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Abstract
Recently reaction–diffusion approximation has been intensively studied. This paper 
reviews the studies in reaction–diffusion approximation and is based on Iida and 
Ninomiya (Sugaku 66:225–248, 2014) added recent studies to. This paper explains reac‑
tion–diffusion approximation of the Stefan problem, nonlinear diffusion, nonlocal dis‑
persal and wave equations. Moreover, some instabilities of equations mentioned above 
will be explained by the Turing instability through reaction–diffusion approximations.
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Mathematics Subject Classification  35K57 · 35B25 · 35A35

1  Introduction

To express the distributions of the coexisting chemical substances, the following 
partial differential equation is often used:

(1)ut = D�u + F(u)
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where u = u(x, t) is a vector function with m-components, D is a diagonal matrix 
with non-negative components, N is a spatial dimension, � is the Laplace opera‑
tor for x ∈ ℝ

N , F is a smooth function from ℝm to ℝm . This system belongs to the 
parabolic system. In this paper, we assume that the variable x for u(x, t) belongs to 
a bounded domain � in ℝN with smooth boundary and the homogeneous Neumann 
boundary condition

is always equipped with (1), if the boundary condition is not specified, where � is 
an outer normal vector of �� . It is well-known that the local existence of the classi‑
cal solutions of (1) with u(x, 0) = u0 under the suitable boundary conditions follows 
from the standard theory. This system (1) consists of reaction terms and diffusion 
terms only. Therefore, it is often called a reaction–diffusion system. The reaction-
diffusion systems are used in chemistry, physics and ecology as mathematical mod‑
els describing non-equilibrium chemical reactions etc. On the other hand, this notion 
does not fit to mathematical notion. By the change of variables v = P−1u with a 
m × m regular matrix P, (1) is transformed into

If D is a scalar matrix, the above equation also belongs to a class of reaction–dif‑
fusion system. However, if D is not a scalar matrix, it does not belong to the class. 
Namely, this notion is not invariant under the linear transformation. This incon‑
venience produces interesting phenomena. This is one of the reasons of the Turing 
instability [47]. For example, the ordinary differential equations

has a stable equilibrium (0,  0), while u = (0, 0) is unstable for the corresponding 
reaction–diffusion system

equipped with Neumann boundary condition where � = (0,�) . One may think that 
the diffusion homogenizes the solution, but this implies that the diffusion sometimes 
induces spatial periodic pattern.

Next, consider a simple example with a small parameter �:

Note that the first component u1 does not diffuse by itself. How does the solution 
of this reaction–diffusion system with small parameter � behave as � → +0 ? We 

𝜕u

𝜕𝜈
= 0, x ∈ 𝜕𝛺, t > 0

vt = P−1DP�v + P−1
F(Pv).

d

dt
u =

(
2 − 1

7 − 3

)
u

(2)
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�t
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(
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denote the solution of (3) by (u�
1
, u�

2
) . By multiplying � by both sides of (3) and tak‑

ing a limit formally, we can expect that u�
1
− u�

2
→ 0 . Namely, if the limits exist, we 

get

where

Moreover, set w� = u�
1
+ u�

2
 , w∗ = u∗

1
+ u∗

2
 . Adding two components of (3) yields

Using w∗ = u∗
1
+ u∗

2
= 2u∗

2
 , we expect that

This means that u1 is transformed into u2 , u2 moves randomly and then u2 becomes 
u1 again, though u1 does not move by itself randomly. In other words, this can be 
regarded as one of facilitated diffusion of u1 by a transporter u2.

Consider the general reaction–diffusion system with a small parameter �:

in � with Neumann boundary condition where u ∈ ℝ
m and G is a smooth function 

from ℝm to ℝm . How does the solution behave when � tends to 0 ? In this paper, we 
review this problem including the recent studies [19, 40–42].

As seen in the above example, some solutions of (4) often exhibit extraordinary 
behaviors which are out of our expectation when � is very small. These behaviors will 
be explained in Sect. 3.4 (see Figs. 7, 8, 9). We denote a solution of (4) by u� . Let us 
take a formal limit of (4). Multiplying � to both sides of (4), we get

Thus we formally obtain

Namely, we expect that any solution u� of (4) converges to the nullset of G:

This set must be important to study the limit problem. We call it a reaction limit set 
[13, 37]. To explain the importance of this set, let us consider the Lotka-Volterra 
competition-diffusion system:

u∗
1
= u∗

2

u∗
j
∶= lim

�→0
u�
j

(j = 1, 2).

w�
t
= 2�u�

2
.

w∗
t
= �w∗.

(4)ut = D�u + F(u) +
1

�
G(u)

�u�
t
= �D�u� + �F(u�) + G(u�).

(5)0 = G(lim
�→0

u
�).

 ∶= {u ∈ ℝ
m | G(u) = 0}.

(6)
{

u1,t = d1𝛥u1 + (r1 − a1u1 − b1u2)u1, x ∈ 𝛺, t > 0,

u2,t = d2𝛥u2 + (r2 − a2u2 − b2u1)u2, x ∈ 𝛺, t > 0,
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where r1, r2, a1, a2 are non-negative constants and d1, d2, b1, b2 are positive con‑
stants. Setting bj = sj∕� and f (u1) = (r1 − a1u1)u1, g(u2) = (r2 − a2u2)u2 with some 
positive constants sj (j = 1, 2) , we can rewrite the system into

For simplicity, we may take f = g = 0 . If � tends to 0, then the profiles of solutions 
with suitable initial values are shown in Fig. 1. Namely, the supports of u1 and u2 are 
segregated from each other as � tends to 0 (see Sect. 2.2 for more details). Note that 
if the initial distributions are non-negative, then all solutions of the reaction–diffu‑
sion system (6) are also non-negative. Then, the reaction limit set of (7) consists of 
two segments:

It is easily seen that the reaction limit set 1 is not smooth at the origin. The fluxes 
of the limit functions u1, u2 possess discontinuity at (u1, u2) = (0, 0) . As a result, the 
free boundary appears as � → +0 . We will explain that the limit problem is reduced 
to a two-phase Stefan problem in Sect. 2.2. Conversely, we can say that the Stefan 
problem can be approximated by a competition-diffusion system (7). Hence, some 
partial differential equations which do not belong to a class of reaction–diffusion 
systems can be approximated by reaction–diffusion systems. We call it reaction–dif-
fusion approximation. The reaction–diffusion approximation is one of the singu‑
lar limit problems and it corresponds to studying the boundary of a class of reac‑
tion–diffusion systems.

We note that (5) does not always hold. Indeed, if we consider the 
Allen–Cahn–Nagumo equation:

then  consists of three isolated points, namely,  = {−1, 0, 1} . If � is sufficiently 
small, u�(⋅, t) is continuous but becomes close to step functions connecting −1 and 

(7)

⎧
⎪⎨⎪⎩

u1,t = d1𝛥u1 + f (u1) −
s1

𝜀
u1u2, x ∈ 𝛺, t > 0,

u2,t = d2𝛥u2 + g(u2) −
s2

𝜀
u1u2, x ∈ 𝛺, t > 0.

1 ∶= {(u1, u2) | u1 ≥ 0, u2 = 0} ∪ {(u1, u2) | u1 = 0, u2 ≥ 0}.

ut = �u +
1

�
(u − u3),
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(a) ε = 0.001 (b) ε = 0.0001 (c) ε = 0.00001 (d) ε = 0.000001

Fig. 1   Dependence of numerical solutions of (7) (solid curve:u1 , dashed curve:u2 ) on � when 
N = 1, d1 = d2 = s1 = s2 = 1, f = g = 0 and t = 0.06
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1. Then u� does not stay in  . This profile of u�(⋅, t) is called a transition layer. See 
[43] for the detailed dynamics of transition layers.

Hereafter let us consider the case where the reaction limit set of (4) consists only of 
neutral stable equilibria of

and consider the relationship between (4) and its limit problem. In the successive 
section, we explain several examples to facilitate the readers to understand the whole 
picture of reaction–diffusion approximation.

2 � Reaction–diffusion approximation

2.1 � One‑phase Stefan problem

Hilhorst, Hout and Peletier [8] considered a two-component reaction–diffusion system:

for x ∈ � and 0 < t ≤ T  with any positive constant T. Let (u�
1
, u�

2
) be a solution of (9) 

with

See Fig. 2b for the profile of a solution to (9). We shall explain that the limit of the 
solution of (9) as � → 0 is represented by the solution of the so-called one-phase 
Stefan problem. First we expect that

(8)ut = G(u)

(9)

⎧⎪⎨⎪⎩

u1,t = �u1 −
1

�
u1u2,

u2,t = −
1

�
u1u2

u𝜀
j
(x, 0) = u0j(x) ≥ 0 for x ∈ 𝛺, 𝜀 > 0, j = 1, 2.

lim
�→0

u�
1
u�
2
= 0.

d2 0

d1 0
u1

u2

0.2 0.4 0.6 0.8 1.0 x
0.2
0.4
0.6
0.8
1.0
u1,u2

(a) solid segments:A2, dashed line: PA2 (b) solid curve:u1, dashed curve u2.

