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Abstract
We propose a Galerkin method for solving time fractional diffusion problems under 
quite general assumptions. Our approach relies on the theory of vector valued distri‑
butions. As an application, the “ � goes to plus infinity” issue for these problems is 
investigated.
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1 Introduction

The Galerkin approximation method in an efficient and robust tool for solving lin‑
ear and nonlinear partial differential equations (see for instance [12, 16]). In this 
paper, we implement this method for solving time fractional diffusion problems. Our 
implementation allows non trivial initial conditions and the functional framework is 
quite simple.

There are two drawbacks for solving time fractional PDE’s with the Galerkin 
method. First, an estimate from below is needed for integrals of the form

T

∫
0

∫Ω

�
�u(t, x)u(t, x) dx dt
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Here u = u(t, x) is the solution of some time fractional PDE set on 
[0, T] × Ω ⊂ [0,∞) ×ℝ

d , and � ∈ (0, 1) . The positivity of that integral can be 
achieved by assuming, roughly speaking, that u(0, x) = 0 (see [17]). However, this 
hypothesis is clearly too restrictive. Also, in the integer setting (i.e. when � = 1 ), the 
above integral equals

Hence, it has no sign. Thus, in the fractional case, we may expect to control this 
integral in a similar way. This is indeed the case: in the proof of Theorem 4.1, we 
decompose that integral into the sum of a bad term, which turns out to be positive 
(by an estimate due to Nohel and Shea; see Theorem 2.1), and a quantity with no 
sign but controllable.

The second difficulty concerns functional spaces. In many papers, fractional 
Gagliardo‑Sobolev spaces are used. These spaces are quite complicated to handle, 
and the necessity of their use in the Galerkin method, seems not obvious to the 
authors. Moreover, in order to have a continuation property from the time interval 
[0, T] into ℝ , a trivial initial condition is needed (see [11, 13]).

In this paper, we use simple functional spaces which are natural generalization of 
the spaces involved in the integer setting (see Definition 4.1). We consider Riemann‑
Liouville derivatives.

In the two forcoming sections, we give the background on weak fractional deriva‑
tives. The Galerkin method is implemented in Sect. 4 for solving a time fractional 
model problem. Finally, in Sect. 5, we apply our result to the “ � goes to plus infinity” 
issue. It is about to study the asymptotic behavior of the solution u = u(t, x) when 
the domain Ω = Ω

�
 becomes unbounded in one or several directions as � → ∞.

2  Preliminaries

For (X, ‖ ⋅ ‖) a real Banach space, let us introduce the convolution of functions and 
the (formal) adjoint of the convolution.

Definition 2.1 Let g ∈ L1
loc
([0,∞)) , T > 0 and f ∈ L1(0, T;X) . Then the convolu-

tion of g and f is the function of L1(0, T;X) defined by

Also, we define

1

2
‖u(T)‖2

L2(Ω)
−

1

2
‖u(0)‖2

L2(Ω)
.

g ∗ f (t) ∶=

t

∫
0

g(t − y)f (y)dy, a.e. t ∈ [0, T].

g ∗� f (t) ∶=

T

∫
t

g(y − t)f (y)dy, a.e. t ∈ [0, T].
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Remark 2.1 Roughly speaking, f ↦ g ∗� f  is the adjoint of f ↦ g ∗ f  . Indeed, for f, 
g as above and � ∈ C([0, T]) , one has, by Fubini’s Theorem

The following kernel is of fundamental importance in the theory of fractional 
derivatives.

Definition 2.2 For � ∈ (0,∞) , let us denote by g� the function of L1
loc
([0,∞)) 

defined for a.e. t > 0 by

For each � , � ∈ (0,∞) , the following identity holds.

Let us recall the following well‑known result: if f ∈ L2(0, T;X) and g ∈ L1(0, T) 
then

The following deep result due to Nohel and Shea ([14], Theorem 2 and Corollary 
2.2]) is a crucial tool for estimating. That result was originally stated for scalar val‑
ued functions but can easily be extended into an Hilbertian setting.

