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Abstract
In this paper, we study the longtime asymptotic behavior of a phase separation pro-
cess occurring in a three-dimensional domain containing a fluid flow of given veloc-
ity. This process is modeled by a viscous convective Cahn–Hilliard system, which 
consists of two nonlinearly coupled second-order partial differential equations for 
the unknown quantities, the chemical potential and an order parameter representing 
the scaled density of one of the phases. In contrast to other contributions, in which 
zero Neumann boundary conditions were assumed for both the chemical potential 
and the order parameter, we consider the case of dynamic boundary conditions, 
which model the situation when another phase transition takes place on the bound-
ary. The phase transition processes in the bulk and on the boundary are driven by 
free energy functionals that may be nondifferentiable and have derivatives only in 
the sense of (possibly set-valued) subdifferentials. For the resulting initial-boundary 
value system of Cahn–Hilliard type, general well-posedness results have been estab-
lished in a recent contribution by the same authors. In the present paper, we inves-
tigate the asymptotic behavior of the solutions as times approaches infinity. More 
precisely, we study the �-limit (in a suitable topology) of every solution trajectory. 
Under the assumptions that the viscosity coefficients are strictly positive and that at 
least one of the underlying free energies is differentiable, we prove that the �-limit is 
meaningful and that all of its elements are solutions to the corresponding stationary 
system, where the component representing the chemical potential is a constant.
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1 Introduction

The recent paper [16] addresses an initial-boundary value problem for the 
Cahn–Hilliard system with convection

in the unknowns � , the order parameter, and � , the chemical potential. In the above 
equations, �Ω is a nonnegative constant, f ′ is the derivative of a double-well poten-
tial f, and u is a given velocity field.

Typical and significant examples of f are the so-called classical regular potential, 
the logarithmic double-well potential, and the double obstacle potential, which are 
given by

where the constants in (3) and (4) satisfy c1 > 1 and c2 > 0 , so that flog and f2obs are 
nonconvex. In cases like (4), one has to split f into a nondifferentiable convex part 
(the indicator function of [−1, 1] in the present example) and a smooth perturbation. 
Accordingly, one has to replace the derivative of the convex part by the subdifferen-
tial and interpret the second identity in (1) as a differential inclusion.

As far as the conditions on the boundary Γ ∶= �Ω are concerned, instead of the 
classical homogeneous Neumann boundary conditions, the dynamic boundary con-
dition for both � and � are considered, namely,

where �Γ = �|ΣT
 , �Γ = �|ΣT

 , are the traces of � and � , respectively, �n and ΔΓ denote 
the outward normal derivative and the Laplace–Beltrami operator on Γ , �Γ is a non-
negative constant, and f �

Γ
 is the derivative of another potential  fΓ.

The equations in (1) aim to describe a class of evolution phenomena with phase 
separation and fluid convection, in which the convection is represented by the term 
∇� ⋅ u for a known velocity vector u. Regarding this system of partial differen-
tial equations, some boundary conditions are usually prescribed and the standard 
approach leads to the no-flux conditions

(1)
�t� + ∇� ⋅ u − Δ� = 0 and �Ω�t� − Δ� + f �(�) = � in QT ∶= Ω × (0, T),

(2)freg(r) ∶=
1

4
(r2 − 1)2, r ∈ ℝ,

(3)flog(r) ∶= ((1 + r) ln(1 + r) + (1 − r) ln(1 − r)) − c1r
2, r ∈ (−1, 1),

(4)
f2obs(r) ∶= c2(1 − r2) if |r| ≤ 1 and f2obs(r) ∶= +∞ if |r| > 1,

(5)
�t�Γ + �n� − ΔΓ�Γ = 0 and

�Γ�t�Γ + �n� − ΔΓ�Γ + f �
Γ
(�Γ) = �Γ on ΣT ∶= Γ × (0,T),

�n� = 0, �n� = 0 on ΣT ,
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for both � and � . On the contrary, as already announced, here we are interested to 
handle the dynamic boundary conditions (5), which set a Cahn–Hilliard type system 
also on the boundary. The two potentials f = 𝛽 + �̂� in the bulk and fΓ = 𝛽Γ + �̂�Γ 
on the boundary are both the sum of a convex and lower semicontinuous part and a 
(possibly concave) perturbation; they are not completely independent but related by 
a suitable growth condition. Within the framework given by (1) and (5), initial con-
ditions should be prescribed for � both in the bulk and on the boundary.

All in all, the resulting initial and boundary value problem reads

The paper [16] is devoted to the study of the initial-boundary value problem 
(6)–(10). Under suitable assumptions and compatibility conditions on the potentials, 
well-posedness and regularity results are proved.

The aim of the present paper is investigating the longtime behavior. More pre-
cisely, we study the �-limit (in  a suitable topology) of  every trajectory (�, �Γ) . 
Under the additional assumptions that the viscosity coefficients �Ω and �Γ are 
strictly positive and that at least one of the potentials f and fΓ is differentiable, 
we prove that the �-limit is meaningful and that every element (��, ��

Γ
) of it is a 

stationary solution (�s, �s
Γ
) of the system for (�, �Γ) with some constant value �s of 

the chemical potential.
Let us now review some related literature. About Cahn–Hilliard problems, we 

quote the pioneering contributions [1, 4, 20, 21, 35] and observe that for this 
class of evolution processes it turns out that the phases do not diffuse, but they 
separately concentrate and form the so-called spinodal decomposition. A discus-
sion on the modeling aspects of phase separation, spinodal decomposition and 
mobility of atoms between cells can be found in [7, 12, 22, 31, 36]). Up to our 
knowledge, in the case of a pure Cahn–Hilliard system, that is, with �Ω = �Γ = 0 , 
and without convective term ( u = 0 ), the problem (6)–(10) has been introduced 
by Gal [24] and formulated by Goldstein, Miranville and Schimperna [29]. It has 
been studied from various viewpoints in other contributions (see  [6–8, 25, 29, 
30]). In the case of general potentials, existence, uniqueness and regularity of the 
weak solution have been shown in [11] (see also [23] for an optimal control prob-
lem) by using an abstract approach. In the problem considered by Gal  [24] the 
Laplace–Beltrami term was missing in the third condition in (8) (thus, the bound-
ary condition was of Wentzell type); on the other hand, the presence of the term 
−ΔΓ�Γ actually enhances the dissipation mechanism in (6)–(10) and is helpful in 
order to recover a better regularity for the solution. However, it is worth to point 

(6)�t� + ∇� ⋅ u − Δ� = 0 in QT ,

(7)�Ω�t� − Δ� + �(�) + �(�) ∋ � in QT ,

(8)�Γ = �|ΣT
, �Γ = �|ΣT

and �t�Γ + �n� − ΔΓ�Γ = 0 on ΣT ,

(9)�Γ�t�Γ + �n� − ΔΓ�Γ + �Γ(�Γ) + �Γ(�Γ) ∋ �Γ on ΣT ,

(10)�(0) = �0 in Ω and �Γ(0) = �0|Γ on Γ.
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out that in [16] the presence of the convective term ∇� ⋅ u gives rise to further 
complications in the analysis.

