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Abstract We investigate the pointwise behavior of time-periodic Navier–Stokes

flows in the whole space. We show that if the time-periodic external force is

sufficiently small in an appropriate sense, then there exists a unique time-periodic

solution fu; pg of the Navier–Stokes equation such that juðt; xÞj ¼ Oðjxj1�nÞ,
jruðt; xÞj ¼ Oðjxj�nÞ and jpðt; xÞj ¼ Oðjxj�nÞ uniformly in t 2 R as jxj ! 1. Our

solution decays more rapidly than the time-periodic Stokes fundamental solution.

The proof is based on the representation formula of a solution via the time-periodic

Stokes fundamental solution and its properties.

Keywords Navier–Stokes equation � Time-periodic solution � Asymptotic

property

Mathematics Subject Classification 35Q30 � 35B10 � 76D05 � 76D03

1 Introduction

We consider the time-periodic problem for the Navier–Stokes equation in R� Rn

with n� 3:

otu� Duþ u � ruþrp ¼ divF in R� Rn;

div u ¼ 0 in R� Rn;

uð�; xÞ ! 0 as jxj ! 1;

uðt; �Þ ¼ uðt þ T ; �Þ forall t 2 R:
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Here u ¼ ðu1ðt; xÞ; � � � ; unðt; xÞÞ and p ¼ pðt; xÞ denote, respectively, the unknown

velocity and pressure of a viscous incompressible fluid, while F ¼ ðFijðt; xÞÞni;j¼1 is a

given periodic tensor with div F ¼
Pn

i¼1 oxiFijðt; xÞ
� �n

j¼1
denoting the periodic

external force. Furthermore, T denotes a fixed period.

Existence and uniqueness of solutions to (1) are studied in many literatures such

as [2, 3, 5, 7, 10, 13–15]. The time-periodic problem (1) is studied in various

functional settings, and, in particular, it is known that the L2 theory enables us to

construct a solution v with rv 2 L2ðð0; TÞ � RnÞ of (1) without restricting the size

of the external force, see [7, Theorem 6.3.1] for instance. The asymptotic property

of the solution v is, however, still an open problem since the construction of v gives

us little information on it. One method for describing the asymptotic behavior of v,

under the smallness of the external force in a sense, is to establish the existence of

solutions, say w, with desired decay properties to (1) and then apply an appropriate

uniqueness theorem so that we conclude v ¼ w. The purpose of this paper is to

prove the existence of solutions with pointwise decay properties to (1). Such results

were given by Galdi and Sohr [3] and Kang et al. [4]. They considered the Navier–

Stokes equation in three-dimensional exterior domains and established the existence

of time-periodic solutions satisfying

jrjuðt; xÞj ¼ Oðjxj�j�1Þ; jrjpðt; xÞj ¼ Oðjxj�j�2Þ ðj ¼ 0; 1Þ ð2Þ

uniformly in time as jxj ! 1. Recently, Kyed [9] introduced the notion of the time-

periodic Stokes fundamental solution, and its leading term is given by the steady

Stokes fundamental solution. The spatial decay rate (2) coincides with that of the

Stokes fundamental solution and thus it seems to be natural. It is known that, in the

three-dimensional exterior problem, (2) is the best spatial decay rate of periodic

solutions expected in general [4], however, we do not know whether it is also

optimal in other unbounded domains. Miyakawa [11] and the author [12] con-

structed a unique solution fu; pg of the stationary Navier–Stokes equation in Rn

such that

jrjuðxÞj ¼ Oðjxj1�n�jÞ; jrjpðxÞj ¼ Oðjxj�n�jÞ ðj ¼ 0; 1; . . .Þ ð3Þ

as jxj ! 1. The stationary solution in [11, 12] decays more rapidly than the steady

Stokes fundamental solution, and we can expect that the time-periodic problem (1)

also admits a solution decaying like (3) since stationary solutions can be regarded as

time-periodic ones with arbitrary period.