Fig. 2   Reaction limit set a and numerical solution b of (9) when � = 0.000001 , t = 0.06 . The reaction 
limit set 1 for (7) is same as a 
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This result means that the supports of the limit functions uj (j = 1, 2) are separated 
by an interface. The difference between the two equations of (9) yields

We note that this equation does not include the parameter � explicitly. Mul‑
tiplying the above equation by a test function � and integrating by parts over 
QT ∶= � × (0, T) , we get

where � ∈ C∞(QT ) with �(x, T) = 0 . We may assume that u�
j
→ uj (j = 1, 2) strongly 

in L2(QT ) and u�
1
→ u1 weakly in L2(0, T;H1(�)) as � → 0 . Then,

We denote u1 − u2 by w. Since u1 ≥ 0, u2 ≥ 0 and u1u2 ≡ 0 , the above equation is 
rewritten as

where d(r) ∶= max(r, 0) and w0 = u01 − u02 . This is the weak form of one-phase 
Stefan problem

Next we derive the strong form from (11) under the assumption of the smoothness 
of the weak solution and the interface. Let w be a weak solution of (11). We denote 
the region where w(⋅, t) > 0 (resp. w(⋅, t) < 0 ) for t ∈ [0, T] by �1(t) (resp. �2(t) ). 
Set

We also assume that the interface

is a hypersurface. The first term on the left hand-side of (10) can be rewritten as

(u�
1
− u�

2
)t = �u�

1
.

∫ ∫QT

{
−
(
u�
1
− u�

2

)
�t + ∇u�

1
⋅ ∇�

}
dxdt = ∫

�

(
u01 − u02

)
�(x, 0)dx

∫ ∫QT

{
−
(
u1 − u2

)
�t + ∇u1 ⋅ ∇�

}
dxdt = ∫

�

(
u01 − u02

)
�(x, 0)dx.

(10)∫ ∫QT

{
−w�t + ∇d(w) ⋅ ∇�

}
dxdt = ∫

�

w0�(x, 0)dx,

(11)wt = �d(w) in QT .

u1 ∶= w+, u2 ∶= w−, where r+ ∶= max(r, 0), r− ∶= −min(r, 0).

� (t) ∶= ��(�1(t) ∪�2(t)) = {x ∈ � | w(x, t) = 0}

∫ ∫QT

w�tdxdt = ∫
T

0

{
∫
�1(t)

u1�tdx − ∫
�2(t)

u2�tdx

}
dt.
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Recalling u1 ∈ L2(0, T;H1(�)) and u1u2 ≡ 0 , we see that u1 = 0 on � (t) , which leads 
us to

By using the normal velocity Vn of � (t) from �1(t) to �2(t) , we obtain

Taking the test function � which vanishes at t = 0, T  yields

Next let us consider the second term of (10). The unit normal vector on � (t) oriented 
from �1(t) to �2(t) is denoted by n. We have

Summarizing (10), (12) and (13), we get

for all � ∈ C∞(QT ) such that �(x, 0) = �(x, T) = 0 . Since the test functions are arbi‑
trary, we deduce

[
∫
�1(t)

u1�dx

]t=T
t=0

= ∫
T

0

d

dt

(
∫
�1(t)

u1�dx

)
dt = ∫

T

0 ∫
�1(t)

(u1�t + u1,t�)dxdt.

[
∫
�2(t)

u2�dx

]t=T
t=0

= ∫
T

0 ∫
�2(t)

(u2�t + u2,t�)dxdt − ∫
T

0 ∫
� (t)

Vnu2�d�dt.

(12)

−∫ ∫QT

w�tdxdt = ∫
T

0 ∫�1(t)

u1,t�dxdt − ∫
T

0 ∫�2(t)

u2,t�dxdt + ∫
T

0 ∫� (t)

Vnu2�d�dt.

(13)

∫ ∫QT

∇d(w) ⋅ ∇�dxdt

= ∫
T

0 ∫
�1(t)

∇u1 ⋅ ∇�dxdt

= ∫
T

0 ∫
� (t)

�u1

�n
�d�dt + ∫

T

0 ∫
��

�u1

��
�d�dt − ∫

T

0 ∫
�1(t)

�u1 �dxdt.

∫
T

0 ∫
� (t)

{
Vnu2 +

�u1

�n

}
�d�dt + ∫

T

0 ∫
�1(t)

{u1,t − �u1}�dxdt

− ∫
T

0 ∫
�2(t)

u2,t�dxdt + ∫
T

0 ∫
��

�u1

��
�d�dt = 0
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and u2(x, t) = u2(x, 0) in Q2 ∶=
⋃

t∈[0,T] �2(t) × {t} . Namely, the strong form of (11) 
is the classical one-phase Stefan problem (14).

We remark that Hilhorst, Hout and Peletier  [9, 10] and Eymard, Hilhorst, Hout 
and Peletier  [7] extended this study to the following system:

where � is a nondecreasing smooth function and F is smooth and nondecreasing 
in uj (see [7, 9, 10] for the details). The limit problem of (15) is also described by 
the one-phase Stefan problem, provided that �(u) = u and F(u, v) = up1vp2 where 
p1, p2 ≥ 1.

2.2 � Competition‑diffusion systems and Stefan problems

The previous example can be regarded as a special case of the Lotka-Volterra 
competition-diffusion system (7) introduced in Sect. 1. In (7), u1, u2 correspond 
to the population densities of competing two species, a1, a2 are intraspecific com‑
petition rates; s1∕�, s2∕� are interspecific competition rates. The situation where 
� → +0 means that the interspecific competition rates are so large. By strong 
competition, two species can hardly coexist and the exclusion principle works. 
Namely, the habitats of two species are separated from each other (see Fig.  1). 
Then we encounter the following question

How do the separated habitats develop in time ?
To answer this question, we first specify the initial condition of (7):

where

(14)

⎧
⎪⎪⎨⎪⎪⎩

u1,t = �u1 in Q1 ∶=
⋃

t∈[0,T] �1(t) × {t},

u1 = 0 on � ∶=
⋃

t∈[0,T] � (t) × {t},

u2Vn = −
�u1

�n
on � ,

�u1

��
= 0 on �� × [0, T]

(15)

⎧
⎪⎨⎪⎩

u1,t = ��(u1) −
1

�
F(u1, u2)

u2,t = −
1

�
F(u1, u2)

u1(x, 0) = u01(x), u2(x, 0) = u02(x), x ∈ �,

u01, u02 ∈ C(𝛺), u01 ≥ 0, u02 ≥ 0,

{x ∈ 𝛺 | u01 > 0} ∩ {x ∈ 𝛺 | u02 > 0} = �
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and the set where u01 = u02 = 0 is a N − 1 dimensional hypersurface. We can relax 
these assumptions, but we assume the above conditions for simplicity.

Theorem 1  (Dancer, Hilhorst, Mimura and Peletier [6, Lemmas 3.1, 3.4]) For any 
T > 0 , set QT ∶= � × (0, T) . Let (u�

1
, u�

2
) be a solution of (7). Then

strongly in L2(QT ) as � → +0 . Moreover, w is a weak solution of

where

See [5] for the corresponding results under the Dirichlet boundary condition:

instead of the Neumann boundary condition. Note that the limit problem 
(16) consists of one component w = u1∕s1 − u2∕s2 , though the original reac‑
tion–diffusion system (7) consists of two components u�

1
, u�

2
 . In the limit problem, 

a set {x ∈ � | w(x, t) = 0} forms an interface which divides � into the regions 
{x ∈ 𝛺 | uj(x, t) > 0} (j = 1, 2) . We notice that the interface develops in time and 
that (16) becomes a free boundary problem. If the weak solution and the interface 
are sufficiently smooth, we can integrate the equation by parts in the argument simi‑
lar to the previous subsection and we obtain the free boundary problem

u�
1
⟶ u1 ∶= s1w

+, u�
2
⟶ u2 ∶= s2w

−

(16)

⎧
⎪⎪⎨⎪⎪⎩

wt = �d(w) + h(w) in � ×ℝ+,
�d(w)

��
= 0 on �� ×ℝ+,

w(⋅, 0) = w0 ∶=
u01

s1
−

u02

s2
in �,

(17)d(r) ∶= d1r
+ − d2r

−, h(r) =
f (s1r

+)

s1
−

g(s2r
−)

s2
.

u1 = m𝜀
1
, u2 = m𝜀

2
, x ∈ 𝜕𝛺, t > 0

(18)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u1,t = d1�u1 + f (u1) in Q1 ∶=
⋃

t∈[0,T] �1(t) × {t},

u2,t = d2�u2 + g(u2) in Q2 ∶=
⋃

t∈[0,T] �2(t) × {t},

u1 = u2 = 0 on � ∶=
⋃

t∈[0,T] � (t) × {t},
d1

s1

�u1

�n
= −

d2

s2

�u2

�n
on � ,

�u1

��
=

�u2

��
= 0 on �� × [0, T],
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and the initial conditions

(see [6] for details). Note that both u1 and u2 vanish at the interface � (t) and are 
continuous at � (t) , while their derivatives �u1∕�n , �u2∕�n become discontinuous 
at the interface. The layer of this type is called a corner layer. This limit problem is 
a sort of two-phase Stefan problems, though the latent heat vanishes. Therefore we 
encounter the following natural question: are there any reaction–diffusion approxi-
mation to a two-phase Stefan problem with positive latent heat ?

To answer this question, we introduce a weak form of two-phase Stefan problem 
with positive latent heat first. The two-phase Stefan problem with positive latent heat 
becomes

where d(r), h(r) are given by (17), H is the Heaviside function and

Let us return to the previous question. Introducing the new variable u�
3
 which charac‑

terizes the habitat of u�
1
 , we propose the following three-component reaction–diffu‑

sion system:

where � is a non-negative constant which corresponds to a coefficient of the latent. 
Under the same assumption as in Theorem 1 for the initial data besides 0 ≤ u03 ≤ 1 , 
the set {(u1, u2, u3) | u1 ≥ 0, u2 ≥ 0, 0 ≤ u3 ≤ 1} becomes an invariant region by 
the flow of (20).

u1(x, 0)

s1
=

(
u01(x)

s1
−

u02(x)

s2

)+

,
u2(x, 0)

s2
=

(
u01(x)

s1
−

u02(x)

s2

)−

, x ∈ �.