Some class of Cahn–Hilliard systems, possibly including dynamic boundary con-
ditions, have collected an increasing interest in recent years: we can quote [9, 32, 
34, 37, 38, 40] among other contributions. In case of no convective term in (6), and 
assuming the homogeneous boundary condition �n� = 0 and the condition (9) with 
𝜏Γ > 0 and �Γ as a given datum, the problem has been first addressed in [26]: the 
well-posedness and the large time behavior of solutions have been studied for regu-
lar potentials f and fΓ , as well as for various singular potentials like the ones in (3) 
and (4). One can see [26, 27]: in these two papers, the authors were able to overcome 
the difficulties due to singularities using a set of assumptions for f and fΓ that gives 
the role of the dominating potential to f and entails some technical difficulties. The 
subsequent papers [13–15] follow a different approach, which was firstly considered 
in [5] and [19] to investigate the Allen–Cahn equation with dynamic boundary con-
ditions. This approach consists in letting fΓ be the leading potential with respect to f: 
by this, the analysis turns out to be simpler. In particular, [13] contains many results 
about existence, uniqueness and regularity of solutions for general potentials that 
include (2)–(3), and are valid for both the viscous and pure cases, i.e., by assuming 
just �Ω ≥ 0 . The paper [10] deals with the well-posedness of the same system, but 
in which also an additional mass constraint on the boundary is imposed. The recent 
contribution [33] deals with the physical derivation of some Cahn–Hilliard systems 
in the bulk and on the boundary, arriving at the study of a model in which the two 
chemical potentials are completely independent. Finally, let us point out that the 
optimal control problems for (6)–(10) with the velocity as the control is thoroughly 
discussed in [17, 18].

The present paper is organized as follows. In the next section, we list our assump-
tions and notations, recall the properties already known and state our result on the 
longtime behavior. The last section is devoted to the corresponding proof.

2  Statement of the problem and results

In this section, we state precise assumptions and notations and present our results. 
First of all, the set Ω ⊂ ℝ

3 is assumed to be bounded, connected and smooth. As in 
the introduction, � is the outward unit normal vector field on Γ ∶= �Ω , and �n and ΔΓ 
stand for the corresponding normal derivative and the Laplace–Beltrami operator, 
respectively. Furthermore, we denote by ∇Γ the surface gradient and write |Ω| and 
|Γ| for the volume of Ω and the area of Γ , respectively. Moreover, we widely use the 
notations

Next, if X is a Banach space, then ‖ ⋅ ‖X denotes both its norm and the norm of X3 , 
and the symbols X∗ and ⟨ ⋅ , ⋅ ⟩X stand for the dual space of X and the duality pairing 
between X∗ and X. The only exception from the convention for the norms is given 
by the Lebesgue spaces Lp , for 1 ≤ p ≤ ∞ , whose norms will be denoted by ‖ ⋅ ‖p . 
Furthermore, we put

(11)Qt ∶= Ω × (0, T) and Σt ∶= Γ × (0,T) for 0 < t ≤ +∞.
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In the following, we work in the framework of the Hilbert triplet ( ,,∗) . Thus, 
we have

Now, we list our assumptions. For the structure of our system, we postulate the fol-
lowing properties, which are slightly stronger than those requested in [16]:

Thus, in contrast to [16], the constants �Ω and �Γ are strictly positive, here, and (18) 
holds in addition. However, we remark that this assumption is very reasonable and 
fulfilled by all of the potentials (2)–(4). We set, for convenience,

and assume that, with some positive constants C and �,

In (20), the symbols D(�) and D(�Γ) denote the domains of � and �Γ , respectively. 
More generally, we use the notation D() for every maximal monotone graph  in 
ℝ ×ℝ , as well as for the associated maximal monotone operators induced on L2 
spaces. Moreover, for r ∈ D() , ◦(r) stands for the element of (r) having mini-
mum modulus.

Remark 2.1 Notice that, physically speaking, the compatibility condition (20) means 
that the thermodynamic force driving the phase separation on the surface is stronger 
than the one in the bulk.

(12)H ∶= L2(Ω), V ∶= H1(Ω) and W ∶= H2(Ω),

(13)HΓ ∶= L2(Γ), VΓ ∶= H1(Γ) and WΓ ∶= H2(Γ),

(14)
 ∶= H × HΓ,  ∶= {(v, vΓ) ∈ V × VΓ ∶ vΓ = v|Γ}

and  ∶= (W ×WΓ) ∩  .

⟨(g, gΓ), (v, vΓ)⟩ = �Ω

gv + �Γ

gΓvΓ for every (g, gΓ) ∈  and (v, vΓ) ∈  .

(15)�Ω and �Γ are strictly positive real numbers.

(16)
𝛽, 𝛽Γ ∶ ℝ → [0,+∞] are convex, proper, and l.s.c., with 𝛽(0) = 𝛽Γ(0) = 0.

(17)
�̂�, �̂�Γ ∶ ℝ → ℝ are of class C2 with Lipschitz continuous first derivatives.

(18)The functions f ∶= 𝛽 + �̂� and fΓ ∶= 𝛽Γ + �̂�Γ are bounded from below.

(19)𝛽 ∶= 𝜕𝛽, 𝛽Γ ∶= 𝜕𝛽Γ, 𝜋 ∶= �̂�
�, and 𝜋Γ ∶= �̂�

�
Γ
,

(20)D(𝛽Γ) ⊆ D(𝛽) and |𝛽◦(r)| ≤ 𝜂|𝛽◦
Γ
(r)| + C for every r ∈ D(𝛽Γ).
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For the data, we make the following assumptions:

Since we are assuming  (15) and (21)–(24), the regularity level required for the 
notion of solution on a finite time interval is higher than the one in [16]. Namely, 
a solution on (0, T) is a triple of pairs ((�,�Γ), (�, �Γ), (� , �Γ)) that satisfies

However, we write (�,�Γ, �, �Γ, � , �Γ) instead of ((�,�Γ), (�, �Γ), (� , �Γ)) , in order to 
simplify the notation. As far as the problem under study is concerned, we still state 
it in a weak form as in [16], on account of the assumptions (22) on u. Namely, we 
require that

(21)u ∈ (L2(0,+∞;L3(Ω)))3 with �tu ∈ (L2(0,+∞;L3∕2(Ω)))3.