Theorem 2.1 Let (H, (⋅, ⋅)) be a real Hilbert space, f ∈ L2(0, T;H) and � ∈ (0, 1)

. Then

3  Riemann fractional derivatives

We will introduce fractional derivatives and weak fractional derivatives, that is, 
fractional derivatives in the sense of distributions. Let us start with the well‑known 
fractional forward and backward derivatives of a function in the sense of Riemann 
and Liouville. We refer to [15] for more details on fractional derivatives.

Definition 3.1 Let � ∈ (0, 1) , T > 0 and f ∈ L2(0, T;X) . We say that f admits a 
(forward) derivative of order � in L2(0, T;X) if

T

∫
0

g ∗ f (t)�(t) dt =

T

∫
0

f (t)g ∗� �(t) dt.

g�(t) =
1

Γ(�)
t�−1.

(2.1)g� ∗ g� = g�+� , in L1
loc

(
[0,∞)

)
.

(2.2)g ∗ f ∈ L2(0, T;X) and ‖g ∗ f‖L2(0,T;X) ≤ ‖g‖L1(0,T)‖f‖L2(0,T;X).

T

�
0

(
f (t), g� ∗ f (t)

)
dt ≥ 0.
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In this case, its  (forward) derivative of order � is the function of L2(0, T;X) defined 
by

Definition 3.2 Let � ∈ (0, 1) , T > 0 and f ∈ W1,1(0, T;X) . Then we say that f 
admits a backward derivative of order � in L2(0, T;X) if

In this case, its backward derivative of order � is the function of L2(0, T;X) defined 
by

Remark 3.1 If f ∈ H1(0, T;X) then g1−� ∗�
d

dt
f  lies in L2(0, T;X) , according to (2.2). 

Hence f admits a fractional backward derivative of order � in L2(0, T;X).

Proposition 3.1 Let � ∈ (0, 1) , f ∈ L2(0, T;X) and � ∈ H1(0, T). Assume that f 
admits a derivative of order � in L2(0, T;X). Then

Moreover, if, in addition, � ∈ (0, T) then

Proof Starting to integrate by part, we obtain

g1−� ∗ f ∈ H1(0, T;X).

R
�

�

0,t
f ∶=

d

dt

{
g1−� ∗ f

}
.

g1−� ∗�
d

dt
f ∈ L2(0, T;X).

R
�

�

t,T
f ∶= g1−� ∗�

d

dt
f .

(3.1)

T

∫
0

�
�

0,t
f (t)�(t) dt = −

T

∫
0

f (t)R�
�

t,T
�(t) dt +

[
g1−� ∗ f �

]T
0
.

(3.2)

�������

T

�
0

f (t)��

t,T
�(t) dt

�������
≤ √

Tg2−�(T)‖f‖L2(0,T;X)‖� �‖∞,[0,T].
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In order to prove (3.2), we use Cauchy‑Schwarz inequality and the estimate

  □

That property allows us to define fractional derivative in the sense of distribu‑
tions. Indeed, (3.2) shows that the linear map

is a distribution, whose order is (at most) 1. The set of distributions with values in X 
is denoted by �(0, T;X) . That allows us to set the following definition.

Definition 3.3 Let � ∈ (0, 1) and f ∈ L2(0, T;X) . Then the weak derivative of 
order � of f is the vector valued distribution, denoted by R��

0,t
f  , and defined, for all 

� ∈ (0, T) , by

If we want to highlight the duality taking place in the above bracket, we will 
write

T

∫
0

�
�

0,t
f (t)�(t) dt = −

T

∫
0

g1−� ∗ f (t)
d

dt
�(t) dt +

[
g1−� ∗ f �

]T
0

= −

T

∫
0

f (t)g1−� ∗�
d

dt
�(t) dt +

[
g1−� ∗ f �

]T
0

(by Rem. 2.1)

= −

T

∫
0

f (t)R�
�

t,T
�(t) dt +

[
g1−� ∗ f �

]T
0

(by Def. 3.2).

‖��

t,T
�‖L∞(0,T) ≤ g2−�(T)‖� �‖L∞(0,T).

(0, T) → X, � ↦ −

T

�
0

f (t)R�
�

t,T
�(t) dt

⟨
R
�

�

0,t
f ,�

⟩
= −

T

∫
0

f (t)R�
�

t,T
�(t) dt.