(19)

⎧⎪⎪⎨⎪⎪⎩

wt = �d(��(w)) + h(��(w)) in � ×ℝ+,
�d(��(w))

��
= 0 on �� ×ℝ+,

w(⋅, 0) =
u01

s1
−

u02

s2
+ �H

�u01
s1

−
u02

s2

�
in �,

��(r) = (r − �)+ − r−.

(20)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u1,t = d1�u1 + f (u1) −
s1

�
u1u2 −

�s1

�
(1 − u3)u1, (x, t) ∈ � ×ℝ+,

u2,t = d2�u2 + g(u2) −
s2

�
u1u2 −

�s2

�
u3u2, (x, t) ∈ � ×ℝ+,

u3,t =
1

�
(1 − u3)u1 −

1

�
u3u2, (x, t) ∈ � ×ℝ+,

�u1

��
=

�u2

��
= 0, (x, t) ∈ �� ×ℝ+,

u1(x, 0) = u01(x), u2(x, 0) = u02(x), u3(x, 0) = H
�u01
s1

−
u02

s2

�
, x ∈ �,
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Theorem  2  (Hilhorst, Iida, Mimura and Ninomiya [11, Theorem  3.6][12, Theo‑
rem 1.1]) Let (u�

1
, u�

2
, u�

3
) be a solution of (20). Then as � → +0,

strongly in L2(QT ) . Moreover,

where w is a weak solution of (19).

Theorem 1 is the special case of Theorem 2 when � = 0 . Theorem 2 is shown by 
introducing w� = u�

1
∕s1 − u�

2
∕s2 + �u�

3
 . By the similar argument for (11) and (16), (19) 

is a free boundary problem. By rewriting (19) into the strong form, the equation on the 
free boundary is explicitly derived. We denote the region where 𝜑𝜆(w(⋅, t)) > 0 and the 
region where 𝜑𝜆(w(⋅, t)) < 0 by �1(t) , and �2(t) respectively. Set

We also assume that the weak solution of (19) and the interface � (t) are sufficiently 
smooth. Then the limit functions u1 and u2 satisfy the following two-phase Stefan 
problem:

where Vn is a normal velocity of � (t) from �1(t) to �2(t)  (see also [31, 32]). 
Moreover,

While u�
3
 has a transition layer at the interface, u�

1
 and u�

2
 have a corner layer at the 

interface and the corresponding limit functions u1 , u2 are continuous. The function u�
3
 

represents a characteristic function of a territory of the species u�
1
 . When u�

2
 (resp. u�

1
 ) 

invades the territory of the other species u�
1
 (resp. u�

2
 ), the cost required between u�

3
 

(resp. 1 − u�
3
 ) and u�

2
 (resp. u�

1
 ) induces a latent heat �.

Murakawa [35, 36] obtained the rate of the convergence in Theorems 1 and 2 as 
follows.

u�
1
⟶ u1, u�

2
⟶ u2, u�

3
⟶ u3

u1 = s1(w − �)+, u2 = s2w
−, u3 =

w − ��(w)

�

� (t) = ��(�1(t) ∪�2(t)) = {x ∈ � | 0 ≤ w(x, t) ≤ �}.

(21)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

u1,t = d1�u1 + f (u1) in Q1 ∶=
⋃

t∈[0,T] �1(t) × {t},

u2,t = d2�u2 + g(u2) in Q2 ∶=
⋃

t∈[0,T] �2(t) × {t},

u1 = u2 = 0 on � ∶=
⋃

t∈[0,T] � (t) × {t},

�Vn = −
d1

s1

�u1

�n
−

d2

s2

�u2

�n
on � ,

�u1

��
=

�u2

��
= 0 on �� × [0, T],

� (0) =

{
x ∈ �

||||
u01(x)

s1
=

u02(x)

s2

}
.



576	 M. Iida et al.

1 3

Theorem 3  (Murakawa [35, 36]) Let (u�
1
, u�

2
, u�

3
) be a solution of (20) with the initial 

datum (u01, u02, u03) and set w� ∶= u�
1
∕s1 − u�

2
∕s2 + �u�

3
 . When � = 0 , let (u�

1
, u�

2
) be 

a solution of (7) with the initial datum  (u01, u02) and set w� ∶= u�
1
∕s1 − u�

2
∕s2 . Then 

there is a positive constant C independent of � such that

We refer to Iida, Nakashima and Yanagida [17] for the further study of asymp‑
totic expansions of solutions to (7).

2.3 � Cross‑diffusion system

In this subsection, let us consider the relation between microscopic models and mac‑
roscopic models from the viewpoints of reaction–diffusion approximation. If the 
individuals move randomly, the probability density is ruled by a diffusion equation. 
If the competition among two species is also considered, the competition-diffusion 
system (6) is often used. However, it is not necessary that the individual moves ran‑
domly and the movement may be influenced by the environment or the distributions 
of the other species. For example, the transition probabilities in the movements of 
bio-individuals often depend on the light intensity, the density of the nutrient and 
the heat [23]. The system (6) is not suitable any more under this situation. To pro‑
pose an appropriate model, we classify the transition probabilities of individuals 
which move to a next point on a lattice into three types:

	 (i)	 neutral transition: the transition probabilities between adjacent points on a 
lattice are assumed to be equal, where the probability density p = p(x, t) that 
an individual exists at a position x at a time t satisfies 

	 (ii)	 repulsive transition: the transition probabilities depend only on conditions at 
the point of departure, where p satisfies 

	 (iii)	 attractive transition: the transition probabilities depend on conditions at the 
point of arrival, where p satisfies 

These equations for p are derived from the continuum limit of transition probabili‑
ties under a suitable spatial and temporal scaling. Since the sum of probability den‑
sities p of respective individuals is a population density and the equation is linear, 

‖u�
1
− u1‖L2(QT )

+ ‖u�
2
− u2‖L2(QT )

+ ‖w� − w‖L∞(0,T;(H1(�))∗)

≤ C
�
�1∕4 + ‖w�(⋅, 0) − w(⋅, 0)‖L2(�)

�
.

pt = ∇(D(x)∇p);

pt = �(D(x)p);

pt = ∇

[
D(x)2∇

(
p

D(x)

)]
.
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the population density n satisfies the same equation as the probability density p. See 
Okubo and Levine [44, §5.4] for the details. It is natural that transition probabili‑
ties in the movements of bio-individuals depend on the point of departure. Then, 
following (ii), we get the system (6) with d1�u1 and d2�u2 replaced by �[D1(x)u1] 
and �[D2(x)u2] respectively where Di(x) is a motility of ui at x (see Turchin [46, 
§4.2.3]). Namely, where Di(x) is large, ui has a tendency to move faster [44]. Shige‑
sada, Kawasaki and Teramoto [45] explained the spatial segregation of competing 
two species by using the environmental pressure and by replacing Di(x) with the 
function which depends not on the position but on the density of the species. As a 
special case, they introduced the following system:

where w1 and w2 are the population densities of species. This system is called a 
cross-diffusion system for competing two species where �, � are non-negative con‑
stants which represent the pressures by cross-diffusivity. Therefore � and � are 
called cross-diffusion coefficients. Because (22) is a quasilinear parabolic system, 
the local existence of a solution follows from Amann [1]. The global existence of 
solutions are also studied under several assumptions. We cite Lou, Ni and Wu [26] 
and Choi, Lui and Yamada [4] for instance. From the biological viewpoint, it is 
important whether there exist inhomogeneous stable stationary solutions of (22) or 
not, because they correspond to spatial segregation. There are three mathematical 
methods to treat them: bifurcation theory [29], singular limit method [21, 27, 30], 
the theory of elliptic equations [25]. From these studies, we see that the structure 
of stationary solutions of (22) deeply depends on the parameters and is complicated 
due to the cross-diffusivity.

Let us consider the cross-diffusivity of (22) from the viewpoint of reaction–diffusion 
approximations (see also [2, 3, 14]). To do so, first, we consider a simple example: the 
distribution of species whose transition probability depends only on the departure place 
in inhomogeneous media. Let V(x) ( 0 ≤ V(x) ≤ 1 ) indicate a spatial inhomogeneity. 
From (ii) it follows that the population density n satisfies

where d + �V(x) represents the motility at x (see [44, 45]). Because

we can split n into two parts: n1 ∶= {1 − V(x)}n and n2 ∶= V(x)n . Then, (23) is 
rewritten into

(22)
{

w1,t = 𝛥[(d1 + 𝛼w2)w1] + (r1 − a1w1 − b1w2)w1, x ∈ 𝛺, t > 0,

w2,t = 𝛥[(d2 + 𝛽w1)w2] + (r2 − b2w1 − a2w2)w2, x ∈ 𝛺, t > 0

(23)

⎧⎪⎨⎪⎩

nt = 𝛥

��
d + 𝛼V(x)

�
n
�
, x ∈ 𝛺, t > 0,

𝜕n

𝜕𝜈
= 0, x ∈ 𝜕𝛺, t > 0,

n(0, x) = n0(x), x ∈ 𝛺,

(d + �V(x))n = d ⋅ {1 − V(x)}n + (d + �) ⋅ V(x)n,

(n1 + n2)t = �
[
dn1 + (d + �)n2

]
.
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This means that n ruled by (23) is represented by the sum of n1 with motility d and n2 
with motility d + � . Namely, n1 (resp. n2 ) corresponds to the density of the inactive 
(resp. active) individuals. Further we assume that each individual switches its activ‑
ity depending on the environment: from the active state to the inactive one and vice 
versa. Here we can regard V(x) as the probability that each individual has become 
in the active state. To derive the respective equations for n1 and n2 , we introduce 
the switching rate between an inactive state and an active state. More precisely, the 
switching rate from the active state to the inactive one is denoted by h2→1(x) and that 
from the inactive state to the active one is denoted by h1→2(x) . Assuming that each 
individual switches its state quickly, we derive the system for n1 and n2 as follows:

with a small parameter 𝜀 > 0 . To determine h1→2(x) and h2→1(x) from V(x), let us 
consider the limit problem. Adding two equations of (24) and using n = n1 + n2 
yield

By taking the limit � → +0 in the second equation, we get

formally. Therefore, we obtain the limiting equation:

Hence, if V(x) = h1→2(x)∕{h1→2(x) + h2→1(x)} , then the limit equation is equal to 
(23). This formal derivation implies that the transition probability depending only 
on the departure points can be represented by the random walk and the switching 
between the incative state and the active state.

