u.

‖u‖Lq(V ,g) ∶=
��∫

M
�u�q

V
dvolg

�1∕q
, 1 ≤ q < ∞,

supM�u�V , q = ∞.

Lq(V , g) ∶=
��

u ∈ L1,loc(M) ; ‖⋅‖Lq(M,g) < ∞
�
, ‖⋅‖Lq(M,g)

�

‖u‖Wk
q
(V ,g) ∶=

k�

j=0

��� �∇
jv�

g
𝜏+j
𝜎

���Lq(M,g)
, 1 ≤ q < ∞,

2  If V is a vector bundle over M, then Ck(V) denotes the vector space of Ck sections of V.
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Suppose 1 ≤ q < ∞ . Then the Sobolev space Wk
q
(V , g) is the completion of D(V) 

in Lq(V , g) with respect to the norm  ‖⋅‖Wk
q
(V ,g).

We denote by BCk(V , g) the Banach space of all u ∈ Ck(V) for which ‖u‖BCk(V ,g) is 
finite. Then bck(V , g) is the closure of BCk+1(V , g) in BCk(V , g).

In the classical Euclidean case, that is, if (M, g) is one of the Riemannian manifolds 
of Examples 2.1(b) or 2.1(e), it is well-known that the above definitions lead to the 
standard Sobolev spaces, resp. spaces of bounded and continuous, resp. bounded and 
uniformly continuous, F-valued functions, where F ∶= ℝ

m�×m� (cf. [3] or [9]).

Theorem 3.1  Suppose (M, g) is a urR manifold. Then the Sobolev spaces of sections 
of V possess the same embedding, interpolation, and trace properties as their clas-
sical counterparts.

Proof  [3, 4, 9] (also cf. [17] for some of these results). 	�  ◻

It is possible and important to characterize these spaces locally.

Theorem  3.2  Let (M, g) be a urR manifold, �  a ur  atlas, 1 ≤ q < ∞ , and k ∈ ℕ . 
Then

Proof  [9]. Also see [3] and [4] for similar assertions which, however, additionally 
involve partitions of unity. 	� ◻

4 � Parabolic problems on uniformly regular Riemannian manifolds

Let (M, g) be an m-dimensional Riemannian manifold. In this section we do not men-
tion g in the notation for function spaces. Thus Wk

p
(M) = Wk

p
(M, g) , etc.

We consider a second order differential operator A , defined for u ∈ C2(M) by

where

and ⋅  denotes complete contraction. Then A  is uniformly strongly elliptic if there 
exists 𝛼 > 0 such that

‖u‖BCk(V ,g) ∶=

k�

j=0

��� �∇
jv�

g
�+j
�

���∞.

(i) u ↦

∑
�∈�‖�∗u‖Wk

q
(Qm

�
,F) is a norm for Wk

q
(V , g).

(ii) u ↦ max�∈�‖�∗u‖BCk(Qm
�
,F) is a norm for BCk(V , g).

(iii) u ∈ bck(V , g) iff �∗u ∈ BUCk(Qm
�
,F) uniformly with respect to � ∈ �.

Au ∶= −a2 ⋅ ∇
2u + a1 ⋅ ∇u + a0 ⋅ u,

ai ∈ C(Ti
0
M), i = 0, 1, 2,
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Remark 4.1  The following assumptions are equivalent:

Proof  Let (H, (⋅|⋅)) be a Hilbert space and A a positive semidefinite symmetric linear 
operator on H. Then ‖A‖ = sup{ (Ax�x) ; ‖x‖ = 1} . From this the assertion is obvi-
ous. 	�  ◻

Suppose �M ≠ ∅ . A first order boundary operator B1 is defined by

where

with T�M being the restriction of TM to �M.
We fix � ∈ C(�M, {0, 1}) and set

Thus B  is the Dirichlet boundary operator on �0M ∶= �−1{0} and the first order 
boundary operator B1 on �1M ∶= �−1(1) . Note that �0M and �1M are disjoint, open 
and closed in �M , and �0M ∪ �1M = �M . Either �0M or �1M may be empty. Also 
note that � is constant on the connected components of �M . Then B is a uniformly 
normal boundary operator if either � = 0 or

Finally, (A,B) is a uniformly normally elliptic BVP on (M, g) if

The BVP (A,B) is bc-regular if

and

Our interest in this section concerns the Sobolev space solvability of the BVP (1.4) in 
the present setting. Assuming (A,B) to be bc-regular, we set, as in the introduction,

(4.1)a2(p) ⋅ (𝜉 ⊗ 𝜉) ≥ 𝛼 |𝜉|2
g∗(p)

, 𝜉 ∈ T∗
p
M, p ∈ M.