In this paper, we shall show that there exists a unique solution fu; pg of (1) such

that

juðt; xÞj ¼ Oðjxj1�nÞ; jruðt; xÞj ¼ Oðjxj�nÞ; jpðt; xÞj ¼ Oðjxj�nÞ

uniformly in t 2 R as jxj ! 1, provided that F and divF are small in a suit-

able sense. Our solution has the same spatial decay as (3) and we emphasize that it

decays more rapidly than the time-periodic Stokes fundamental solution. Further-

more, the structure of the time-periodic Stokes fundamental solution enables us to
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write the solution u as the sum of the steady and time-periodic parts. The decay

properties of each parts of solutions are also studied in this paper.

The proof relies upon the representation formula of solutions via the time-

periodic Stokes fundamental solution. We transform (1) into the integral equation

via the fundamental solution, and then we estimate both the steady and time-

periodic parts of a solution in order to apply the contraction mapping principle. In

the proof, the well known properties of steady Stokes fundamental solution and the

results of [1, 9] play an important role.

2 Main results

Before stating our results, we introduce some function spaces. In what follows, we

adopt the same symbols for vector and scalar function spaces. Let 1� q�1 and let

X be a Banach space. We denote by LqperðR;XÞ the Banach space of all T-periodic

functions u : R ! X such that the restriction uj½0;TÞ 2 Lqð0; T ;XÞ. The norm in

LqperðR;XÞ is given by kukq;X :¼ kukLqð0;T ;XÞ. In the case X ¼ LqðRnÞ, we write

simply LqperðR� RnÞ with norm k � kq. The space W1;2;q
per ðR� RnÞ is defined by

W1;2;q
per ðR� RnÞ :¼ fu 2 LqperðR� RnÞ; kuk1;2;q\1g where

kuk1;2;q :¼ ðkotukqq þ
P

jaj � 2 ko
a
xuk

q
qÞ

1=q
. For l[ 0, we define the Banach space

Xl by

Xl :¼ fu 2 L1ðRnÞ; sup
x2Rn

ðjxj þ 1ÞljuðxÞj\1g

with the norm

kukXl
:¼ sup

x2Rn

ðjxj þ 1ÞljuðxÞj:

It is easy to check that Xl1
� Xl2

if l2\l1.

Let fE;Qg be the time-periodic Stokes fundamental solution introduced in [9].

The form and properties of the fundamental solution shall be reviewed in the next

section. We consider (1) in the form

uðt; xÞ ¼
Z

Rn

1

T

Z T

0

rEðt � s; x� yÞðF � u� uÞðs; yÞ dsdy; ð4Þ

where u� u :¼ ðuiujÞni;j¼1 and r denotes the gradient with respect to the spatial

variable. If F and u decay rapidly at spatial infinity, then (4) can be written as

uðt; xÞ ¼
Z

Rn

1

T

Z T

0

Eðt � s; x� yÞðdivF � u � ruÞðs; yÞ dsdy: ð5Þ

As we shall see later, we should interpret E in (4) and (5) as the composition E 	 p
where p is a map introduced in the next section. In this paper, we use the notation

E instead of E 	 p as long as we consider (4) and (5). Also, it shall be seen that the
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integral equations (4) and (5) are equivalent to (1) in an appropriate sense. The

associated pressure p is given by

pðt; xÞ ¼
Z

Rn

1

T

Z T

0

Qðt � s; x� yÞ � ðdivF � u � ruÞðs; yÞ dsdy:

The main result of this paper is stated in the following theorem. The leading term

of fE;Qg is the steady Stokes fundamental solution as we shall see in the next

section, and our solution in the following theorem decays more rapidly than the

time-periodic Stokes fundamental solution.

Theorem 1 Let n� 3 and 0\d\1: Suppose

F 2 L1perðR;XnþdÞ and div F 2 L1perðR;Xnþ1Þ: ð6Þ

If F and divF are sufficiently small in L1perðR;XnþdÞ and L1perðR;Xnþ1Þ respectively,
then (4) admits a unique solution u such that

u 2 L1perðR;Xn�1Þ; ru 2 L1perðR;XnÞ

and

otu;r2u 2 LqperðR� RnÞ for all 1\q\1:

Furthermore, the associated pressure p satisfies

p 2 L1perðR;XnÞ:

Remark 1 The constant d is introduced so that we can apply the inequality (10)

below and Fðt; �Þ is integrable, see also [12, Remark 2.1].

Remark 2 If F is independent of t, then we can verify that u in Theorem 1 is a

stationary solution and thus coincides with the one constructed in [11, 12].