⟨
R
�

�

0,t
f ,�

⟩
�(0,T;X),(0,T)
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instead of 
⟨
R
�

�

0,t
f ,�

⟩
 . The following result states that weak derivative extend frac‑

tional derivatives in L2(0, T;X) . That justifies the use of the same notation in Defini‑
tions 3.1 and 3.3.

Proposition 3.2 Let � ∈ (0, 1) and f ∈ L2(0, T;X).

 (i) If f admits a derivative of order � in L2(0, T;X) (in the sense of Definition 3.1) 
then that derivative is equal to the weak derivative of f.

 (ii) If the weak derivative of f belongs to L2(0, T;X) then f admits a derivative in 
L2(0, T;X) and these two derivatives are equal.

Proof (i) Let R��

0,t
f  be the derivative of f in L2(0, T;X) . Then, for each � ∈ (0, T) , 

Proposition 3.1 leads to

Then Definition 3.3 tells us that R��

0,t
f  is the weak derivative of f.

(ii) Let R��

0,t
f  denote the weak derivative of f (in the sense of Definition 3.3). 

Then

by Remark 2.1. Since, by assumption, R��

0,t
f  lies in L2(0, T;X) we deduce that 

g1−� ∗ f  is in H1(0, T;X) and

  □

Proposition 3.3 Let � ∈ (0, 1) , V be a real Banach space and f ∈ L2(0, T;V �). We 
assume that f admits a derivative of order � in L2(0, T;V �). Then, for each v in V, 
⟨f , v⟩V ′,V admits a derivative of order � in L2(0, T) and

T

∫
0

R
�

�

0,t
f (t)�(t) dt = −

T

∫
0

f (t)R�
�

t,T
�(t) dt.

⟨
R
�

�

0,t
f ,�

⟩
�(0,T;X),(0,T)

= −

T

�
0

f (t)g1−� ∗�
d

dt
�(t) dt

= −

T

�
0

g1−� ∗ f (t)
d

dt
�(t) dt,

d

dt

{
g1−� ∗ f

}
= R

�
�

0,t
f , in L2(0, T;X).
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Above V ′ denotes the dual space of V and ⟨⋅, ⋅⟩V ′,V , the duality between V ′ and 
V.

Proof Let � ∈ (0, T) . Since, for each v ∈ V  , the linear map ⟨⋅, v⟩V ′,V is bounded on 
V ′ , we have (see for instance [1], Proposition 1.1.6])

Then, with Proposition 3.1,

Then, we infer from Definition 3.3 that

Hence

By assumption, R��

0,t
f  belongs to L2(0, T;V �) , thus that identity holds in L2(0, T) . 

By Proposition 3.2 (ii), we deduce that ⟨f (t), v⟩V �,V admits a derivative of order � in 
L2(0, T) . That completes the proof.   □

Proposition 3.4 Let � ∈ (0, 1) and u ∈ L2(0, T;X). If u admits a derivative of order 
� in L2(0, T;X), then

(3.3)
�
R
�

�

0,t
f (⋅), v

�
V �,V

= R
�

�

0,t

�⟨f , v⟩V �,V

�
, in L2(0, T).

I ∶=

T

∫
0

⟨
R
�

�

0,t
f (t), v

⟩
V �,V

�(t) dt =

⟨ T

∫
0

R
�

�

0,t
f (t)�(t) dt, v

⟩

V �,V

.

I =

�
−

T

∫
0

f (t)R�
�

t,T
�(t) dt, v

�

V �,V

= −

T

∫
0

⟨f (t), v⟩V �,V
R
�

�

t,T
�(t) dt.

I =
�
R
�

�

0,t
⟨f (⋅), v⟩V �,V ,�

�
�(0,T),(0,T)

.

�
R
�

�

0,t
f , v

�
V �,V

= R
�

�

0,t
⟨f (⋅), v⟩V �,V , in �(0, T).
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Proof The proof is rather standard, we just emphasize the functional spaces 
involved. By integration, we have

By [9], Proposition 2.6] or [1], Proposition 1.3.6], we know that

Thus, with (2.1)

By differentiation and using a slight variant of [9], Proposition 2.6], we get (3.4).  
 □

Proposition 3.5 Let � ∈ (0, 1) and u ∈ C([0, T];X) be such that R��

0,t
u lies in 

C([0, T]; X). Then u(0) = 0.