Let us apply this method to (22). For simplicity, we assume � = 0 . We split one 
species represented by w1 into inactive individuals and active ones, and the densi‑
ties of the inactive and active individuals are denoted by u1(x, t) and u2(x, t) respec‑
tively. We also denote w2 by u3(x, t) . Let us construct the reaction–diffusion system 
for (u1, u2, u3) which will approximate (w1,w2) by using the above idea. Assume the 
boundedness of solutions:

(24)

⎧
⎪⎨⎪⎩

n1,t = d�n1 +
1

�
[h2→1(x)n2 − h1→2(x)n1],

n2,t = (d + �)�n2 +
1

�
[h1→2(x)n1 − h2→1(x)n2]

nt =�
[
dn1 + (d + �)n2

]
,

n2,t =(d + �)�n2 +
1

�

[
h1→2(x)n −

(
h1→2(x) + h2→1(x)

)
n2

]
.

n1 =
h2→1(x)

h1→2(x) + h2→1(x)
n, n2 =

h1→2(x)

h1→2(x) + h2→1(x)
n

nt = �

[(
d + �

h1→2(x)

h1→2(x) + h2→1(x)

)
n

]
.

(25)0 ≤ w1(x, t) ≤ M1, 0 ≤ w2(x, t) ≤ M2, x ∈ �, 0 ≤ t ≤ T ,
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which immediately implies

Replacing n, n1 , n2 , d, d + � , V by w1 , u1 , u2 , d1 , d1 + �M2 , w2∕M2 respectively and 
assuming that the switching possibilities h1→2 , h2→1 is a function of u3(x, t) , we 
obtain the following reaction–diffusion system:

where

Especially, if we take

it is expected that (26) is an approximation of a cross-diffusion system

Next we investigate the conditions for h1→2 and h2→1 . The approximation of the 
cross-diffusion system requires the condition

only. Namely, the ratio h2→1(s)∕h1→2(s) is uniquely determined by (28), but there are 
many degrees of freedom. For example,

	 (i)	       h1→2(u3) ∶=
u3

M2

,   h2→1(u3) ∶= 1 −
u3

M2

,

d1 ≤ d1 + �w2(x, t) ≤ d1 + �M2.

(26)

⎧
⎪⎨⎪⎩

u1,t = d1𝛥u1 + f1(u1, u2, u3) +
1

𝜀
[h2→1(u3)u2 − h1→2(u3)u1],

u2,t = (d1 + 𝛼M2)𝛥u2 + f2(u1, u2, u3) +
1

𝜀
[h1→2(u3)u1 − h2→1(u3)u2],

u3,t = d2𝛥u3 + f3(u1, u2, u3), x ∈ 𝛺, t > 0,

⎧
⎪⎨⎪⎩

f1(u1, u2, u3) = [r1 − a1(u1 + u2) − b1u3]u1,

f2(u1, u2, u3) = [r1 − a1(u1 + u2) − b1u3]u2,

f3(u1, u2, u3) = [r2 − b2(u1 + u2) − a2u3]u3.

h2→1(s) = 1 −
s

M2

, h1→2(s) =
s

M2

,

(27)

⎧⎪⎪⎨⎪⎪⎩

w1,t = 𝛥[(d1 + 𝛼w2)w1] + (r1 − a1w1 − b1w2)w1, x ∈ 𝛺, t > 0,

w2,t = d2𝛥w2 + (r2 − b2w1 − a2w2)w2, x ∈ 𝛺, t > 0,
𝜕w1

𝜕𝜈
=

𝜕w2

𝜕𝜈
= 0, x ∈ 𝜕𝛺, t > 0,

w1(x, 0) = w01(x), w2(x, 0) = w02(x), x ∈ 𝛺.

(28)h1→2(s) ≡
(
h1→2(s) + h2→1(s)

)
s

M2

, s ∈ [0,M2]
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	 (ii)	       h1→2(u3) ∶=
u3

M2 + u3
,   h2→1(u3) ∶=

M2 − u3

M2 + u3
.

Moreover, if we take

	 (iii)	       h1→2(u3) ∶=
�(u3)

1 + �(u3)
,   h2→1(u3) ∶=

1

1 + �(u3)
,

	 (iv)	       h1→2(u3) ∶= �(u3),   h2→1(u3) ∶= 1,

then both of their limit systems become

If we take �(s) = s∕M2 , then this cross-diffusion system is a good approximation of 
(27) with small w2 . The above system might be regarded as the natural introduction 
of the cross-diffusion mechanism.

Though the above calculations are formal, it can be confirmed rigorously that 
the solution of (26) is an approximation of the solution of (27).

Theorem  4  (Iida and Ninomiya [18, Theorem  1.1], Iida, Mimura and Ninomiya 
[15, Theorem 1]) Assume that the solution (w1,w2) of (27) starting from (w01,w02) is 
smooth on � × [0, T] , there are positive constants M1(≥ r1∕a1) , M2(≥ r2∕a2) satisfi-
ying (25) and that h1→2,h2→1 satisfy (28) and

for any s ∈ [0,M2] and the initial data (u01, u02, u03) of (26) satisfies

in � . If there are positive constants �0 and M0 such that the solution (u�
1
, u�

2
, u�

3
) of 

(26) satisfies

for 0 < 𝜀 ≤ 𝜀0 , then there is a positive constant C = C(w1,w2, �0,M0, T) independ‑
ent of � satisfying

⎧
⎪⎨⎪⎩

w1,t = 𝛥

��
d1 +

𝛼M2𝜑(w2)

1 + 𝜑(w2)

�
w1

�
+ (r1 − a1w1 − b1w2)w1, x ∈ 𝛺, t > 0,

w2,t = d2𝛥w2 + (r2 − b2w1 − a2w2)w2, x ∈ 𝛺, t > 0.

(29)h1→2(s) ≥ 0, h2→1(s) ≥ 0, h1→2(s) + h2→1(s) > 0

u01(x) ≡
{
1 −

w02(x)

M2

}
w01(x), u02(x) ≡ w02(x)

M2

w01(x), u03(x) ≡ w02(x)

(30)sup
�×[0,T]

(|u�
1
(x, t)| + |u�

2
(x, t)| + |u�

3
(x, t)|) ≤ M0
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This theorem implies that the complicated biological diffusion such as cross-dif‑
fusion can be composed of the regular random walk and the reaction. The proof 
is essentially based on [15, 18] extends the result of [18] to more general system. 
Though neither systems (27) nor (26) seem to possess Lyapunov functions, the 
theorem is shown by the construction of the energy functional. Moreover, instead 
of the boundedness (30), it is possible to assume the uniform Lipschitz continuity. 
Murakawa [35] guaranteed an approximation of cross-diffusion system with both 
positive cross-diffusivities by assuming the uniform Lipschitz continuity of the 
growth terms in (27).

Next we introduce the result on the stationary solutions.

Theorem 5  (Izuhara and Mimura [20, Theorem 2]) Let (w1,w2) be a smooth sta-
tionary solution of (27). Assume that the linearized operator for the right-hand sides 
of (27) near (w1,w2) is bijective from (W2,p(�))2 to (Lp(�))2 . Then, there are posi-
tive constants �0 and C such that there is a unique stationary solution (u�

1
, u�

2
, u�

3
) of 

(26) satisfying

for 0 < 𝜀 < 𝜀0.

2.4 � Reaction limit sets

First we recall the reaction–diffusion system (4) and denote the solution by u� . Assume 
that there is a m × m matrix P with a rank m0(< m) such that

and that the reaction limit set  for (4) is represented by a graph of a function h 
from a subset U of Pℝm to ℝm . Usualy we take U = Pℝ

m

+
 or Pℝm . Then

As seen in (5), we can expect that lim�→+0 u
� stays in  , that is,

Therefore, operating P to (4) and taking the limit � → +0 , we formally get

⎧
⎪⎨⎪⎩

sup
t∈[0,T]

‖u�
1
(⋅, t) + u�

2
(⋅, t) − w1(⋅, t)‖L2(�) ≤ C�,

sup
t∈[0,T]

‖u�
3
(⋅, t) − w2(⋅, t)‖L2(�) ≤ C�.

‖w1 − (u�
1
+ u�

2
)‖W2,p(�) + ‖w2 − u�

3
‖W2,p(�) ≤ C�

PG(u) = 0 for u ∈ ℝ
m

 = {u = w + h(w) ∈ ℝ
m | w ∈ U ⊂ Pℝ

m ≅ ℝ
m0}.

lim
�→+0

u
� = w + h(w), w = P( lim

�→+0
u
�).