(i) a2 is uniformly bounded and satisfies (4.1).

(ii) a2(p) ⋅ (𝜉 ⊗ 𝜉) ∼ |𝜉|2
g∗(p)

, 𝜉 ∈ T∗
p
M, p ∈ M.

B1 ∶= b1 ⋅ �∇ + b0� ,

b0 ∈ C(�M), b1 ∈ C(T�MM),

B ∶= �B1 + (1 − �)� .

inf
q∈𝜕1M

|(b1(q)||𝜈(q))g(q)| > 0.

(i) A is uniformly strongly elliptic;

(ii) B is uniformly normal.

(4.2)a2 ∈ bc(T2
0
M), a1 ∈ BC(TM), a0 ∈ BC(M),

b1 ∈ BC1(T�MM), b0 ∈ BC1(�M).
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and

considered as a linear operator in Lp(M).

Theorem 4.2  Suppose (M, g) is a urR manifold, 1 < p < ∞ , and (A,B) is bc-regular 
and uniformly normally elliptic. Then

Proof  This is a special case of the much more general Theorem 1.2.3(i) of [7] (also 
see [9]). 	� ◻

In order to reduce the technical requirements to a minimum, we restrict ourselves 
to autonomous second order problems with homogeneous boundary conditions.

There are similar results applying to more general situations: (A,B) can be non-
autonomous, involve operators acting on vector bundles, and be of higher order, pro-
vided Shapiro–Lopatinskii conditions apply. Nonhomogeneous boundary conditions 
can also be admitted. Besides of the Sobolev space results, there is also a Hölder 
space solution theory of the same general nature. All this will be exposed in detail in 
[9]. The reader may also consult our earlier papers [6] and [7].

5 � Uniformly regular manifolds with boundary singularities

Let R be a strong singularity function, I ∶= (0, �] , and set

We denote the general point of ℝ+ by s.

Lemma 5.1  � is a diffeomorphism from I onto ℝ+ and �∗(ds2) = dy2∕R2.

Proof  The first assertion follows since 𝜎̇(y) = −1∕R(y) < 0 for y ∈ I . Hence 
𝜎∗ds = d𝜎 = 𝜎̇dy = −dy∕R . This implies the second claim. 	�  ◻

Corollary 5.2  (I, dy2∕R2) = �∗(ℝ+, ds
2) is a urR manifold.

W2
p,B

(M) ∶= { u ∈ W2
p
(M) ; Bu = 0}

A ∶= A|W2
p,B

(M),

(i) (Lp(M),W2
p,B

(M)) is a densely injected Banach couple.

(ii) A ∈ L(W2
p,B

(M), Lp(M)).

(iii) (Lp(J,W
2
p,B

(M)) ∩W1
p
(J, Lp(M)), Lp(J, Lp(M)))

is a pair of maximal regularity for A.

�(y) ∶= ∫
�

y

d�

R(�)
, y ∈ I.
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Proof  Examples 2.1(e) and 2.1(f). 	�  ◻

Now we assume

By Example  2.1(d), (� , g� )  is a urR manifold. Thus, see [28] or [9], there exist 
� ∈ (0, 1] and a closed geodesic normal collar

This means that S  is a closed neighborhood of �  in M and �  is a diffeomorphism 
with

Hence

is the unique geodesic starting at q ∈ �  in the direction of the inward normal vec-
tor �(q) . Moreover,

is a product metric on T([0, 𝜀] × 𝛤 ) = T[0, 𝜀]⊕ T𝛤 .
For 0 < r ≤ 1 we set

and

We equip  S with a new metric,  gR , as follows: we choose � ∈ C∞(I, [0, 1]) with 
�(y) = 1 for y ≤ �∕3 and �(y) = 0 for y ≥ 2�∕3 . Then we put

and

Lemma 5.3  (S, gR) is a urR manifold and gR(p) = g(p) for p ∈ S
\
S(2∕3).

Proof  Corollary 5.2 and Examples 2.1(c) and 2.1(d) imply that (N, 𝛾R ⊕ g𝛤 ) is a urR 
manifold. Now the first claim follows by applying Example 2.1(f). The second one is 
obvious. 	�  ◻

(5.1)
∙ (M, g) is a urR manifold.