Proof Since u is continuous on [0,  T], there holds (g1−� ∗ u)(0) = 0 . Thus, with 
(3.4),

By continuity of R��

0,t
u , we get u(0) = 0 .   □

4  Galerkin method for a time fractional PDE

Let d ≥ 1 and Ω be an open bounded subset of ℝd . We refer to [2] for the defini‑
tion of the standard Sobolev spaces H1

0
(Ω) and H−1(Ω).

Definition 4.1 Let � ∈ (0, 1) and T > 0 . Then we denote by

the set of all functions in L2(0, T;H1
0
(Ω)) whose weak fractional derivative of order 

� belongs to L2(0, T;H−1(Ω)).

Let f ∈ L2(0, T;H−1(Ω)) and v ∈ L2(Ω) . We will focus on the following model 
problem.

(3.4)u = (g1−� ∗ u)(0)g� + g� ∗ R
�

�

0,t
u in L1(0, T;X).

g1−� ∗ u = (g1−� ∗ u)(0) + g1 ∗
R
�

�

0,t
u in H1(0, T;X).

U ∈ H1(0, T;X) ⟹ g� ∗ U ∈ W1,1(0, T;X).

g1 ∗ u = (g1−� ∗ u)(0)g1+� + g1+� ∗ R
�

�

0,t
u in W1,1(0, T;X).

u = g� ∗ R
�

�

0,t
u.

�
(
0, T;H1

0
(Ω),H−1(Ω)

)
,
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In (4.1), the initial condition means that

4.1  Well posedness

Theorem 4.1 Let f ∈ L2(0, T;H−1(Ω)) and v ∈ H1
0
(Ω).

 (i) If � ∈ (
1

2
, 1) then (4.1) has a unique solution.

 (ii) If � ∈ (0,
1

2
] then

(a) if v ≠ 0 then (4.1) has no solution.
(b) if v = 0 then (4.1) has a unique solution.

Proof Combining (3.4) and (2.2), we derive that (4.1) has no solution if � ≤ 1∕2 and 
v ≠ 0 . On the other hand, if v = 0 then the solvability of (4.1) can be achieved as in 
the case where � ∈ (

1

2
, 1) . Thus we will assume in the sequel that 𝛼 > 1∕2.

Existence of a solution. We will implement the Galerkin approximation method. 
For, let us introduce some notation. Let V ∶= H1

0
(Ω) and

For k = 1, 2,… , let (wk, �k) ∈ H1
0
(Ω) × (0,∞) be a kth mode of A such that (wk)k≥1 

forms an hilbertian basis of L2(Ω).
For n = 1, 2,… , we denote by Fn the vector space generated by w1,… ,wn . 

Finally, we decompose the initial condition v, by writing

and we set

Whence vn ∈ Fn and vn → v in H1
0
(Ω).

(4.1)

⎧
⎪⎨⎪⎩

Find u ∈ �
�
0, T;H1

0
(Ω),H−1(Ω)

�
such that

R
�

�

0,t
u − Δu = f in L2(0, T;H−1(Ω))

(g1−� ∗ u)(0) = v in L2(Ω).

(g1−� ∗ u)(t) �������������������→
t→0+

v in L2(Ω).

A ∶ H1
0
(Ω) → H−1(Ω), u ↦ −Δu.

v =
∑
k≥1

bkwk in H1
0
(Ω),

(4.2)
vn ∶=

n∑
k=1

bkwk.
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For each integer n ≥ 1 , our approximated problem takes the form

(i) Solvability of the approximated problem . The decomposition and notation 

lead to the equivalent system:

Surprisingly, we have not found a well‑posedness result for (4.4) in the literature. 
However, the local well‑posedness in L2(0, �) , for small positive � can be obtained 
by standard fix point method (see [8], Chap 5] where another functional setting is 
used).