(22)div u = 0 in Q∞ and u ⋅ � = 0 on Σ∞.

(23)(�0, �0|Γ) ∈  , �
◦(�0) ∈ H and �

◦

Γ
(�0|Γ) ∈ HΓ.

(24)m0 ∶=
∫
Ω
�0 + ∫

Γ
�0|Γ

|Ω| + |Γ| belongs to the interior of D(�Γ).

(25)(�,�Γ) ∈ L∞(0, T;),

(26)(�, �Γ) ∈ W1,∞(0, T;) ∩ H1(0, T;) ∩ L∞(0, T;),

(27)(� , �Γ) ∈ L∞(0, T;).

(28)�Ω

�t� v + �Γ

�t�Γ vΓ − �Ω

�u ⋅ ∇v + �Ω

∇� ⋅ ∇v + �Γ

∇Γ�Γ ⋅ ∇ΓvΓ = 0

a.e. in (0, T) and for every (v, vΓ) ∈  ,

(29)

�Ω �Ω

�t� v + �Γ �Γ

�t�Γ vΓ + �Ω

∇� ⋅ ∇v + �Γ

∇Γ�Γ ⋅ ∇ΓvΓ

+ �Ω

(� + �(�))v + �Γ

(�Γ + �Γ(�Γ))vΓ = �Ω

�v + �Γ

�ΓvΓ

a.e. in (0, T) and for every (v, vΓ) ∈  ,

(30)� ∈ �(�) a.e. in QT and �Γ ∈ �Γ(�Γ) a.e. on ΣT ,

(31)�(0) = �0 a.e. in Ω.
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However, every solution also satisfies the boundary value problem presented in 
the introduction. The basic well-posedness and regularity results are given by [16, 
Thms. 2.3 and 2.6]. We collect them in the following

Theorem 2.2 Assume (15)–(20) for the structure and (21)–(24) for the data, and 
let T ∈ (0,+∞). Then problem (28)–(31) has at least one solution (�,�Γ, �, �Γ, � , �Γ) 
satisfying (25)–(27). Moreover, the solution is unique if at least one of the operators 
� and �Γ is single-valued.

We obviously deduce the following consequence:

Corollary 2.3 In addition to (15)–(20), assume that at least one of the operators � 
and �Γ is single-valued. Moreover, assume (21)–(24) for the data. Then there exists 
a unique 6-tuple (�,�Γ, �, �Γ, � , �Γ) defined on (0,+∞) that fulfils (25)–(27) and 
solves (28)–(31) for every T ∈ (0,+∞).

At this point, given a solution (�,�Γ, �, �Γ, � , �Γ) , our aim is investigating its long-
time behavior, namely, the �-limit (which we simply term � for brevity) of the com-
ponent (�, �Γ) . We notice that the property (26) holds for every T ∈ (0,+∞) , which 
implies that (�, �Γ) belongs to C0([0,+∞);) . Hence, the next definition is meaning-
ful. We set

and look for the relationship between � and the set of stationary solutions to the sys-
tem obtained from (28)–(30) by ignoring the convective term. Indeed, assumption 
(21) implies that

whence u(t) tends to zero strongly in L3∕2(Ω) as t tends to infinity. It is immediately 
seen from (28) that the components � and �Γ of every stationary solution are con-
stant functions and that the constant values they assume are the same. Therefore, by 
a stationary solution we mean a quadruplet (�s, �s

Γ
, � s, � s

Γ
) satisfying for some �s ∈ ℝ 

the conditions

(32)
� ∶= {(��, ��

Γ
) = lim

n→∞
(�, �Γ)(tn) in the weak topology of 

for some sequence {tn ↗ +∞}},

(33)u ∈ (H1(0,+∞;L3∕2(Ω)))3,

(34)(�s, �s
Γ
) ∈  and (� , � s

Γ
) ∈ ,

(35)
�Ω

∇�s ⋅ ∇v + �Γ

∇Γ�
s
Γ
⋅ ∇ΓvΓ + �Ω

(� s + �(�s))v + �Γ

(� s
Γ
+ �Γ(�

s
Γ
))vΓ

= �Ω

�
sv + �Γ

�
svΓ for every (v, vΓ) ∈  ,
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It is not difficult to show that (34)–(35) imply that the pair (�s, �s
Γ
) belongs to  and 

satisfies the boundary value problem

Here is our result:

Theorem  2.4 Let the assumptions of Corollary  2.3 be satisfied, and let 
(�,�Γ, �, �Γ, � , �Γ) be the unique global solution on (0,+∞). Then the �-limit (32) 
is nonempty. Moreover, for every (��, ��

Γ
) ∈ �, there exist �s ∈ ℝ and a solution 

(�s, �s
Γ
, � s, � s

Γ
) to (34)–(36) such that (��, ��

Γ
) = (�s, �s

Γ
).

3  Auxiliary material

The proof of Theorem 2.4 will be performed in the last section. Our argument needs 
some tools which we collect in the present section. In particular, we use the generalized 
mean value, the related spaces and the operator   which we introduce now. However, 
we proceed very shortly and refer to [16, Sect. 2] for further details. We set

and observe that

Notice that the constant m0 appearing in our assumption (24) is nothing but the 
mean value mean(�0, �0|Γ) , and that taking (v, vΓ) = (|Ω| + |Γ|)−1(1, 1) in (28) yields 
the conservation property for the component (�, �Γ) of the solution,

We also stress that the function

yields a Hilbert norm on  which is equivalent to the natural one. Now, we set

(36)�
s ∈ �(�s) a.e. in Ω and �

s
Γ
∈ �Γ(�

s
Γ
) a.e. on Γ.

− Δ�s + �
s + �(�s) = �

s a.e. in Ω,

�n�
s − ΔΓ�

s
Γ
+ �

s
Γ
+ �Γ(�

s
Γ
) = �

s a.e. on Γ.

(37)mean g∗ ∶=
⟨g∗, (1, 1)⟩
�Ω� + �Γ� for g∗ ∈  ∗

(38)mean(v, vΓ) =
∫
Ω
v + ∫

Γ
vΓ

|Ω| + |Γ| if g∗ = (v, vΓ) ∈ .

(39)
�t mean(�, �Γ) = 0, whence mean(�, �Γ)(t) = m0 for every t ∈ [0, T].