∙ � is a nonempty open and closed subset of �M.

� ∶ S → [0, �] × � .

�−1(y, q) = expq(y�(q)), (y, q) ∈ [0, �] × � .

(5.2)vq ∶= (t ↦ �−1(t, q)), 0 ≤ t ≤ �,

𝜑∗g = gN ∶= dy2 ⊕ g𝛤

I(r) ∶= (0, r�], N(r) ∶= I(r) × � , N ∶= N(1),

S(r) ∶= �−1(N(r)), S ∶= S(1) = S⧵� .

(5.3)1∕�2 ∶= 1 − � + �∕R2, �R ∶= dy2∕�2,

(5.4)gR ∶= 𝜑∗(𝛾R ⊕ g𝛤 ).
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Theorem 5.4  Let (5.1) be satisfied. Put M̂ ∶= M⧵�  . Define

Then (M̂, ĝR) is a urR manifold.

Proof  This is clear by the preceding lemma. 	� ◻

For easy reference we say that (M̂, ĝR) is an R-singular model for (M, g) (near �  ). 
Moreover, (M, g) is R-singular (near �  ), if it is equipped with an R-singular model.

6 � A renorming theorem

In this section we derive a semi-local representation for the Sobolev norms on (M̂, ĝR).
First we observe that, in the local coordinate system idI̊ for I̊ , the Christoffel symbol 

of ∇�R
 equals −𝛿̇∕𝛿 . Hence

To simplify the writing, we set

It follows from (3.2) and ∇�𝛾 = ∇𝛾R
⊕ ∇h that

Similarly, using (6.1) and ∇2
�g
= ∇2

𝛾R
⊕ ∇2

h
,

Also note that

Each urR manifold possesses a ur atlas whose coordinate patches are smaller than 
any prescribed positive number (cf. [5, Section  3] or [9]). Thus we can choose a 
ur atlas � for M such that U𝜅 ⊂ S⧵S(1∕3) for each � ∈ � for which U� meets the 
boundary of S(2∕3) . Then we set

and

(5.5)ĝR ∶=

{
g on M̂⧵S,

gR on S.

(6.1)∇2
𝛾R
=

(
𝜕

𝜕y

)2

+
𝛿̇

𝛿

𝜕

𝜕y
=

1

𝛿2

(
𝛿

𝜕

𝜕y

)2

.

(6.2)h ∶= g𝛤 , �g ∶= 𝛾R ⊕ h = dy2∕𝛿2 ⊕ h.

(6.3)|∇�̃v|2g̃∗ =
||||
�
�v

�y

||||

2

+ |∇hv|2h∗ .

(6.4)|∇2
�̃
v|2

g̃2
0

=
|||||

(
�

�

�y

)2

v
|||||

2

+ |∇2
h
v|2

h2
0

.

(6.5)
√
g̃ =

√
h
�
�.

𝔎(W) ∶=
{
𝜅 ∈ 𝔎 ; U𝜅 ∩

(
M⧵S̊(2∕3)

) ≠ �
}
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For k ∈ ℕ and u ∈ Ck(M̂) we define

and

Theorem 6.1  u ↦ ‖u‖k,p(S,R) + ‖u‖k,p(W) is a norm for Wk
p
(M̂, ĝR).

Proof  This is a consequence of Theorem 3.2, Lemma 5.3, Theorem 5.4,  (6.3), (6.4), 
and (6.5). We leave it to the reader to fill in the details. 	�  ◻

Since, according to Sect. 3, the norm of Wk
p
(M̂, ĝR) is defined in a coordinate free 

manner, it follows from this theorem that the topology of Wk
p
(M̂, ĝR) is independent of 

the particular choice of the collar neighborhood (that is, of � ) and the cut-off function �.

7 � Elliptic operators on singular manifolds

Let (M̂, ĝR) be an R-singular model for (M, g) near �  and set

Assume that

is a linear differential operator on (M̂, ĝ) with continuous coefficients. Due to Theo-
rem 5.4, we can apply Theorem 4.2, provided Â  is uniformly strongly elliptic and 
bc-regular on (M̂, ĝ) and B is uniformly normal on �M̂ = �M⧵�  . It follows from the 
definition of  ĝ that Â , considered as a differential operator on (M̂, ĝ) , has singular 
coefficients. It is the purpose of the following considerations to describe the assump-
tions on Â in this singular setting.