Remark 3 It is possible to show that the solution u in Theorem 1 satisfies otu 2
L1perðR;Xnþ1Þ provided that otF is sufficiently small in L1perðR;Xnþ1Þ, see Remark 4.

However, the pointwise behavior of otE is still an open problem and we do not

know whether the decay rate of otu is faster than that of otE.

We shall see in the next section that the time-periodic Stokes fundamental

solution E is defined as the sum of the steady Stokes fundamental solution Es and

the time-periodic remainder Ep. Hence every solution u of (4) is written as the sum

of the steady part us:

usðxÞ :¼
Z

Rn

rEsðx� yÞ 1

T

Z T

0

ðF � u� uÞðs; yÞ dsdy

and time-periodic part up:
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upðt; xÞ :¼
Z

Rn

1

T

Z T

0

rEpðt � s; x� yÞðF � u� uÞðs; yÞ dsdy:

The next theorem describes the asymptotic behavior of each parts of solutions.

Theorem 2 Let n� 3 and 0\d\1: Suppose that F satisfies (6). Every solution

u 2 L1perðR;Xn�1Þ with ru 2 L1perðR;XnÞ of (4) is written as the sum of the steady

part us and time-periodic one up such that

us 2 Xn�1; rus 2 Xn; r2us 2 LqðRnÞ for all 1\q\1;

and

up 2 L1perðR;XnþdÞ; rup 2 L1perðR;Xnþ1Þ;
otup;r2up;2 LqperðR� RnÞ for all 1\q\1:

If

F 2 L1perðR;Xnþ1Þ and div F 2 L1perðR;Xnþ2Þ; ð7Þ

then we have

up 2 L1perðR;Xnþ1Þ and rup 2 L1perðR;Xnþ2Þ:

3 Proof of main theorems

3.1 Time-periodic Stokes fundamental solution

In this subsection, we review the theory for the time-periodic Stokes fundamental

solution. For this purpose, we need the following notation. Set T :¼ R=TZ and

G :¼ T� Rn. We define the map p : R� Rn ! G by pðt; xÞ :¼ ð½t
; xÞ and let

P :¼ pj½0;TÞ�Rn . The restriction P is a bijection from ½0; TÞ � Rn to G, and via P we

identify G with ½0; TÞ � Rn. The Haar measure dg on the locally compact abelian

group G, unique up to a normalization factor, is chosen as the product of the

Lebesgue measures on Rn and [0, T), and we have

Z

G

uðgÞ dg :¼ 1

T

Z T

0

Z

Rn

ðu 	PÞðs; yÞ dyds:

Derivatives on G are defined by

otoxiu ¼ otoxiðu 	 pÞð Þ 	P�1:

The differentiable structure on G is inherited from R� Rn and we can formulate

(1)1;2;4 as
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ot~u� D~uþ ~u � r~uþr~p ¼ div ~F in G;

div ~u ¼ 0 in G:

(

ð8Þ

We can verify that if u is a solution of (1)1;2;4, then ~u ¼ u 	P�1 is a solution of (8)

with ~F ¼ F 	P�1. Conversely, if ~u is a solution of (8), then u ¼ ~u 	 p is a solution

of (1)1;2;4 with F ¼ ~F 	 p. For more details on the analysis on G, see [7, 8].

According to Kyed [9], the time-periodic Stokes fundamental solution fE;Qg is

given by

E ¼ Es � 1T þ Ep; Q ¼ Qs � dT;

where 1T is the constant distribution 1 and dT the Dirac delta distribution on T.

Here fEs;Qsg is the steady Stokes fundamental solution, that is,

Es ¼ Es;ij

� �n
i;j¼1

; Es;ijðxÞ ¼
1

2xn

dij
n� 2

jxj2�n þ xixj

jxjn
� �

;

Qs ¼ Qs;i

� �n
i¼1

; Qs;iðxÞ ¼
xi

xnjxjn
;

with xn denoting the surface area of the unit sphere in Rn. The time-periodic

remainder Ep is defined as a tempered distribution on G via the Fourier transform,

see Kyed [9] and Eiter and Kyed [1] for its precise form. Properties of Es are well-

known and those of Ep are studied in [1, 9]. The properties of Ep are stated within

the functional framework on G in [1, 9], however, they are still valid even if we

replace Ep by Ep 	 p, since LqðGÞ and LqperðR� RnÞ are isometrically homeomor-

phic and so are W1;2;qðGÞ and W1;2;q
per ðR� RnÞ. For the sake of convenience, we shall

simply write Ep instead of Ep 	 p below. Also, we denote by C ¼ Cð�; � � � ; �Þ various

constants depending only on the quantities in parentheses.