(40) ∋ (v, vΓ) ↦
�
‖∇v‖2

H
+ ‖∇ΓvΓ‖2HΓ

+ �mean(v, vΓ)�2
�1∕2
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and notice that the function

is a Hilbert norm on 0 which is equivalent to the usual one. Next, we define the 
operator  ∶ ∗0 → 0 (which  will be applied to ∗0-valued functions as well) 
as follows. For every element g∗ ∈ ∗0,

It turns out that   is well defined, linear, symmetric, and bijective. Therefore, if we 
set

then we obtain a Hilbert norm on ∗0 (equivalent to the norm induced by the norm 
of  ∗ ). Furthermore, we notice that

Finally, it is easy to see that  g∗ belongs to  whenever g∗ ∈ 0 , and that

where CΩ depends only on Ω.
In performing our estimates, we will repeatedly use the Young inequality

as well as Hölder’s inequality and the Sobolev inequality

which is related to the continuous embedding V ⊂ Lp(Ω) for p ∈ [1, 6] (since Ω is 
three-dimensional, bounded and smooth). In particular, by also using the equivalent 
norm (40) on  , we have that

(41)
∗0 ∶= {g∗ ∈  ∗ ∶ mean g∗ = 0}, 0 ∶=  ∩ ∗0, and 0 ∶=  ∩ ∗0,

(42)0 ∋ (v, vΓ) ↦ ‖(v, vΓ)‖0
∶= (‖∇v‖2

H
+ ‖∇ΓvΓ‖2HΓ

)1∕2

(43)
 g∗ = (Ωg

∗,Γg
∗) is the unique pair (�, �Γ) ∈ 0 such that

�Ω

∇� ⋅ ∇v + �Γ

∇Γ�Γ ⋅ ∇ΓvΓ = ⟨g∗, (v, vΓ)⟩ for every (v, vΓ) ∈  .

(44)‖g‖∗
∗
∶= ‖ g∗‖0

, for g∗ ∈ ∗0,

(45)

⟨�tg∗, g∗⟩ =
1

2

d

dt
‖g∗‖2

∗
a.e. in (0, T), for every g∗ ∈ H1(0, T;∗0).

(46)‖ g∗‖ ≤ CΩ‖g∗‖ for every g∗ ∈ 0,

(47)a b ≤ 𝛿 a2 +
1

4𝛿
b2 for all a, b ∈ ℝ and 𝛿 > 0,

(48)‖v‖p ≤ CΩ‖v‖V for every p ∈ [1, 6] and v ∈ V ,

(49)‖v‖2
6
≤ CΩ

�
‖∇v‖2

H
+ ‖∇ΓvΓ‖2HΓ

+ �mean(v, vΓ)�2
�
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for every (v, vΓ) ∈  . In both (48) and (49), the constant CΩ depends only on Ω . 
Furthermore, we will owe to a well-known fact from interpolation theory. By [3, 
Thm. 5.2.1, p. 109], we have that

where the interpolation can be understood also in the sense of the trace method (see 
[3, Sect.  3.12] for the equivalence between various interpolation methods). It fol-
lows that there hold the continuous embedding and the related inequality

where CΩ depends only on Ω.
Finally, as far as constants are concerned, we employ the following general rule: the 

small-case symbol c stands for different constants which depend only on Ω , the struc-
ture of our system and the norms of the data involved in the assumptions (21)–(24). 
A notation like c

�
 (in particular, with � = T ) allows the constant to depend on the posi-

tive parameter � , in addition. Hence, the meaning of c and c
�
 may change from line to 

line and even within the same chain of inequalities. On the contrary, we mark the con-
stants that we want to refer to by using a different notation (e.g., a capital letter).

4  Longtime behavior

This section is devoted to the proof of Theorem  2.4. Thus, we fix any global solu-
tion (�,�Γ, �, �Γ, � , �Γ) once and for all. Our arguments relies on some global a priori 
estimates and on the study of the behavior of such a solution on intervals of a fixed 
length T whose endpoints tend to infinity.

To keep the paper at a reasonable length, we often proceed formally. However, we 
notice that the estimates to be obtained in this way can be performed rigorously by 
acting on the solution to a proper regularized or discrete problem. Indeed, the solution 
found in [16] was constructed in this way: first, a regularized �-problem was introduced 
by replacing the graphs � and �Γ by their Yosida regularizations �

�
 and �Γ, � . However, 

the same argument would work if �
�
 and �Γ, � were smooth approximation of � and 

�Γ with analogous boundedness and convergence properties (like the C∞ approxima-
tions introduced in [28, Sect. 3]). In order to solve such an approximating problem, a 
Faedo–Galerkin scheme depending on a parameter n ∈ ℕ can be used. Its solution is 
smooth according to the smoothness of the nonlinearities that appear in the �-problem. 
Then, the solution to the original problem is constructed by first letting n tend to infin-
ity and then letting � tend to zero. Thus, our procedure would be completely rigorous if 
it were performed on one of the above approximating solutions. Indeed, the estimates 
established in this way would be uniform with respect to the parameters involved. We 
now start proving such global estimates.

(L3(Ω), L3∕2(Ω))1∕2,2 = L2(Ω),

(50)

H1(0,+∞;L3∕2(Ω)) ∩ L2(0,+∞;L3(Ω)) ⊂ L∞(0,+∞;L2(Ω)),

‖u‖L∞(0,+∞; L2(Ω)) ≤ CΩ

�
‖u‖L2(0,+∞; L3(Ω)) + ‖𝜕tu‖L2(0,+∞; L3∕2(Ω))

�

for every v ∈ H1(0,+∞;L3∕2(Ω)) ∩ L2(0,+∞;L3(Ω)),
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First global estimate We write the Eqs. (28) and (29) at the time s and test them by 
(�,�Γ)(s) ∈  and �t(�, �Γ)(s) ∈  , respectively. Then, we integrate with respect to s 
over (0, t) with an arbitrary t > 0 , sum up and rearrange. We obtain

Four integrals obviously cancel out, the ones on the left-hand side containing f and 
fΓ are bounded from below by  (18), and the terms on the right-hand side involv-
ing the initial values are finite by (23). We deal with the convective term using the 
Young and Hölder inequalities, the Sobolev type inequality (49), and the conserva-
tion property (39). We have

Since the function s ↦ ‖u(s)‖2
3
 belongs to L1(0,+∞) by  (21), we can apply the 

Gronwall lemma on (0,+∞) and obtain that

as well as (∇�,∇Γ�Γ) ∈ (L∞(0,+∞;))3 . From this, by accounting for the conser-
vation property (39) once more, we conclude that

Consequence By using the quadratic growth of �̂� and �̂�Γ implied by the Lipschitz 
continuity of their derivatives, and combining with (52) with (53), we deduce that

∫Qt

�t� � + ∫Σt

�t�Γ �Γ + ∫Qt

|∇�|2 + ∫Σt

|∇Γ�Γ|2 + �Ω ∫Qt

|�t�|2 + �Γ ∫Σt

|�t�Γ|2

+
1

2 ∫Ω

|∇�(t)|2 + 1

2 ∫Γ

|∇Γ�Γ(t)|2 + ∫Ω

f (�(t)) + ∫Γ

fΓ(�Γ(t))

= ∫Qt

�u ⋅ ∇� + ∫Qt

��t� + ∫Σt

�Γ�t�Γ

+
1

2 ∫Ω

|∇�0|2 +
1

2 ∫Γ

|∇Γ�0|Γ|2 + ∫Ω

f (�0) + ∫Γ

fΓ(�0|Γ).