(31)wt = 𝛥PD(w + h(w)) + PF(w + h(w)), x ∈ 𝛺, t > 0.
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This equation is the formal limit problem of (4) as � → +0 . The Eq. (31) is a partial 
differential equation for w ∈ U ⊂ Pℝm ≅ ℝ

m0.
We revert to (9). The corresponding reaction limit set is

See Fig.  2. It can obviously be regarded as a one-dimensional graph. For 
u1 ∶= lim�→+0 u

�
1
 , u2 ∶= lim�→+0 u

�
2
 , we set w = u1 − u2 . In this case,

Set

Then the rank m0 of the matrix P is equal to 1 and

The limit problem (31) as � → +0 can be rewritten as

where d(r) ∶= d1r
+ Hence we can derive the limit problem

The reaction limit set 1 for (7) is the same as 2 . We omit the explanation for (7) 
because we can treat it similarly to the case of (20).

Next we consider (20). The reaction limit set for (20) is given by

which can be also regarded as a one-dimensional graph (see Fig. 3). We see that

2 = {(u1, 0) | u1 ≥ 0} ∪ {(0, u2) | u2 ≥ 0}.

D =

(
d1 0

0 0

)
, F(u) ≡ 0.

P =
1

2

(
1 − 1

−1 1

)
, w =

w

2

(
1

−1

)
, h(w) =

|w|
2

(
1

1

)
.

PD(w + h(w)) =
d(w)

2

(
1

−1

)
, w + h(w) =

(
w+

w−

)
.

wt

2

(
1

−1

)
=

�d(w)

2

(
1

−1

)

(32)wt = �d(w) in � ×ℝ+.

3 = {(u1, 0, 1) | u1 ≥ 0} ∪ {(0, 0, u3) | 0 ≤ u3 ≤ 1} ∪ {(0, u2, 0) | u2 ≥ 0},

D =

⎛⎜⎜⎝

d1 0 0

0 d2 0

0 0 0

⎞⎟⎟⎠
, F(u) =

⎛⎜⎜⎝

f (u1)

g(u2)

0

⎞⎟⎟⎠
, m0 = 1.

Fig. 3   Reaction limit sets 3 for 
(20) (solid segments: reaction 
limit sets 3 , dashed line: the 
projection P3)

u1 u2

u3

d1 0 d3 0

d2 0
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Set w = u1∕s1 − u2∕s2 + �u3 and

Then we can obtain

Therefore the limit problem (31) becomes (19) and is regarded as the two-phase Ste‑
fan problem with the latent heat �.

In the limit equation (31) for w on the reaction limit set  , the diffusion term 
includes the function h(w) which represents the reaction limit set  . As in the above 
three examples (7), (20), (9), the singularity appears when the derivative of h(w) is not 
continuous. We may say that the “corner” of  corresponds to the interface. For exam‑
ple, for (7) or (9), the set where u1 = u2 = 0 performs the interface. For (20), there are 
two corners at (u1, u2, u3) = (0, 0, 1) and (u1, u2, u3) = (0, 0, 0) , which perform one 
interface. Here the derivative of PD(w + h(w)) with respect to w is called the diffusion 
coefficient d(w) of (31) on the reaction limit set. The diffusion coefficients d1, d2(, d3) 
are also shown in Figs. 2, 3. Note that the diffusion coefficient of (7) is positive in 1 , 
while the diffusion coefficient of (9) (resp. (20)) vanishes for some region of 2 (resp. 
3 ). This difference determines whether the interface is a corner layer or a transition 
one.

For the above three examples, the diffusion coefficients are piecewise constant, 
while it is not for the case of (26) which approximates the cross-diffusion system. For 
simplicity, let us consider the porous medium equation

with k > 1 instead of cross-diffusion system. The reaction–diffusion approximation 
for (33) is studied in [35]. The reaction–diffusion approximation is

P =
1

2

⎛
⎜⎜⎜⎜⎜⎝

1 −
s1

s2
s1�

−
s2

s1
1 − s2�

1

s1�
−

1

s2�
1

⎞
⎟⎟⎟⎟⎟⎠

, w =
w

2

⎛
⎜⎜⎜⎝

s1
−s2
1

�

⎞
⎟⎟⎟⎠
,

h(w) =

⎛
⎜⎜⎜⎜⎜⎝

s1(�w − �� − �)

2
s2�w�
2�w� − w + � − �w − ��
2�

⎞
⎟⎟⎟⎟⎟⎠

.

PD(w + h(w)) =
d(��(w))

2

⎛⎜⎜⎜⎝

s1
−s2
1

�

⎞⎟⎟⎟⎠
, w + h(w) =

⎛⎜⎜⎜⎝

s1(w − �)+

s2w
−

w − (w − �)+ + w−

�

⎞⎟⎟⎟⎠
.

(33)wt = d1�w
k in � ×ℝ+
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The reaction limit set for (34) is

Especially, the diffusion coefficient on 4 is d1k(u1 + u2)
k−1 and it is not piece‑

wise constant. Though the derivative of h(w) is continuous on 4 , it vanishes at 
(u1, u2) = (0, 0) . This causes the appearance of the interface of (33). Note that the 
diffusion coefficient is continuous and non-degenerate on the reaction limit set for 
the reaction–diffusion approximation (26) of (27), which implies that the interface 
does not appear in (27).

The reaction limit set is one-dimensional for (7), (20), (9) and (34). Next we give an 
example where the reaction limit set is two-dimensional. Consider the reaction–diffu‑
sion system

It is easily seen that the corresponding reaction limit set is

(34)

⎧
⎪⎨⎪⎩

u1,t = d1�u1 −
1

�

�
u1 − (u1 + u2)

k
�

in � ×ℝ+,

u2,t =
1

�

�
u1 − (u1 + u2)

k
�

in � ×ℝ+.

4 = {(u1, u2) | u1 ≥ 0, u2 ≥ 0, u1 = (u1 + u2)
k}.

(35)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕u1

𝜕t
= d1𝛥u1 + f1(u1, u2, u3) −

1

𝜀
u1u2u3, x ∈ 𝛺, t > 0,

𝜕u2

𝜕t
= d2𝛥u2 + f2(u1, u2, u3) −

1

𝜀
u1u2u3, x ∈ 𝛺, t > 0,

𝜕u3

𝜕t
= d3𝛥u3 + f3(u1, u2, u3) −

1

𝜀
u1u2u3, x ∈ 𝛺, t > 0,

𝜕u1

𝜕𝜈
=

𝜕u2

𝜕𝜈
=

𝜕u3

𝜕𝜈
= 0, x ∈ 𝜕𝛺, t > 0.

5 = {(u1, u2, 0) | u1 ≥ 0, u2 ≥ 0} ∪ {(0, u2, u3) | u2 ≥ 0, u3 ≥ 0}

∪ {(u1, 0, u3) | u1 ≥ 0, u3 ≥ 0}

u1 u2

u3

u1 u2

u3

E1

E3

E2

(a) (b)

Fig. 4   Reaction limit sets 5 (a) and 6 (b) for (35) and (36) respectively
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(see Fig. 4a). Since this set includes points where the derivative of h is discontinu‑
ous, the interface forms. The weak form of the limit problem is derived in [37], but 
it is still open to determine its strong form.

There is an example where the reaction limit set is one-dimensional but cannot be 
represented by a graph. Indeed, consider the m-component reaction–diffusion system:

The corresponding reaction limit set is

For example, when m = 3 , this set is seen as in Fig. 4b and it cannot be represented 
by any graph. Therefore it is difficult to obtain the limit problem. The convergence 
of the solution of the reaction–diffusion system including (36) has been shown in 
[12]. However, it is still open to derive the limit problem for (36). For the related 
studies, we also refer to Keller, Sternberg and Rubinstein [24] when the reaction 
limit set is a unit sphere.

In most of the above examples, we can find a projection onto a base space U which 
is linear and represented by a matrix P satisfying PG(u) = 0 for u ∈ ℝ

m . Seeing these 
examples, you might imagine that the limit problem of (4) as � → 0 is uniquely deter‑
mined by the dynamics on the reaction limit set  . However, it is not true. Indeed, let 
us consider the following reaction–diffusion system:

(36)uit = di𝛥ui + fi(ui) −
1

𝜀

∑
j≠i

aijujui(x ∈ 𝛺, t > 0, i = 1,⋯ ,m).

6 =

m⋃
i=1

{(0,⋯ , 0, ui, 0,⋯ , 0) | ui ≥ 0}.

0.2 0.4 0.6 0.8 1.0 x
0.2
0.4
0.6
0.8
1.0
u1, u2

0.2 0.4 0.6 0.8 1.0 x
0.2
0.4
0.6
0.8
1.0
u1, u2

0.2 0.4 0.6 0.8 1.0 x
0.2
0.4
0.6
0.8
1.0
u1, u2

0.2 0.4 0.6 0.8 1.0 x
0.2
0.4
0.6
0.8
1.0
u1, u2

(a) t = 0 (b) t = 0.05 (c) t = 0.1 (d) t = 0.15

Fig. 5   Snapshots of numerical solutions of (37) when m1 = m2 = m4 = 1, m3 = 2 , d1 = 1, d2 = 0 and 
� = 0.00001 (solid: u1 , dashed: u2)

0.2 0.4 0.6 0.8 1.0 x
0.2
0.4
0.6
0.8
1.0
u1, u2

0.2 0.4 0.6 0.8 1.0 x
0.2
0.4
0.6
0.8
1.0
u1, u2

0.2 0.4 0.6 0.8 1.0 x
0.2
0.4
0.6
0.8
1.0
u1, u2

0.2 0.4 0.6 0.8 1.0 x
0.2
0.4
0.6
0.8
1.0
u1, u2

(a) t = 0 (b) t = 0.01 (c) t = 0.02 (d) t = 0.05

Fig. 6   Snapshots of numerical solutions of (37) when m1 = 4, m2 = m3 = m4 = 1 , d1 = 1, d2 = 0 and 
� = 0.00001 (solid: u1 , dashed: u2)
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It is easily seen that (37) is equal to (7) with f = g = 0 when mj = 1 (j = 1,… , 4) . 
When mj > 0 , the reaction limit set  of (37) is equal to 1 independent of mj . 
When m1 = m3 and m2 = m4 , (37) possesses a linear projection which maps G(u) 
onto 0 for all u ∈ ℝ+

2
 . Note that such a projection erasing the effect of G(u) 

becomes nonlinear for some other combinations of mj . This situation leads us to 
various limit problems of (37) for fixed d1, d2, s1, s2 , although its dynamics on 
the reaction limit set 1 is unique. For example, Iida, Monobe, Murakawa and 
Ninomiya [16] showed that Vn = 0 and that the interface does not move when 
d1 > 0, d2 = 0,m1 = m2 = m4 = 1,m3 > 1 (see Fig.  5), while the initial interface 
vanishes instantaneously when d1 > 0, d2 = 0,m1 > 3,m2 = m3 = m4 = 1 (see 
Fig. 6). Thus the limit problem can not be determined only by the dynamics on  , 
but also by the dynamics of (8) in a neighborhood of  . See [16] for the details.