Regarding global well‑posedness i.e. well‑posedness on [0,  T] for all T > 0 , 
adapting to our framework, Lemma 4.2 in [18] and Theorem  10 of [7], we may 
obtain a blow-up alternative. Namely, if the maximal existence time Tm is finite then 
the corresponding maximal solution u to (4.4), fulfills

Let us notice that

implies by the monotone convergence theorem, that u lies in L2(0, Tm).
So, in order to get global well‑posedness, we assume that Tm is finite. Then, for 

each � ∈ (0, Tm) , we have by (4.4), Proposition 3.4 and (2.2),

We multiply that equation by xk and integrate on [0, �] . By Theorem 2.1,

(4.3)⎧
⎪⎨⎪⎩

Find un ∈ L2(0, T;Fn) such that R�
�

0,t
un ∈ L2

�
0, T;H−1(Ω)

�
�
R
�

�

0,t
un,w⟩V �,V+

�
Aun,w⟩V �,V = ⟨f ,w⟩V �,V in L2(0, T), ∀w ∈ Fn

(g1−� ∗ un)(0) = vn.

un(t) =

n�
k=1

xk(t)wk, fk(t) ∶= ⟨f (t),wk⟩V �,V ,

(4.4)
{

R
�

�

0,t
xk + �kxk = fk in L2(0, T)

(g1−� ∗ xk)(0) = bk
, ∀k = 1,… , n.

(4.5)‖u‖L2(0,�) → ∞, as � → T−
m
.

sup
𝜏∈(0,Tm)

‖u‖L2(0,𝜏) < ∞

xk + �kg� ∗ xk = bkg� + g� ∗ fk, in L2(0, �).

�

�
0

xk(t)g� ∗ xk(t) dt ≥ 0.
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Thus since �k ≥ 0 and 𝛼 > 1∕2 , we get

Then ‖xk‖L2(0,�) remains bounded as � approaches Tm . That contradicts (4.5), so that 
Tm = ∞ . Thus (4.3) admits an unique solution for all positive time T.

 (ii) Estimates. Using g� ∈ L2(0, T) and taking w = vn in (4.3), we derive 

Let us show that the first integral above is non negative; this is the key point of our 
proof. For, in view of Proposition 3.4, there holds

Thus, setting for simplicity �� instead of R��

0,t
,

since ⟨wk,wj⟩V �,V = �k,j . By Theorem  2.1, the latter right hand side is the sum of 
non‑negative numbers. Hence

‖xk‖2L2(0,�) ≤ �bk�‖g�‖L2(0,Tm)‖xk‖L2(0,�) + ‖g� ∗ fk‖L2(0,Tm)‖xk‖L2(0,�).

(4.6)

T

∫
0

�
R
�

�

0,t
un, un − g�vn

�
V �,V

dt +

T

∫
0

⟨Aun, un − g�vn⟩V �,V dt =

T

∫
0

⟨f , un − g�vn⟩V �,V dt.

(4.7)un − g�vn = g� ∗ R
�

�

0,t
un in L2(0, T;H1

0
(Ω)).

T

∫
0

⟨��un, un − g�vn⟩V �,V dt

=

T

∫
0

⟨��un, g� ∗ �
�un⟩V �,V dt

=

T

∫
0

dt

t

∫
0

g�(t − y)⟨��un(t), (�
�un)(t − y)⟩V �,Vdy

=

n�
k=1

T

∫
0

dt

t

∫
0

g�(t − y)��xk(t)(�
�xk)(t − y)dy,

T

�
0

⟨
R
�

�

0,t
un, un − g�vn

⟩
V �,V

dt ≥ 0.
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Going back to (4.6), we derive

Since

and vn → v in H1
0
(Ω) , we derive in a standard way that

where the constant C is independent of n. Then there exists some u ∈ L2(0, T;H1
0
(Ω)) 

such that, up to a subsequence,

 (iii) Equation of (4.1). Let k ≥ 1 be fixed and n ≥ k . For each � ∈ (0, T) , we 
derive from (4.3) and Proposition 3.1 that 

Passing to the limit in n and using Definition 3.3, we get

Since Au and f belong to L2(0, T;H−1(Ω)) , we derive from Proposition 3.2 (ii), that u 
lies in �

(
0, T;H1

0
(Ω),H−1(Ω)

)
 and

 (iv) Initial condition. Let k, n ≥ 1 and � ∈ (0, T) with �(T) = 0 . Then, due to 
Propositions 3.3 and 3.1, 

T

�
0

⟨Aun, un⟩V �,V dt ≤
T

�
0

�⟨Aun, vn⟩V �,V �g�(t) dt

+

T

�
0

�⟨f , un⟩V �,V � dt +
T

�
0

�⟨f , vn⟩V �,V �g�(t) dt.