�Qt

�u ⋅ ∇� ≤ 1

2 �Qt

�∇��2 + 1

2 �
t

0

‖u(s)‖2
3
‖�(s)‖2

6
ds

≤ 1

2 �Qt

�∇��2 + c�
t

0

‖u(s)‖2
3
(‖∇�(s)‖2

H
+ ‖∇Γ�Γ(s)‖2HΓ

+ m2
0
) ds.

(51)∫Q∞

|∇𝜇|2 + ∫Σ∞

|∇Γ𝜇Γ|2 + ∫Q∞

|𝜕t𝜌|2 + ∫Σ∞

|𝜕t𝜌Γ|2 < +∞,

(52)f (�) ∈ L∞(0,+∞;L1(Ω)) and fΓ(�Γ) ∈ L∞(0,+∞;L1(Γ)),

(53)(�, �Γ) ∈ L∞(0,+∞;).

(54)𝛽(𝜌) ∈ L∞(0,+∞;L1(Ω)) and 𝛽Γ(𝜌Γ) ∈ L∞(0,+∞;L1(Γ)).
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Second global estimate We formally differentiate the Eqs. (28) and (29) with respect 
to time, where we argue as if � and �Γ were smooth functions and write �(�) and 
�Γ(�Γ) instead of � and �Γ (see (30)). We obtain that

a.e. in (0,+∞) and for every (v, vΓ) ∈  . By recalling that �t(�, �Γ) is 0-valued by 
(39), so that  �t(�, �Γ) is well defined, we write the above equations at the time s 
and test them by  �t(�, �Γ)(s) and �t(�, �Γ)(s) , respectively. Then, we integrate with 
respect to s over (0, t) with an arbitrary t > 0 and sum up. We have

The integrals containing �t� and �t�Γ cancel out by the definition (43) of   (with 
the choices g∗ = �t(�, �Γ)(s) and (v, vΓ) = �t(�,�Γ)(s) ), and the terms involving �′ 
and ��

Γ
 are nonnegative. Moreover, the last two integrals on the right-hand side are 

(55)
∫Ω

�
2
t
� v + ∫Γ

�
2
t
�Γ vΓ + ∫Ω

∇�t� ⋅ ∇v + ∫Γ

∇Γ�t�Γ ⋅ ∇ΓvΓ

= ∫Ω

(�t� u + ��tu) ⋅ ∇v

(56)

�Ω ∫Ω

�
2
t
� v + �Γ ∫Γ

�
2
t
�Γ vΓ + ∫Ω

∇�t� ⋅ ∇v + ∫Γ

∇Γ�t�Γ ⋅ ∇ΓvΓ

+ ∫Ω

�
�(�)�t� v + ∫Γ

�
�
Γ
(�Γ)�t�Γ vΓ

= ∫Ω

�t� v + ∫Γ

�t�Γ vΓ − ∫Ω

�
�(�)�t� v − ∫Γ

�
�
Γ
(�Γ)�t�Γ vΓ

�
t

0

⟨�2
t
(�, �Γ)(s), �t(�, �Γ)(s)⟩ ds

+ �Qt

∇�t� ⋅ ∇Ω(�t(�, �Γ)) + �Σt

∇Γ�t�Γ ⋅ ∇ΓΓ(�t(�, �Γ))

+
�Ω

2 �Ω

��t�(t)�2 +
�Γ

2 �Γ

��t�Γ(t)�2 + �Qt

�∇�t��2 + �Σt

�∇Γ�t�Γ�2

+ �Qt

�
�(�)��t��2 + �Σt

�
�
Γ
(�Γ)��t�Γ�2

= �Qt

(�t� u + ��tu) ⋅ ∇Ω(�t(�, �Γ)) +
�Ω

2 �Ω

��t�(0)�2 +
�Γ

2 �Γ

��t�Γ(0)�2

+ �Qt

�t� �t� + �Σt

�t�Γ �t�Γ − �Qt

�
�(�)��t��2 − �Σt

�
�
Γ
(�Γ)��t�Γ�2.
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bounded by (51) and the Lipschitz continuity of � and �Γ . Therefore, owing to (45) 
for the first term on the left-hand side, we deduce that

Thus, is suffices to obtain a bound for the -norm of �t(�, �Γ)(0) and to estimate the 
last two integrals. For the first aim, we write the Eqs. (28) and (29) at the time t = 0 , 
test them by (�,�Γ)(0) and �t(�, �Γ)(0) , respectively, and sum up. Then, we account 
for the regularity of �0 ensured by (23) and integrate by parts the terms involving 
∇�0 and ∇Γ�0|Γ . We obtain

Four integrals obviously cancel each other. Now, we rearrange and use the Young 
inequality and the Lipschitz continuity of � and �Γ . In view of the full  (23), we 
infer that

In order to estimate the last integral, we use the Hölder and Young inequalities, the 
continuous embedding W ⊂ L∞(Ω) , and the interpolation inequality (50), to con-
clude that

(57)

1

2
‖�t(�, �Γ)(t)‖2∗ +

�Ω

2 �Ω

��t�(t)�2 +
�Γ

2 �Γ

��t�Γ(t)�2 + �Qt

�∇�t��2 + �Σt

�∇Γ�t�Γ�2

≤ 1

2
‖�t(�, �Γ)(0)‖2∗ +

�Ω

2 �Ω

��t�(0)�2 +
�Γ

2 �Γ

��t�Γ(0)�2

+ �Qt

�t� u ⋅ ∇Ω(�t(�, �Γ)) + �Qt

��tu ⋅ ∇Ω(�t(�, �Γ)) + c.

∫Ω

�t�(0)�(0) + ∫Γ

�t�Γ(0)�Γ(0) + ∫Ω

|∇�(0)|2 + ∫Γ

|∇Γ�Γ(0)|2

+ �Ω ∫Ω

|�t�(0)|2 + �Γ ∫Γ

|�t�Γ(0)|2 − ∫Ω

Δ�0 �t�(0) − ∫Γ

ΔΓ�0|Γ �t�Γ(0)

+ ∫Ω

(� + �)(�0)�t�(0) + ∫Γ

(�Γ + �Γ)(�0|Γ)�t�Γ(0)

= ∫Ω

�0u(0) ⋅ ∇�(0) + ∫Ω

�(0)�t�(0) + ∫Γ

�Γ(0)�t�Γ(0).