Recalling (5.2), we extend the normal vector field over S by setting

Now we define �∗(p) ∈ T∗
p
S by

W ∶=
⋃

�∈�(W)

U� .

‖u‖k,p(W) ∶=
�

�∈�(W)

‖�∗u‖Wk
p
(Qm

�
)

‖u‖k,p(S,R)

∶=

k�

j=0

�

∫
1

0

������

�
R(y)

�

�y

�j

�∗u(y, ⋅)
�����

p

+ �∇j

h
�∗u(y, ⋅)�

p

h
j

0

�
dvolh

dy

R(y)

�1∕p

.

ĝ ∶= ĝR, ∇̂ ∶= ∇̂ĝ.

Â = A(∇̂) ∶= −a2 ⋅ ∇̂
2 + a1 ⋅ ∇̂ + a0

𝜈(p) ∶= v̇q(y) ∈ TpS if 𝜑(p) = (y, q).
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where ⟨⋅, ⋅⟩p ∶ T∗
p
M × TpM → ℝ is the canonical duality pairing. Thus  �(p) , 

resp. �∗(p) , is at p ∈ �−1(y, q) obtained from the normal vector �(q) , resp. conormal 
vector �∗(q) , by parallel transport along the geodesic curve vq(t) , 0 ≤ t ≤ y . Hence

In abuse of language we call �∗ conormal vector (field) on S.
We denote by �(p) ∶= distg(p,� ) the distance in  (S,  g) from  p to �  . Thus 

�(p) = y if �(p) = (y, q) . Then

For shorter writing we also set

Theorem 7.1  Â is uniformly strongly elliptic on (M̂, ĝ) iff

and

for � = ��∗(p) + � ∈ T∗
p
M with � ⟂ �∗(p).

Proof  Set 𝛤y ∶= 𝜑−1(y⊕ 𝛤 ) for 0 < y ≤ 𝜀 . Then

It follows from (5.4) and (5.5) that it does not matter whether we take the orthogonal 
complement with respect to g∗(p) or to ĝ∗(p) . Thus, given

we find

where �(p) = (y, q) . We deduce from (5.3) and (6.2) that

Hence

⟨�∗(p),X⟩p ∶=
�
�(p)��X

�
g(p)

, X ∈ TpS,

|�(p)|g(p) = |�∗(p)|g∗(p) = 1, p ∈ S.

r(p) ∶= R(�(p)), p ∈ S.

w[𝜉]2 ∶= w ⋅ (𝜉 ⊗ 𝜉), w ∈ C(T2
0
M), 𝜉 ∈ C(T∗M).

a2(p)[�]
2 ∼ |�|2

g∗(p)
, p ∈ M̂⧵S, � ∈ T∗

p
M,

(7.1)a2(p)[�]
2 ∼

(
r2(p)�2 + |� |2

g∗(p)

)
, p ∈ S,

(7.2)T∗
p
�r(p) = �∗(p)⟂.

� = ��∗(p) + � ∈ T∗
p
S with � ∈ �∗(p)⟂,

𝜑∗𝜉 = 𝜂 ⊕ �𝜁 ∈ T∗
(y,q)

N = ℝ⊕ T∗
q
𝛤 ,

(7.3)�g∗ = 𝛿2dy2 ⊕ h∗.
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Note that �(y) ∼ R(y) for 1∕3 ≤ y ≤ 1 . Thus, since �(y) = R(y) if 0 < y ≤ 1∕3 , we get

uniformly with respect to � . Observe that

From this and (7.4) we obtain

Now the assertion is an obvious consequence of (5.5) and Remark 4.1. 	�  ◻

We introduce tensor fields ãi ∈ C(Ti
0
N) , i = 0, 1, 2 , by setting

and ã0 ∶= �∗a0.

Theorem 7.2  We set Sc ∶= M̂⧵S . Then Â is bc-regular on (M̂, ĝ) iff

Proof 

(1)	 Since, by (5.5), (Tk
0
Sc, ĝ) = (Tk

0
Sc, g) for k ∈ ℕ , we can restrict our considerations 

to S.
(2)	 We denote by �∗Â the push-forward of Â by � . Thus �∗Â is a linear operator 

on N, defined by 

 It follows that (see (5.4), (5.5), and (6.2)) 

|�∗�|2g̃∗(y,q) = �2(y)�2 + |�̃ |2
h∗(q)

.