T

∫
0

⟨Aun, un⟩V �,V dt = ‖un‖2L2(0,T;H1
0
(Ω))

‖un‖L2(0,T;H1
0
(Ω)) ≤ C,

(4.8)un ⇀ u in L2(0, T;H1
0
(Ω))−weak.

⟨ T

∫
0

−un(t)
R
�

�

t,T
�(t) +

(
Aun − f (t)

)
�(t) dt,wk

⟩

V �,V

= 0.

�
�u + Au − f = 0 in �(0, T;H−1(Ω)).

�
�u + Au = f in L2(0, T;H−1(Ω)).
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by (4.8) and (4.2). Moreover, using Propositions 3.1 and 3.3 once again, the latter 
limit is equal to

Then, we get in a usual way (see for instance [2], Chap 11]) that g1−� ∗ u(0) = v . 
That completes the proof of the existence part.

Uniqueness of the solution. By linearity, it is enough to prove that any function u 
in �

(
0, T;H1

0
(Ω),H−1(Ω)

)
 , solution to

is trivial. For, testing the above equation with

we get

Moreover, since u�(0) = 0,

T

∫
0

⟨��un(t),wk⟩V �,V�(t) dt

= −

T

∫
0

⟨un(t),wk⟩V �,V
R
�

�

t,T
�(t) dt − ⟨g1−� ∗ un(0),wk⟩V �,V�(0)

�������������������→
n→∞

−

T

∫
0

⟨u(t),wk⟩V �,V
R
�

�

t,T
�(t) dt − ⟨v,wk⟩V �,V�(0),

T

∫
0

⟨��u(t),wk⟩V �,V dt + ⟨g1−� ∗ u(0),wk⟩V �,V�(0) − ⟨v,wk⟩V �,V�(0).

R
�

�

0,t
u − Δu = 0 in L2(0, T;H−1(Ω))

(g1−� ∗ u)(0) = 0 in L2(Ω),

u� ∶= g1−� ∗ u ∈ L2
(
0, T;H1

0
(Ω)

)
,

T

∫
0

⟨
d

dt
u� , u�

⟩
V �,V

dt +

T

∫
0

∫Ω

∇u∇u� dx dt = 0.
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and, by Theorem 2.1,

Then, for all t ∈ [0, T] , we deduce g1−� ∗ u(t) = 0 . Thus, with (2.1)

That completes the proof of the þ.   □

4.2  Regularity

Similarly to the case � = 1 , regularity of the solution to (4.1) is obtained assuming 
some smoothness conditions on the data. However, no additional assumption is made 
on the domain Ω . Let us recall that the operator A is defined by

Theorem  4.2 Let � ∈ (0, 1) , Ω be an open bounded subset of ℝd , f be in 
L2(0, T;L2(Ω)), and v belong to H1

0
(Ω).

 (i) If � ∈ (
1

2
, 1) then assume that Av lies in L2(Ω);

 (ii) If � ∈ (0,
1

2
] then assume that v = 0.

Then the solution u to (4.1) satisfies

T

∫
0

�
d

dt
u� , u�

�
V �,V

dt =
1

2
‖u�(T)‖2L2(Ω)

T

�
0

�Ω

∇u∇u� dx dt =

n∑
k=1

�Ω

T

�
0

�xku(t, x)g1−� ∗ �xku(⋅, x)(t) dt dx ≥ 0.

u(t) =
d

dt
{g� ∗ g1−� ∗ u}(t) = 0.

A ∶ H1
0
(Ω) → H−1(Ω), u ↦ −Δu.

Au, R
�

�

0,t
u ∈ L2(0, T; L2(Ω))

R
�

�

0,t
u + Au = f in L2(0, T; L2(Ω)).
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Remark 4.1 Theorem  4.2 is not a regularity result in H2(Ω) . Indeed, we do not 
claim that u belongs to L2(0, T;H2(Ω)) . Moreover, since Ω is only assumed to be a 
bounded open set, the eigenfuntion wk does not belong to H2(Ω) , in general.

H2(Ω)‑regularity results may be obtained by assuming for instance, that Ω is con‑
vex (see [10], Theorem 3.2.1.2]).

Proof Arguing as in the proof of Theorem  4.1, we will focus on the case 𝛼 >
1

2
 . 