�Ω

�∇�(0)�2 + �Γ

�∇Γ�Γ(0)�2 +
�Ω

2 �Ω

��t�(0)�2 +
�Γ

2 �Γ

��t�Γ(0)�2

≤ c
�
‖(�0, �0�Γ)‖2 + 1 + ‖�(�0)‖2H + ‖�Γ(�0�Γ)‖2HΓ

�
+ �Ω

�0u(0) ⋅ ∇�(0)

≤ c + �Ω

�0u(0) ⋅ ∇�(0).
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and we observe that all of the last norms are finite by virtue of the assumptions (23) 
and (21) on �0 and  u. By combining this and the above inequality, we obtain the 
desired bound for the -norm of �t(�, �Γ)(0).

Finally, we estimate the last two integrals on the right-hand side of (57) by using the 
Hölder, Sobolev and Young inequalities (in particular (49)), the interpolation inequal-
ity (50), the conservation property (39), the regularity inequality (46) for   , and the 
already established estimate (53). We have that

as well as, with a similar argument,

Coming back to (57) and taking these estimates into account, we conclude that

Third global estimate Also in this step, we argue as if the graphs � and �Γ were 
smooth functions (in particular, we write � = �(�) and �Γ = �(�Γ) ) and first notice 
that the inclusion D(𝛽Γ) ⊆ D(𝛽) (see (20)) and assumption (24) imply that

for every r belonging to the respective domains, where �0 and C0 are some positive 
constants that depend only on � , �Γ and on the position of m0 in the interior of D(�Γ) 
and of D(�) (see, e.g., [26, p. 908]). Now, we recall the conservation property (39) 

�Ω

�0u(0) ⋅ ∇�(0) ≤ ‖�0‖∞ ‖u(0)‖2 ‖∇�(0)‖2

≤ 1

2 �Ω

�∇�(0)�2 + c ‖�0‖2W
�
‖u‖2

L2(0,+∞; L3(Ω))
+ ‖�tu‖2L2(0,+∞; L3∕2(Ω))

�
,

�Qt

�t� u ⋅ ∇Ω(�t(�, �Γ)) ≤ �
t

0

‖�t�(s)‖4 ‖u(s)‖2 ‖∇Ω(�t(�, �Γ)(s))‖4 ds

≤ c ‖u‖L∞(0,+∞;H) �
t

0

‖�t�(s)‖V ‖ (�t(�, �Γ)(s))‖ ds

≤ 1

2

�

�Qt

�∇�t��2 + �Σt

�∇Γ�t�Γ�2
�
+ c�

t

0

‖�t(�, �Γ)(s)‖2 ds

≤ 1

2

�

�Qt

�∇�t��2 + �Σt

�∇Γ�t�Γ�2
�
+ c,

�Qt

��tu ⋅ ∇Ω(�t(�, �Γ)) ≤ �
t

0

‖�(s)‖6 ‖�tu(s)‖3∕2 ‖∇Ω(�t(�, �Γ)(s))‖6 ds

≤ c ‖�‖L∞(0,+∞;V) ‖�tu‖L2(0,+∞; L3∕2(Ω)) ‖�t(�, �Γ)‖L2(0,+∞;) ≤ c.

(58)�t(�, �Γ) ∈ L∞(0,+∞;) ∩ L2(0,+∞;).

(59)�(r)(r − m0) ≥ �0|�(r)| − C0 and �Γ(r)(r − m0) ≥ �0|�Γ(r)| − C0
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and test (28) and (29) by  (� − m0, �Γ − m0) and (� − m0, �Γ − m0) , respectively. 
Then, we sum up without integrating with respect to time. We obtain that, almost 
everywhere in (0,+∞),

All of the integrals involving � and �Γ cancel out by (43). Now, we owe to  (59), 
keep just the positive contributions on the left-hand side and move the other terms 
on the right-hand side. By also accounting for the Lipschitz continuity of � and �Γ , 
the Sobolev inequality related to the continuous embedding V ⊂ L4(Ω) , the interpo-
lation inequality (50) on u, the regularity inequality (46) for   , (53) and (58), we 
deduce that

Since this holds a.e. in (0,+∞) , we have (in particular) that

Now, we test (29) by (1, 1) and obtain a.e. in (0,+∞)

⟨�t(�, �Γ), (� − m0, �Γ − m0)⟩
+ �Ω

∇� ⋅ ∇Ω(� − m0, �Γ − m0) + �Γ

∇Γ�Γ ⋅ ∇ΓΓ(� − m0, �Γ − m0)

+ �Ω �Ω

�t� (� − m0) + �Γ �Γ

�t�Γ (�Γ − m0) + �Ω

�∇��2 + �Γ

�∇Γ�Γ�2

+ �Ω

�(�)(� − m0) + �Γ

�Γ(�Γ)(�Γ − m0)

= �Ω

�u ⋅ ∇(Ω(� − �0, �Γ − �0�Γ)) + �Ω

�(� − m0) + �Γ

�Γ(�Γ − m0)

− �Ω

�(�)(� − m0) − �Γ

�Γ(�Γ)(�Γ − m0).

�Ω

�∇��2 + �Γ

�∇Γ�Γ�2 + �0 �Ω

��(�)� + �0 �Γ

��Γ(�Γ)�

≤ ‖�t(�, �Γ)‖L∞(0,+∞; ∗
0
) ‖ (� − m0, �Γ − m0)‖L∞(0,+∞;0)

+ c ‖�t(�, �Γ)‖L∞(0,+∞;) ‖(� − m0, �Γ − m0)‖L∞(0,+∞;)

+ c ‖(�(�),�Γ(�Γ))‖L∞(0,+∞;) ‖(� − m0, �Γ − m0)‖L∞(0,+∞;)

+ ‖�‖L∞(0,+∞; L4(Ω)) ‖u‖L∞(0,+∞; L2(Ω)) ‖∇(Ω(� − �0, �Γ − �0�Γ))‖L∞(0,+∞; L4(Ω))

≤ c + c ‖ (� − �0, �Γ − �0�Γ)‖L∞(0,+∞;)

≤ c + c ‖(� − �0, �Γ − �0�Γ)‖L∞(0,+∞;) ≤ c.