(7.4)|�∗�|2g̃∗(y,q) ∼
(
R2(y)�2 + |�̃ |2

h∗(q)

)
,

|�|2
ĝ∗(p)

= �∗
(
�∗(|�|2ĝ∗(p))

)
= �∗(|�∗�|2g̃∗(y,q)).

|�|2
ĝ∗(p)

∼
(
�2(p)�2 + |� |2

g∗(p)

)
, � ∈ T∗S.

�a2(y, q) ⋅ (𝜉1 ⊗ 𝜉2) ∶= (𝜑∗a2)(y, q) ⋅

((
𝜂1
R(y)

⊕ 𝜁1

)
⊗

(
𝜂2
R(y)

⊕ 𝜁2

))

for 𝜉i = 𝜂i ⊕ 𝜁i ∈ ℝ⊕ T∗
q
𝛤 , i = 1, 2, (y, q) ∈ N,

�a1(y, q) ⋅ 𝜉 ∶= (𝜑∗a1)(y, q) ⋅

(
𝜂

R(y)
⊕ 𝜁

)

for 𝜉 = 𝜂 ⊕ 𝜁 ∈ ℝ⊕ T∗
q
𝛤 , (y, q) ∈ N,

(i) a2 ∈ bc(T2
0
Sc, g), ai ∈ BC(Ti

0
Sc, g), i = 0, 1;

(ii) ã2 ∈ bc(T2
0
N, gN), ãi ∈ BC(Ti

0
N, gN), i = 0, 1.

(�∗Â)v ∶= �∗

(
Â(�∗v)

)
, v ∈ C2(N).

𝜑∗
�∇ = ∇𝜑∗�g

= ∇�g = ∇gR
⊕ ∇h.
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 Hence 

 Using (6.1), we find 

 Note that, by (5.3), 

 and 1∕c ≤ �jR(y) ≤ c for �∕3 ≤ y ≤ � and j = 0, 1 . Thus we can rewrite �∗Â as 

 where 

 iff 

 It is a consequence of the definition of ãi that 

 Consequently, we derive from (7.5) that Â  is bc-regular on (S, ĝ) iff assump-
tion (ii) is satisfied. From this and step (1) we get the assertion.

	�  ◻

Finally, we prove Theorem 1.3 by specializing our general results to the specific 
setting of the introduction.

Proof of  Theorem  1.3  Example  2.1(b) guarantees that (M, g) ∶= (�, gm) is a urR 
manifold. It follows from Theorem 6.1 that

Theorem  7.1 shows that the R-degenerate uniform strong ellipticity  (1.6) implies 
that A  is uniformly strongly elliptic on  (M̂, ĝ) . By taking the compactness of �  
into account, we deduce from (1.8), (1.9), and Theorem  7.2 that A  is bc-regular 
on (M̂, ĝ) . Due to (1.3) and the compactness of �1 , we see that B is uniformly normal 
on �M̂ . Now the assertion is implied by Theorem 4.2. 	�  ◻

�∗Â = −(�∗a2) ⋅ ∇
2
g̃
+ (�∗a1) ⋅ ∇g̃ + �∗a0.

𝜑∗
�A = −(𝜑∗a2) ⋅

(
1

𝛿2

(
𝛿

𝜕

𝜕y

)2

⊕ ∇2
h

)

+ (𝜑∗a1) ⋅

(
1

𝛿

(
𝛿

𝜕

𝜕y

)
⊕ ∇h

)
+ 𝜑∗a0.

R2∕�2 = � + R2(1 − �)

(7.5)𝜑∗
�A = −�a2 ⋅

(
R

𝜕

𝜕y
⊕ ∇h

)2

+ �a1 ⋅

(
R

𝜕

𝜕y
⊕ ∇h

)
+ �a0,

â2 ∈ bc(T2
0
N, g̃), âi ∈ BC(Ti

0
N, g̃), i = 0, 1,

ã2 ∈ bc(T2
0
N, gN), ãi ∈ BC(Ti

0
N, gN), i = 0, 1.

‖ãi‖BC(Ti
0
N,gN )

= ‖�∗ai‖BC(Ti
0
N,g̃), i = 0, 1, 2.

Wk
p
(�⧵� ;R) = Wk

p
(M̂, ĝ).
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Remark 1.2 is an easy consequence of the proof of Theorem 7.2, using once more 
the compactness of � .
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