2.5 � Reaction–diffusion approximation of nonlocal effect

If we consider the reaction–diffusion system (4) where D may depend on 𝜀 > 0 , then 
the limit problem may include a wide class of partial differential equations. Here we 
introduce the reaction–diffusion approximation of a nonlocal evolution equation.

In Sect. 2.3, we have considered the continuum limit of the transition probability 
in the movements on a lattice. Here we consider the transition probability in the 
movements between any two points on ℝ . If the transition probability from x ∈ ℝ 
to y ∈ ℝ is given by J(x − y) at each moment, then the density n(x, t) decreases by 
departing to any point y and increases by arriving from any point y. Namely, we 
obtain

This is a typical nonlocal dispersal model often used in mathematical biology. We 
consider the following generalized nonlocal evolution equation:

with the periodic boundary condition where I = (−L, L) , du is a positive constant, 
J ∈ L1(I) with J(x + 2L) = J(x) for x ∈ ℝ , g is a C1-function from ℝ2 to ℝ . Here

(37)

⎧
⎪⎨⎪⎩

u1,t = d1𝛥u1 −
s1

𝜀
u
m1

1
u
m2

2
, x ∈ 𝛺, t > 0,

u2,t = d2𝛥u2 −
s2

𝜀
u
m3

1
u
m4

2
, x ∈ 𝛺, t > 0.

nt(x, t) = ∫
ℝ

J(y − x)n(y, t)dy − n(x, t)∫
ℝ

J(x − y)dy, x ∈ ℝ, t > 0.

(38)
{

ut = duuxx + g(u, J ∗ u) x ∈ I, t > 0,

u(x, 0) = u0(x) x ∈ I,

J ∗ h(x) ∶= ∫
L

−L

J(x − y)h(y) dy
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for any 2L-periodic function h ∈ L1(I) . Typical examples of the nonlinear term 
g(u, v) are

The explicit nonlinearity of g is written in [40, 41]. Let us introduce a result on reac‑
tion–diffusion approximation of (38):

Theorem 6  (Ninomiya, Tanaka and Yamamoto [40, Theorem 4]) Assume that the 
initial datum u0 ∈ H1(I) satisfies u0(x + 2L) = u0(x) for any x ∈ ℝ . For any even 
2L-periodic continuous function J ∈ L1(I) , any sufficiently small constant 𝜀 > 0 and 
any T > 0 , there exists an (M + 1)-component reaction–diffusion system (39) such 
that

where u is a solution of (38) and u� is the first component of the solution to

with the periodic boundary condition and the initial datum 
(u, v1,… , vM)(x, 0) = (u0, k

d1 ∗ u0,… , kdM ∗ u0)(x) , dj = j−2 , �j is a constant 
depending on J and for any d > 0,

We give a heuristic explanation of this theorem. First we note that kd(x) is the 
Green function of a Poisson equation −d�v + v = f  under the periodic boundary 
condition, i.e., v = kd ∗ f  . In order to obtain a reaction–diffusion approximation 
of (38), it is desirable to replace the convolution J ∗ u with new variables which 
becomes a solution to an appropriate reaction–diffusion system including u. Due to 
the Weirestrass theorem, J can be approximated by the linear sum of kdj with some 
positive constants dj . Moreover, since �vt = dvxx + u − v is close to dvxx + u − v = 0 
for small � , J ∗ u can be approximated by the linear sum of the solutions vj of 
�vj,t = djvj,xx + u − vj . Thus a solution of (38) can be approximated by a solution of 
(39).

g(u, v) = uv + au(1 − u2) and g(u, v) = v + au(1 − |u|).

sup
x∈[−L,L], t∈[0,T]

|u(x, t) − u�(x, t)| ≤�,

(39)

⎧⎪⎪⎨⎪⎪⎩

ut = duuxx + g

�
u,

M�
j=1

𝛼jvj

�
,

vjt =
1

𝜀

�
djvjxx + u − vj

�
,

x ∈ I, t > 0

(40)kd(x) ∶=
1

2
√
d sinh

L√
d

cosh
L − �x�√

d
.
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It is natural to encounter the following question: how the coefficients �j are deter-
mined ? To answer this question, we consider the case I = ℝ . In the following theo‑
rem, the coefficients �j in the approximation equation (39) are explicitly calculated.

Theorem 7  (Ninomiya, Tanaka and Yamamoto [41, Theorems 2 and 3]) Assume 
that J is even and continuous in ℝ , the limit of J(x)e|x| as |x| → ∞ exists finitely 
and an initial datum u0 ∈ L1(ℝ) ∩ H1(ℝ) . For any sufficiently small 𝜀 > 0 and any 
T > 0 , there exist constants M ∈ ℕ , �j ∈ ℝ and dj > 0 (j = 1,… ,M) such that

were C is a constant depending on T > 0 , u is a solution of (38) and (u�, v�
j
)1≤j≤M is 

a solution of (39) with the initial datum (u, v1,… , v
M
)(x, 0) =

(u0,K
d1 ∗ u0,… ,Kd

M ∗ u0)(x) , dj = j−2,

and for all j ∈ ℕ

2.6 � Reaction–diffusion approximation of finite propagation

Next, we consider wave equations. It is well-known that a solution of a wave equa‑
tion have a property of finite propagation. Indeed, the solution for the initial problem 
of the wave equation

in ℝ is represented by

sup
t∈[0,T]

‖u(⋅, t) − u�(⋅, t)‖H1(ℝ) ≤C�,
sup

t∈[0,T]

‖v�
j
(⋅, t) − Kdj ∗ u(⋅, t)‖H1(ℝ) ≤C�,

Kd(x) ∶=
1

2
√
d
e−�x�∕

√
d for any d > 0

�j =
1

j

M�
�=j

pj−1,�−1

��
k=1

pk−1,�−1 �
ℝ

J(x)e−k�x� dx,

pk−1,�−1 =
(−1)k+�

√
2�(k + � − 1)!

(� − k)!k!(k − 1)!
for � ∈ ℕ, 1 ≤ k ≤ �.

(41)wtt = c2wxx

w(x, t) =
1

2
{w0(x + ct) + w0(x − ct)} +

1

2c ∫
x+ct

x−ct

w1(r) dr
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where w0(x) = w(x, 0) and w1(x) = wt(x, 0) are C2-functions. Thus, the value of 
w(x,  t) only in light cone {(x, t) ∣ |x − x0| ≤ c|t − t0|} is affected by w(x0, t0) and 
wt(x0, t0) , where (x0, t0) is any fixed point. Conversely, the parabolic equation includ‑
ing reaction–diffusion system has a property of infinite propagation. For example, 
any solution of a heat equation immediately becomes positive everywhere even if 
the initial function has compact support and is non-negative. Thus we encounter 
the following question: can a semilinear wave equation be approximated by reac-
tion–diffusion systems ? Ninomiya and Yamamoto [42] gives a reaction–diffusion 
approximation of a semilinear wave equation.

First we give a heuristic explanation of the reaction–diffusion approximation of 
a wave equation (41). Comparing the wave equation with the diffusion equation, 
we see that the wave equation has the second-order derivative of the solution with 
respect to time t. Hence, we have to produce the derivative with respect to t from 
reaction term of the system. Set v1(x, t) ∶= w(x, t) and v2(x, t) ∶= w(x, t + �) . Then, 
we see that

By using (41), we can expect that

which implies that

Combing two Eqs. (42) and (43), we can obtain the candidate system for (v1, v2) , but 
it is not a reaction–diffusion system. Therefore we modify the candidate system to

Indeed, the difference between the two equations yields

Since

(42)v1,t(x, t) ≈
v2(x, t) − v1(x, t)

�
.

v1,tt = c2�v1 ≈
v2,t − v1,t

�
,

(43)v2,t ≈ �c2�v1 + v1,t ≈ �c2�v1 +
v2(t) − v1(t)

�
.

(44)

⎧⎪⎨⎪⎩

u1,t = ��u1 +
u2 − u1

�
,

u2,t = (� + c2�)�u2 +
u2 − u1

�
.

u2,t − u1,t

�
=(1 + c2)�u2 − �u1.

u2 = u1 + �u1,t − �2�u1,



590	 M. Iida et al.

1 3

we can rewrite it as

Differentiating the first equation of (44) with respect to t, we get

If the last three terms of the right-hand side are small as � tends to 0, we can expect 
that u1 converges to the solution of the wave equation (41).