� ∈ L∞(0,+∞;L1(Ω)) and �Γ ∈ L∞(0,+∞;L1(Γ)).
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Thus, we infer that

It was already clear from (53) that the �-limit � is nonempty. Indeed, the continuous 
-valued function (�, �Γ) is also bounded, so that there exists a sequence tn ↗ +∞ 
such that the sequence {(�, �Γ)(tn)} is weakly convergent in  . More precisely, any 
sequence of times that tends to infinity contains a subsequence of this type. Thus, 
it remains to prove the second part of the statement. Therefore, we fix an element 
(��, ��

Γ
) ∈ � and a corresponding sequence {tn} like in the definition (32). We also 

fix T ∈ (0,+∞) and set, for a.a. t ∈ (0, T),

and notice that (21) and the interpolation inequality (50) applied to un imply that

Moreover, it is clear that the 6-tuple (�n,�n
Γ
, �n, �n

Γ
, �n, �n

Γ
) satisfies the regularity 

conditions (25)–(27) and the equations (28)–(30) with u replaced by un , as well as 
the initial condition �n(0) = �(tn) . In particular, by construction, we have that

Furthermore, the global estimates already performed on (�,�Γ, �, �Γ, � , �Γ) imme-
diately imply some estimates on (�n,�n

Γ
, �n, �n

Γ
, �n, �n

Γ
) that are uniform with respect 

to n. Here is a list. From (53) and (58), we infer that

By (51), we also deduce that

On the other hand, (60) yields a uniform estimate on the mean value mean(�n,�n
Γ
) . 

By combining this with (64), we conclude that

In the next steps, we perform further estimates that ensure some additional conver-
gence properties for (�n,�n

Γ
, �n, �n

Γ
, �n, �n

Γ
) on the interval (0, T).

First auxiliary estimate Once again, we treat � and �Γ as single-valued functions 
and write �(�n) and �Γ(�n) in place of �n and �n

Γ
 , respectively. We test (29), written for 

(|Ω| + |Γ|)mean(�,�Γ) = �Ω ∫Ω

�t� + �Γ ∫Γ

�t�Γ + ∫Ω

� + ∫Γ

�Γ + ∫Ω

�(�) + ∫Γ

�Γ(�Γ).

(60)mean(�,�Γ) ∈ L∞(0,+∞).

�
n(t) ∶= �(tn + t), �

n(t) ∶= �(tn + t), �
n(t) ∶= �(tn + t)

�
n
Γ
(t) ∶= �Γ(tn + t), �

n
Γ
(t) ∶= �Γ(tn + t), �

n
Γ
(t) ∶= �Γ(tn + t)

un(t) ∶= u(tn + t)

(61)un → 0 strongly in L∞(0, T; L2(Ω)).

(62)(�n, �n
Γ
)(0) → (��, ��

Γ
) weakly in  .

(63)‖(�n, �n
Γ
)‖H1(0,T;)∩L∞(0,T;) ≤ c.

(64)(∇�n,∇Γ�
n
Γ
) → 0 strongly in (L2(0, T;))3

(65)(�t�
n, �t�

n
Γ
) → 0 strongly in L2(0, T;).

(66)‖(�n,�n
Γ
)‖L2(0,T;) ≤ cT .
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(�n,�n
Γ
, �n, �n

Γ
, �n, �n

Γ
) at the time s, by (�(�n), �(�n

Γ
))(s) ∈  and integrate over (0,  t) 

with any t ∈ (0, T) . We have

All of the integrals on the left-hand side are nonnegative but the last one, which we 
treat in the following way: we notice that (20), and the fact that � and �Γ have the 
same sign by (16), imply that �(r)�Γ(r) ≥ (2�)−1�2(r) − c for all r. It follows that

Let us come to the right-hand side. The first integral can obviously be dealt with 
using the Young inequality. We treat the second one this way:

thanks to (66). Finally, the last two terms of (67) are bounded by (54). By combining 
all these inequalities, we derive that

as well as an estimate for ‖�(�n
Γ
)‖L2(0,T;HΓ)

 as a by-product.
Second auxiliary estimate We apply [16, Lem. 3.1] a.e. in (0,+∞) to (29), written 

for (�n,�n
Γ
, �n, �n

Γ
, �n, �n

Γ
) in the form

(67)

𝜏Ω

2 ∫Ω

𝛽(𝜌n(t)) +
𝜏Γ

2 ∫Γ

𝛽Γ(𝜌
n
Γ
(t)) + ∫Qt

𝛽
�(𝜌n)|∇𝜌n|2 + ∫Σt

𝛽
�(𝜌n)|∇Γ𝜌

n
Γ
|2

+ ∫Qt

|𝛽(𝜌n)|2 + ∫Σt

𝛽Γ(𝜌
n
Γ
) 𝛽(𝜌n

Γ
)

= ∫Qt

(
𝜇
n − 𝜋(𝜌n)

)
𝛽(𝜌n) + ∫Σt

(𝜇n
Γ
− 𝜋Γ(𝜌

n
Γ
)) 𝛽(𝜌n

Γ
)

+
𝜏Ω

2 ∫Ω

𝛽(𝜌(tn)) +
𝜏Γ

2 ∫Γ

𝛽Γ(𝜌Γ(tn)).

�Σt

�Γ(�
n
Γ
) �(�n

Γ
) ≥ 1

2� �Σt

|�(�n
Γ
)|2 − cT .

�Σt

(�n
Γ
− �Γ(�

n
Γ
)) �(�n

Γ
)

≤ 1

4� �Σt

|�(�n
Γ
)|2 + c�Σt

|�n
Γ
|2 + c�Σt

(1 + |�n
Γ
|2) ≤ 1

4� �Σt

|�(�n
Γ
)|2 + c,

(68)‖�n‖L2(0,T;H) ≤ cT ,

∫Ω

∇�n ⋅ ∇v + ∫Γ

∇Γ�
n
Γ
⋅ ∇ΓvΓ + ∫Γ

�Γ(�
n
Γ
)vΓ

= ∫Ω

�
nv + ∫Γ

�
n
Γ
vΓ − �Ω ∫Ω

�t�
n v − �Γ ∫Γ

�t�
n
Γ
vΓ

− ∫Ω

(�n + �(�n))v − ∫Γ

�Γ(�
n
Γ
)vΓ.
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We obtain, in particular, that

for a.a. t ∈ (0,+∞) , where c depends only on Ω . By accounting for (63), (66) and 
(68), we conclude that

Limits We collect the estimates (63), (66), (68) and (69) and use standard weak and 
weak star compactness results. For a subsequence, still labeled by n, we have

We now prove that (�∞,�∞
Γ
, �∞, �∞

Γ
, �∞, �∞

Γ
) satisfies the integrated ver-

sion of (28)–(29), where we read u = 0 , with time-dependent test functions 
(v, vΓ) ∈ L2(0, T;) , and that (30) holds true as well. First of all, we notice that 
�
n converges to �∞ weakly star in L∞(0, T; L6(Ω)) , by (70) and the continu-

ous embedding V ⊂ L6(Ω) . Owing to  (33), we see that un tends to zero strongly 
in (L∞(0, T; L3∕2(Ω)))3 and deduce that �nun converges to zero weakly star in 
(L∞(0, T; L6∕5(Ω)))3 . Next, from (70) we derive the strong convergence

which follows from the compact embedding  ⊂  and from applying, e.g., [39, 
Sect. 8, Cor. 4]. Then, (�(�n),�Γ(�nΓ)) converges to (�(�∞),�Γ(�∞Γ )) strongly in the 
same space, by Lipschitz continuity. This concludes the proofs that (28) and (29) 
hold for the limiting 6-tuple in an integrated form, which is equivalent to the point-
wise formulation. In order to derive  (30), i.e., �∞ ∈ �(�∞) and �∞

Γ
∈ �Γ(�

∞
Γ
) , we 

combine the weak convergence (72) with the strong convergence (73) and apply, 
e.g., [2, Lemma 2.3, p. 38].