Let us recall that (wk, �k) ∈ H1
0
(Ω) × (0,∞) denotes a kth mode of A and that vn is 

defined by (4.2). Let un be the solution to (4.3). Since Awk = �kwk , it is clear that 
A(un(t) − g�(t)vn) belongs to Fn for all t ∈ (0, T) . Thus (4.3) leads to

In view of (4.7), we derive

Then, Theorem 2.1 leads to

In order to estimate ⟨f , g�Avn⟩V ′,V , we recall that

Thus

Moreover, Avn =
∑n

k=1
�kbkwk and Av ∈ L2(Ω) , thus Lemma 4.3 below implies that 

‖Avn‖L2(Ω) is bounded.
Thus, estimating in a standard way, we obtain that a subsequence of (Aun) con‑

verges weakly in L2(0, T; L2(Ω)) . Hence, by the uniqueness of the limit, Au belongs 
to L2(0, T; L2(Ω)) .   □

The following lemma is used is the proof of Theorem 4.2.

�
R
�

�

0,t
un,A(un − g�vn)

�
V �,V

+ ⟨Aun,A(un − g�vn)⟩V �,V = ⟨f ,A(un − g�vn)⟩V �,V .

⟨
R
�

�

0,t
un(t),A(un(t) − g�(t)vn)

⟩
V �,V

=

n∑
k=1

�k�
�xk(t)g� ∗ �

�xk(t).

T

�
0

⟨
R
�

�

0,t
un,A(un − g�vn)

⟩
V �,V

dt ≥ 0.

⟨f , h⟩V �,V = ∫Ω

f (x)h(x) dx, ∀f ∈ L2(Ω), ∀ h ∈ H1
0
(Ω).

��⟨f (t), g�(t)Avn⟩V �,V
�� ≤ g�(t)‖f (t)‖L2(Ω)‖Avn‖L2(Ω).
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Lemma 4.3 Let Ω be an open bounded subset of ℝd. For each v ∈ H1
0
(Ω) with 

v =
∑

bkwk in H1
0
(Ω), one has

Proof Let us assume that Av lies in L2(Ω) . Since (wk) is an hilbertian basis of L2(Ω) , 
there exists a sequence (ck)k≥0 ⊂ ℝ such that

Moreover,

Hence, 
∑
(bk𝜆k)

2 < ∞.
Conversely, let vn ∶=

∑n

k≥1 bkwk . Since Awk = �kwk , we know that Awk is in 
L2(Ω) . Thus, for 1 ≤ m < n,

By assumption 
∑
(bk�k)

2 converges; so that there exists some f ∈ L2(Ω) such that

However, vn → v in H1
0
(Ω) and the operator A is continuous from H1

0
(Ω) into 

H−1(Ω) . Thus Avn → Av in H−1(Ω) . Whence Av lies in L2(Ω) .   □

5  The “ � goes to plus infinity” issue

In many physical situations, three dimensional problems are sometimes approxi‑
mated by two dimensional problems. That procedure simplifies the mathematical 
analysis and decreases the computational cost of discretisation algorithms.

The issue is then to estimate the error made by replacing the solution of the 3D 
problem by the solution of some 2D problem. We refer to the books [3, 4] for more 
informations on that subject. Basically, if the 3D problem is set on a cylinder with 

Av ∈ L2(Ω) ⇔
∑

(bk𝜆k)
2 < ∞.

Av =
∑
k≥1

ckwk,
∑

(ck)
2 < ∞, ck = �Ω

Av(x)wk(x) dx.

∫Ω

Av(x)wk(x) dx = ∫Ω

∇v(x)∇wk(x) dx = bk�k.

‖Avn − Avm‖2L2(Ω) =
n�

k=m+1

(bk�k)
2.

Avn → f in L2(Ω).
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large height, then the solution will be locally well approximated by the solution of 
the “same problem ” set on the section of the cylinder.

Regarding fractional derivatives, the paper [6] is concerned with the fractional 
Laplacian. Here, we will look at linear time fractional diffusion problems. More pre‑
cisely, let p < d be positive integers, � be an open bounded subset of ℝd−p and

We write any x ∈ Ω
�
 as x = (X1,X2) , where X1 ∈ ℝ

p and X2 ∈ ℝ
d−p.