We extend this idea to the semilinear wave equation. Consider the following initial 
problem:

where d > 0 and T > 0 are constants, w0 and w1 are the initial data. Moreover, we 
assume that the nonlinear term f is a C1-function in ℝ and satisfies f (u)u ≤ f1|u|2 and 
−f2(|u|2 + |u|p+1) ≤ F(u) ≤ f3|u|2 , where p > 1 , fj ≥ 0 are constants for j = 1, 2, 3 
and

As an approximation of (45) we propose the following initial problem of the reac‑
tion–diffusion system:

where 𝜀 > 0 is a small constant, w0 and w1 is the initial data of (45), d1 > 0 and 
d2 = d + d1 > 0.

Theorem 8  (Ninomiya and Yamamoto [42]) Let N = 1, 2 and f be a linear function 
if N ≥ 3 . Assume d2 > d1 > 0 and w0 ∈ H4(ℝN) , w1 ∈ H2(ℝN) . Then, for any T > 0 , 
there exists a unique solution (u�

1
, u�

2
) of (46) in ℝN × (0, T) such that for sufficiently 

small �,

u2,t − u1,t

�
=(1 + c2)�(u1 + �u1,t − �2�u1) − �u1

=c2�u1 + �(1 + c2)�(u1,t − ��u1).

u1,tt =
u2,t − u1,t

�
+ ��u1,t

=c2�u1 + �(1 + c2)�(u1,t − ��u1) + ��u1,t.

(45)
{

wtt = d�w + f (w) in ℝN × (0, T),

w(x, 0) = w0(x), wt(x, 0) = w1(x) in ℝN ,

F(u) ∶= ∫
u

0

f (x) ds.

(46)

⎧⎪⎪⎨⎪⎪⎩

u1,t = d1��u1 +
u2 − u1

�
,

u2,t = d2��u2 +
u2 − u1

�
+ �f (u1)

in ℝN × (0, T),

u1(x, 0) = w0, u2(x, 0) = w0 + �w1 in ℝN ,
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3 � Applications

3.1 � Relation between cross‑diffusion induced instability and the Turing 
instability

Here we apply reaction–diffusion approximation to the pattern formation. Turing 
[47] proposed the theoretical mechanism which explains how spatial patterns form 
autonomously. It is called the diffusion-induced instability or the Turing instability. 
As seen in Sect. 1, the stable steady state of the ordinary differential equations may 
become unstable by the addition of a certain diffusion effect and the stable periodic 
patterns emerge. One of the sufficient conditions for the diffusion-induced instability 
is “local activation with long-range inhibition”. Namely, we consider two chemical 
substances: an activator and an inhibitor. The activator locally enhances itself and 
the inhibitor diffuses faster than the activator and inhibits the activator at the place 
where the activator is not distributed yet. Thus the spatially periodic pattern will be 
generated.

Let us consider the competition-diffusion system (6) under the weak competition 
condition, namely,

In this case, the diffusion-free system has a stable steady state

and three unstable steady states: (0, 0), (r1∕a1, 0) and (0, r2∕a2) . Under this condi‑
tion, (e1, e2) is stable also in the competition-diffusion system (6). In fact, we can 
easily show that all solutions of (6) with positive components converge to (e1, e2) 
by using the comparison principle. Namely, the diffusion-induced instability never 
occurs.

Mimura and Kawasaki [29] indicated that if we consider the cross-diffusion system 
(27) instead of (6), an inhomogeneous stable stationary solution bifurcates from (e1, e2) 
under the same weak competition setting. Of course, when � is small, (e1, e2) is still 
stable also in (27), while it becomes unstable if � increases (see also [21, 22, 28]). This 
means that the effect of the cross-diffusion generates the spatial segregation of the spe‑
cies. Since this instability is never observed for (6) as stated above, it is often called 
the cross-diffusion induced instability. Here we explain the relation between the cross-
diffusion induced instability and the Turing instability by using the reaction–diffusion 
approximation.

sup
t∈[0,T]

�
‖w − u�

1
‖H1(ℝN ) + ‖wt − u�

1,t
‖L2(ℝN )

� ≤ C
√
�.

b1

a2
<

r1

r2
<

a1

b2
.

(e1, e2) ∶=

(
a2r1 − b1r2

a1a2 − b1b2
,
−b2r1 + a1r2

a1a2 − b1b2

)
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Recall the system

where 𝛼 > 0 and

Note that the steady state (e1, e2) is a homogeneous stationary solution of (47). The 
linearized operator for the right-hand sides of (47) around (e1, e2) is

Each eigenvalue � of the linearized operator is a root of the characteristic polynomial

where � is an eigenvalue of −� under the homogeneous Neumann boundary 
condition.

Next let us consider the reaction–diffusion approximation (26) of the cross-diffusion 
system (47). By (28), the corresponding homogeneous stationary solution of (26) is 
(e∗

1
, e∗

2
, e∗

3
) where

Denote the characteristic polynomial which determines each eigenvalue � of the 
linearized operator for the right-hand sides of (26) around (e∗

1
, e∗

2
, e∗

3
) by ��(�) like 

�∗(�) . Then we obtain the following relation between them:

We can also calculate the principal parts of them:

(see [15, §3] for the details). If � is small, then it follows from (29) and (48) that 
the three roots of ��(�) = 0 consist of the two roots of �∗(�) = 0 and one negative 
one. Therefore, when � is small, the following holds: When � = 0 , (e∗

1
+ e∗

2
, e∗

3
) is a 

stable homogeneous solution of (47), which implies that (e∗
1
, e∗

2
, e∗

3
) is also a stable 

(47)
{

w1,t = 𝛥[(d1 + 𝛼w2)w1] + f (w1,w2), x ∈ 𝛺, t > 0,

w2,t = d2𝛥w2 + g(w1,w2), x ∈ 𝛺, t > 0

{
f (w1,w2) = (r1 − a1w1 − b1w2)w1,

g(w1,w2) = (r2 − b2w1 − a2w2)w2.

(
d1� + �e2� + fw1

(e1, e2) �e1� + fw2
(e1, e2)

gw1
(e1, e2) d2� + gw2

(e1, e2)

)
.

�∗(�) ∶=
|||||
−d1� − �e2� + fw1

(e1, e2) − � − �e1� + fw2
(e1, e2)

gw1
(e1, e2) − d2� + gw2

(e1, e2) − �

|||||
,

e∗
3
= e2, e∗

2
=

h1→2(e
∗
3
)e1

h1→2(e
∗
3
) + h2→1(e

∗
3
)
=

e∗
3

M2

e1 =
e2

M2

e1, e∗
1
=
(
1 −

e2

M2

)
e1.

(48)��(�) = −
h1→2(e2) + h2→1(e2)

�
�∗(�) + �(�).

�∗(�) =�2 + O(�), �(�) = −�3 + O(�2) (|�| → ∞)
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homogeneous stationary solution of (26); on the other hand the linearized operator 
corresponding to (26) has a positive eigenvalue when � is large.

In (26) with a small parameter � , u3 plays as an activator and u2 does as an inhibitor 
if h1→2(s) is increasing in s and if h2→1(s) is decreasing in s. Moreover, because the dif‑
fusion coefficient for u2 is d1 + �M2 , the Turing instability takes place when � is large. 
As we have seen above, this instability still holds in the limit problem as � → 0 . Thus, 
the cross-diffusion induced instability can be regarded as the diffusion-induced instabil‑
ity for the reaction–diffusion approximation.

3.2 � Instability induced by nonlocal effect

Here we consider (38) and we assume that

where 0 < d1 < d2 and kd is given in (40). Note that J is a Mexican-hat kernel. Then 
J satisfies

It is easily seen that the solution of the ordinary differential equation

can be regarded as a spatial homogeneous solution of (38). In addition we assume 
that

Then U∗ ≡ 1 is a stable equilibrium of (51) and is a constant steady-state solution of 
(38). To study the stability, we linearize (38) at U∗ ≡ 1 . Noting J ∗ 1 = 0 by (50), we 
have the associated eigenvalue problem:

By using Fourier series, we can easily check that the spectrum set of the linear oper‑
ator L defined by (53) consists of eigenvalues. It follows from (49) that the eigen‑
value � is given by

where �k ∶= (k�∕L)2 for k ∈ ℤ . Thus we can show the following nonlocal inter‑
action induced instability. Namely, for any positive constants du and d1 , if d2 > d1 , 
there exists a positive constant �∗ = �∗(du, d1, d2) such that U∗ ≡ 1 is stable in (38) 
if 0 ≤ 𝜇 < 𝜇∗ , but is unstable in (38) if 𝜇 > 𝜇∗ . Hereafter we fix the constants d1, d2 

(49)J(x) ∶= �(kd1 (x) − kd2 (x))

(50)∫
L

−L

J(x)dx = 0

(51)Ut = g(U, 0)

(52)g(1, 0) = 0, gu(1, 0) < 0, gv(1, 0) > 0.

(53)�� = du�xx + gu(1, 0)� + gv(1, 0)J ∗ � =∶ L�.

(54)
�0
k

= − du�k +

(
�

d1�k + 1
−

�

d2�k + 1

)
gv(1, 0) + gu(1, 0)

=
(d2 − d1)�kgv(1, 0)

(d1�k + 1)(d2�k + 1)
� − du�k + gu(1, 0),
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and du as above, namely, we fix the profile of J. Then, when the magnitude � of J is 
large, we can destabilize U∗ ≡ 1 in (38). See Murray [38, Chap 12] and [40, Proposi‑
tion 1] for the details.