5  Conclusion

It remains to prove that the above limit leads to a stationary solution with the prop-
erties specified in the statement. To this end, we first derive that (�∞, �∞

Γ
) belongs to 

L2(0, T;) and solves the boundary value problem

From (65) and (70), we see that �t(�∞, �∞Γ ) vanishes identically. Thus, we are deal-
ing with a time-dependent elliptic problem in a variational form and can use the 

‖�Γ(�nΓ(t))‖HΓ
≤ c

�
‖(�n,�n

Γ
)(t)‖ + ‖�t(�n, �nΓ)(t)‖ + ‖(�n + �(�n))(t)‖H

�

(69)‖�n
Γ
‖L2(0,T;HΓ)

≤ cT .

(70)(�n, �n
Γ
) → (�∞, �∞

Γ
) weakly star in H1(0, T;) ∩ L∞(0, T;),

(71)(�n,�n
Γ
) → (�∞,�∞

Γ
) weakly in L2(0, T;),

(72)(�n, �n
Γ
) → (�∞, �∞

Γ
) weakly in L2(0, T;).

(73)(�n, �n
Γ
) → (�∞, �∞

Γ
) strongly in C0([0, T];),

(74)− Δ�∞ + �
∞ + �(�∞) = �

∞ a.e. in QT ,

(75)�n�
∞ − ΔΓ�

∞
Γ
+ �

∞
Γ

+ �Γ(�
∞
Γ
) = �

∞
Γ

a.e. on ΣT .



345

1 3

On the longtime behavior of a viscous Cahn–Hilliard system with…

following well-known estimates from trace theory and from the theory of elliptic 
equations. For any v and vΓ that make the right-hand sides meaningful, we have that

where the positive constant CΩ depends only on Ω . By taking test functions (v, 0) 
with v ∈ H1

0
(Ω) , we derive that (74) holds in the sense of distributions on QT . 

This implies that Δ�∞ ∈ L2(0, T;H) , so that �n�∞ is a well-defined element of 
L2(0, T;H−1∕2(Γ)) (see (76)) satisfying the integration–by–parts formula in a gener-
alized sense. Coming back to (29) written for our limiting solution and arbitrary test 
functions (v, vΓ) ∈  , we deduce that (75) holds in a generalized sense. From this, 
we infer that ΔΓ�

∞
Γ
∈ L2(0, T;H−1∕2(Γ)) , so that �∞

Γ
∈ L2(0, T;H3∕2(Γ)) (see (80)). 

It follows that �∞ ∈ L2(0, T;W) by (78). In particular, �n�∞ ∈ L2(0, T;HΓ) by (77) 
so that ΔΓ�

∞
Γ
∈ L2(0, T;HΓ) and �∞

Γ
∈ L2(0, T;WΓ) by  (79). Finally, as all of the 

ingredients are L2 functions, it is also clear that equations (74)–(75) hold almost 
everywhere.

At this point, we are ready to conclude. Since �t(�∞, �∞Γ ) vanishes and the same 
holds for (∇�∞,∇Γ�

∞
Γ
) by (64), there exist (�s, �s

Γ
) ∈  and �∞ ∈ L2(0, T) such that

We prove that (�∞, �∞
Γ
) is time independent as well and that �∞ is a constant, by 

accounting for our assumptions on the graphs � and �Γ : at least one of them is sin-
gle-valued. Assume first that � is single-valued. Then �∞ = �(�∞) is time independ-
ent and attains the value � s ∶= �(�s) at any time. From (74), it follows that �∞ is 
time independent as well, so that the function �∞ is a constant that we term �s . Thus, 
the right-hand side of (75) is the same constant �s . As this does not depend on time, 
the same holds for �∞

Γ
 . Hence, it attains some value � s

Γ
∈ HΓ a.e. in (0, T) . Assume 

now that �Γ is single-valued. Then, we first use (75) to derive that �∞
Γ

= �Γ(�
∞
Γ
) and 

�
∞
Γ

 are time independent. In particular, �∞ takes some constant value �s , so that �∞ 
is time independent, by comparison in (74). As in both cases (36) holds as a conse-
quence of (30) for the limiting solution, the quadruplet (�s, �s

Γ
, � s, � s

Γ
) is a stationary 

solution corresponding to the value �s of the chemical potential. Finally, we prove 
that (�s, �s

Γ
) coincides with the given  (��, ��

Γ
) . Indeed, (70) implies weak conver-

gence also in C0([0, T];) , whence

By comparison with (62), we conclude that (�s, �s
Γ
) = (��, ��

Γ
) , and the proof is 

complete.

(76)‖�nv‖H−1∕2(Γ) ≤ CΩ

�
‖v‖H1(Ω) + ‖Δv‖L2(Ω)

�
,

(77)‖�nv‖L2(Γ) ≤ CΩ

�
‖v‖H3∕2(Ω) + ‖Δv‖L2(Ω)

�
,

(78)‖v‖H2(Ω) ≤ CΩ

�
‖v�Γ‖H3∕2(Γ) + ‖Δv‖L2(Ω)

�
,

(79)‖vΓ‖H2(Γ) ≤ CΩ

�
‖vΓ‖H1(Γ) + ‖ΔΓvΓ‖L2(Γ)

�
,

(80)‖vΓ‖H3∕2(Γ) ≤ CΩ

�
‖vΓ‖H1(Γ) + ‖ΔΓvΓ‖H−1∕2(Γ)

�
,

(�∞, �∞
Γ
)(x, t) = (�s, �s

Γ
)(x) and (�∞,�∞

Γ
)(x, t) = (�∞(t),�∞(t))

for a.a. (x, t) ∈ QT .

(�n, �n
Γ
)(0) → (�∞, �∞

Γ
)(0) = (�s, �s

Γ
) weakly in.
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