For f in L2(0, T; L2(�)) and v ∈ H1
0
(�) , we consider the problem

Then the problem set on the section � is

Theorem  5.1 Let � and Ω
�
 as above, � ∈ (0, 1) , f belong to L2(0, T; L2(�)) and 

v ∈ H1
0
(�).

 (i) If � ∈ (
1

2
, 1) then assume that Av lies in L2(Ω);

 (ii) If � ∈ (0,
1

2
] then assume that v = 0.

Then there exists two positive constants � and C such that, for all � > 0, the solu-
tions u

�
 and u∞ to (5.1) and (5.2) satisfy

Of course, we deduce from the above result (using also Poincaré inequality) that, 
for any fixed �0 > 0,

with exponential convergence rate. Let us recall that the Poincaré constant is inde‑
pendent of � : see for instance [5], Lemma 2.1.

Ω
�
∶= (−�,�)p × 𝜔 ⊂ ℝ

p ×ℝ
d−p.

(5.1)

⎧
⎪⎨⎪⎩

Find u
�
∈ �

�
0, T;H1

0
(Ω

�
),H−1(Ω

�
)
�

such that
R
�

�

0,t
u
�
− Δu

�
= f in L2(0, T;H−1(Ω

�
))

(g1−� ∗ u
�
)(0) = v in L2(Ω

�
).

(5.2)

⎧⎪⎨⎪⎩

Find u∞ ∈ �
�
0, T;H1

0
(�),H−1(�)

�
such that

R
�

�

0,t
u∞ − Δu∞ = f in L2(0, T;H−1(�))

(g1−� ∗ u∞)(0) = v in L2(�).

(5.3)

T

�
0

�Ω
�∕2

|∇(u
�
− u∞)|2 dx dt ≤ Ce−�� .

u
�
��������������������→
�→∞

u∞ in L2
(
0, T;H1(Ω

�0
)
)
,
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Proof As in the previous section, we will only study the case where 𝛼 > 1∕2 . For 
� ≥ 1 and �1 ≤ � − 1 , consider a function � = �

�1
∶ ℝ

p
→ [0,∞) such that

where C is independent of X1 and �1 . Also, by Theorem 4.2, one has

Moreover, (u
�
− u∞)� is in L2(0, T;H1

0
(Ω

�
)) by (5.45.5). Thus testing (5.6) with this 

function, we get

The first integral above is positive due to Theorem  2.1, since 
u
�
− u∞ = g� ∗ �

�(u
�
− u∞) , by Proposition 3.4. Next, using |∇�|| ≤ C , Young and 

Poincaré inequalities, we get in a standard way, the following bound of the latter 
integral:

Thus, since � = 1 on Ω
�1

 , we derive

There results (see [4] Section 1.7) that

(5.4)�
�1

= 1 on Ω
�1
, �

�1
= 0 on ℝ

p⧵Ω
�1+1

(5.5)||∇��1
(X1)

|| ≤ C, ∀X1 ∈ ℝ
p,

(5.6)R
�

�

0,t
(u

�
− u∞) + A(u

�
− u∞) = 0 in L2(0, T; L2(Ω

�
)).

∫Ω
�

�(X1) dx

T

∫
0

�
�(u

�
− u∞) (u� − u∞) dt +

T

∫
0

∫Ω
�

|∇(u
�
− u∞)|2�(X1) dx dt

= −

T

∫
0

∫Ω
�1+1

⧵Ω
�1

∇(u
�
− u∞)∇�(X1) (u� − u∞) dx dt.

C

T

∫
0

∫Ω
�1+1

⧵Ω
�1

|∇(u
�
− u∞)|2 dx dt.

T

�
0

�Ω
�1

|∇(u
�
− u∞)|2 dx dt ≤ C

1 + C

T

�
0

�Ω
�1+1

|∇(u
�
− u∞)|2 dx dt.
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There remains to estimate the latter integral. For, using the regularity result of Theo‑
rem 4.2 and testing (5.1) with u

�
− g�(t)v , we get

The first term is positive by Theorem 2.1 and Proposition 3.4. Moreover, Young and 
Poincaré inequalities yield

Choosing the positive constant �′ sufficiently small, there results that

Performing the same computation with u∞ , we obtain (5.3). That completes the 
proof of the Theorem.   □
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