Next let us consider the reaction–diffusion approximation of (38) with the Mexi‑
can hat kernel (49). The corresponding reaction–diffusion system (39) in Theorem 6 
becomes

by taking �1 = 1, �2 = −1 where 0 < d1 < d2 . Note that this reaction–diffusion sys‑
tem consists of two activators and one inhibitor. We investigate the instability of 
the homogeneous stationary solution (u, v1, v2) = (1,�,�) to (55) when � is close 
to 0. Linearizing (55) near (u, v1, v2) = (1,�,�) , we obtain the following eigenvalue 
problem:

where �k ∶= (k�∕L)2, k ∈ ℤ and � is an eigenvalue of the linearized matrix. The 
characteristic polynomial �k(�, �) is calculated as

Solving lim�→0 �
2�k(�, �) = 0 , we have

We remark that this eigenvalue is equal to �0
k
 given in (54). The implicit function 

theorem guarantees that, for small � , �k(�, �) = 0 possesses the unique root ��(k) 
satisfying lim�→0 �

�(k) = �0
k
 . Moreover, we can confirm that there exists no eigen‑

values with positive real part except for ��(k) when � → +0 . It turns out that 
𝜆𝜀(k) > 0 (resp. 𝜆𝜀(k) < 0 ) for sufficiently small 𝜀 > 0 if 𝜆0

k
> 0 (resp. 𝜆0

k
< 0 ). Note 

(55)

⎧
⎪⎨⎪⎩

ut = duuxx + g(u, v1 − v2),

v1,t =
1

�

�
d1v1,xx + �u − v1

�
,

v2,t =
1

�

�
d2v2,xx + �u − v2

�
,

�

⎛
⎜⎜⎝

u

v1
v2

⎞
⎟⎟⎠
=

⎛⎜⎜⎜⎝

−du�k + gu(1, 0) gv(1, 0) − gv(1, 0)
�

�

−1−d1�k

�
0

�

�
0

−1−d2�k

�

⎞⎟⎟⎟⎠

⎛
⎜⎜⎝

u

v1
v2

⎞
⎟⎟⎠
,

(56)

�k(�, �) =
1

�2

(
�gv(1, 0)(d2 − d1)�k − (du�k − gu(1, 0) + �)(1 + d1�k)(1 + d2�k)

)

−
�

�
(du�k − gu(1, 0) + �)(2 + d1�k + d2�k)

− �2(du�k − gu(1, 0) + �).

� =
�gv(1, 0)(d2 − d1)�k − (du�k − gu(1, 0))(1 + d1�k)(1 + d2�k)

(1 + d1�k)(1 + d2�k)

= − du�k +

(
�gv(1, 0)

1 + d1�k
−

�gv(1, 0)

1 + d2�k

)
+ gu(1, 0).
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that 𝜆0
0
= gu(1, 0) < 0 . This implies that all eigenvalues of the linearized matrix cor‑

responding to (55) without diffusion around (1,�,�) are negative. Namely, (1,�,�) 
is stable for (55) without diffusion whenever 𝜇 > 0 . Next let us consider the system 
(55) with diffusion. For positive constants d1, d2 and du as above, we take a constant 
� satisfying 𝜇 > 𝜇∗(du, d1, d2) . Since �0

k
 becomes positive for some k, 𝜆𝜀(k) > 0 for 

sufficiently small 𝜀 > 0 . Hence, the homogeneous solution (1,�,�) of (55) becomes 
unstable for any sufficiently small � , while (1,�,�) is stable for (55) without diffu‑
sion. Therefore the nonlocal interaction induced instability of (38) can be regarded 
as the diffusion-induced instability of (55). See [40, Section 5.2] for the details.

3.3 � Application to the numerical analysis

It is sometimes difficult to determine the position of the interface when we solve the 
free boundary problem numerically. Recall the porous medium equation (33). The 
support of the solution of this equation starting from the compactly supported initial 
distribution is compact and the boundary of the support develops in time. However, 
it is difficult to determine the boundary of the support numerically because it may be 
influenced by the errors. Nakaki and Murakawa [39] proposed to use a reaction–dif‑
fusion approximation to determine the boundary of the support of the solution to 
(33) with d1 = 1 and k = 2 by introducing the ideal variable u2 satisfying

Then, u1 forms a corner layer, while u2 provides a transition layer as a one-phase 
Stefan problem. We can expect that the position of the transition layer of u2 is a good 
approximation of the position of the boundary of the support of u1 . Indeed, in [39], 
they studied numerically the motion of the transition layer of u2 by using the explicit 
Barenblatt solution and they have chosen the exponents of the nonlinear terms to 
minimize errors. Since the interaction terms in (57) are not cancelled by subtrac‑
tion, it is difficult to handle these terms by the rigorous calculation (see Sect. 2.4 and 
[16]). Let us consider the limit problem heuristically. Because of the corner layer of 
u1 , u1 is small near the boundary. Thus u1.5

1
u2
2
 is smaller than u1u2 near the interface. 

This suggests that the influence of u1.5
1
u2
2
 to u1,t is much smaller than that of u1u2 to 

u2,t and that the interaction term in the first equation of (57) does not provide any 
influence to the motion of the boundary of the support of u1 . Thus, it is expected that 
the limit equation is u1,t = �u2

1
 . However, this explanation does not provide any rea‑

sons why the indices are the specific numbers 1.5 and 2.
Next we discuss the relation between the penalty method and the reaction–diffu‑

sion approximation by using one-phase Stefan problem in the one-dimensional interval 
I = [0, 1] . Denote the position of the interface by x = �(t) . Let u0 be the initial function 
which satisfies

(57)

⎧⎪⎨⎪⎩

u1,t = �u2
1
−

2

�
u1.5
1
u2
2
,

u2,t = −
1

�
u1u2.
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Recall the one-phase Stefan problem:

The classical solution of this problem always satisfies ��(t) > 0 . Integrating (58) 
over ∪0≤t≤T [0,�(t)] × {t} yields

The penalty method of (58) is to consider the following problem in I = [0, 1] by add‑
ing the penalty term to (58):

where � is a characteristic function of the set [��(t), 1] and the position of the 
approximating interface ��(t) is determined by

Indeed, integrating (60) over I × [0, T] and using (61) yield

u0(x) > 0 (0 ≤ x < �0), u0(x) = 0 (�0 ≤ x < 1).

(58)

⎧
⎪⎪⎨⎪⎪⎩

ut = uxx, 0 < x < �(t), t > 0,

u(x, 0) = u0(x), 0 < x < �0,

ux(0, t) = 0, u(�(t), t) = 0, t > 0,

�
�(t) = −ux(�(t), t), t > 0,

�(0) = �0.

(59)�(T) = �0 − ∫
�(T)

0

u(x, T)dx + ∫
�0

0

u0(x)dx.

(60)

⎧⎪⎨⎪⎩

u𝜀
t
= u𝜀

xx
−

1

𝜀
𝜒(x, t)u𝜀, x ∈ I, t > 0,

u𝜀(x, 0) = u0(x), x ∈ I,

u𝜀
x
(0, t) = 0, u𝜀

x
(1, t) = 0, t > 0,

(61)

⎧⎪⎨⎪⎩

d

dt
�
�(t) =

1

� ∫
1

0

�(x, t)u�(x, t)dx,

�
�(0) = �0.
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Fig. 7   Snapshots of numerical solutions of (63) when � = 0.000001 (solid: u1 , dashed: u2)
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Because u� is expected to be small in the interval [��(t), 1] , (62) is a good approxi‑
mation of (59).

Now, recalling Fig. 2b, we realize that (9) is quite similar to (60). Actually, combin‑
ing (60) with the equality

we see that the equation for u2 is similar to that of � . This suggests the deep relation 
between the penalty method and the reaction–diffusion approximation.

3.4 � Related topics

First we explain that the situation is completely different if we change the sign of non‑
linear terms of (9). Consider the following reaction–diffusion system:

(62)�
�(t) = �0 − ∫

1

0

u�(x, t)dx + ∫
�0

0

u0(x)dx.

d

dt ∫
1

0

�dx =
d

dt
(1 − �

�) = −
1

� ∫
1

0

�(x, t)u�(x, t)dx,

(63)
�

�t

(
u1
u2

)
=

(
0.01 0

0 2

)
�

(
u1
u2

)
+

1

�

(
u1u2
−u1u2

)
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2
1
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2
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(a) t = 5 (b) t = 15 (c) t = 25

Fig. 8   Snapshots of numerical solutions of (64) with appropriate saturation terms when � = 0.01 (solid: 
u1 , dashed: u1 + u2 ). The periodic structure propagate in time
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Fig. 9   Dependence of numerical solutions of (64) with appropriate saturation terms on � when t = 15 
(solid: u1 , dashed: u1 + u2)
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Since the corresponding ordinary differential equation without diffusion does not 
change u1 + u2 , its solution converges to (u1(0) + u2(0), 0) as t tends to ∞ . The 
dynamics of the corresponding ordinary differential equation is quite simple. How‑
ever, the profiles of solutions of (63) are seen in Fig. 7. The smaller � is, the larger 
the maximum of solutions is. It is still difficult to consider the limit problem and we 
need some modification of the nonlinear terms see Monneau and Weiss [34] for the 
details).

Next we propose the example where the limit problem becomes ill-posed even if G 
is linear. Consider

Similar to (3), we set w1 = u1 + u2 , w2 = u3 + u4 . Then the reaction limit set is

and we obtain

as the limit system. However, this system is ill-posed when 𝛼𝛽 > 9 . By adding some 
appropriate saturation terms to (64), we can obtain the numerical solutions of (64) 
added suitable saturation terms to as seen in Figs. 8, 9. This means that the reac‑
tion–diffusion system (4) is always well-posed for any 𝜀 > 0 , while the limit prob‑
lem is not necessary. See [33] for the details.

We are still far from the complete understanding of the general theory of reac‑
tion–diffusion approximation.
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