Proposition 1 [1, 9] The time-periodic remainder Ep satisfies

Ep 2 LqperðR� RnÞ for all q 2 1;
nþ 2

n

� �

;

rEp 2 LqperðR� RnÞ for all q 2 1;
nþ 2

nþ 1

� �

;

krjEpð�; xÞkLqð0;TÞ �
C

jxjnþj
for all j ¼ 0; 1; . . . and q 2 ½1;1Þ;

with C ¼ Cðn; q; TÞ: Furthermore, for f 2 LqperðR� RnÞ there exists a constant C ¼
Cðn; q;TÞ such that

Z T

0

Z

Rn

Epð� � s; � � yÞf ðs; yÞ dyds
�
�
�
�

�
�
�
�

1;2;q

�Ckfkq for 1\q\1:
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The time-periodic Stokes fundamental solution is a tempered distribution on

G and thus we should consider the convolution integral on G. However, we can

apply it in the classical setting as stated in [9, Remark 1.2]. To see this, we note that

in (5) the periodicity of E implies that of u and we may assume t 2 ½0; TÞ. Let f 2 G

with P�1ðf Þ ¼ ðt; xÞ and let ~u be a solution of

~uðf Þ ¼
Z

G

Eðf � gÞðdiv ~F � ~u � r~uÞðgÞ dg: ð9Þ

Then ~u is a solution of (8) in an appropriate sense. Lifting (9) by p yields

ð~u 	 pÞðt; xÞ ¼
Z

Rn

1

T

Z T

0

ðE 	 pÞðt � s; x� yÞðdiv ~F � ~u � r~uÞðpðs; yÞÞ dsdy;

which is (5) with E ¼ E 	 p, u ¼ ~u 	 p and F ¼ ~F 	 p. Conversely, let u be a

solution of (5) and we write

uðt; xÞ ¼
Z

Rn

1

T

Z t

0

ðE 	 pÞðt � s; x� yÞðdivF � u � ruÞðs; yÞ dsdy

þ
Z

Rn

1

T

Z T

t

ðE 	 pÞðt � sþ T; x� yÞðdivF � u � ruÞðs; yÞ dsdy:

For ðt; xÞ 2 ½0; TÞ � Rn, we lift this equation by P�1 to get

ðu 	P�1Þðf Þ ¼
Z

G

Eðf � gÞðdivF � u � ruÞðP�1ðgÞÞ dg;

which is (9) with ~u ¼ u 	P�1 and ~F ¼ F 	P�1. Here we have used P�1ðf � gÞ ¼
ðt � s; x� yÞ for 0� s� t and P�1ðf � gÞ ¼ ðt � sþ T ; x� yÞ for t\s\T .

Therefore, there is a natural correspondence between the integral equations (5) and

(9), and we readily see that a function u satisfying (5) is a solution of (1) in a

suitable sense. If F and u decay rapidly at spatial infinity, we can obtain (4) by

integrating (5) by parts and hence it suffices to consider (4) for our purpose.

In view of the form of E, we note again that every solution u of (4) can be written

as the sum of the steady part us:

usðxÞ ¼
Z

Rn

rEsðx� yÞ 1

T

Z T

0

ðF � u� uÞðs; yÞ dsdy

and time-periodic part up:

upðt; xÞ ¼
Z

Rn

1

T

Z T

0

rEpðt � s; x� yÞðF � u� uÞðs; yÞ dsdy:

Furthermore, the associated pressure p is written as

pðt; xÞ ¼
Z

Rn

Qsðx� yÞ � ðdivF � u � ruÞðt; yÞ dy:
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3.2 Proof of main results

With properties of the fundamental solution in hand, we estimate the steady and

time-periodic parts. Let Y be a Banach space defined by

Y :¼ u 2 L1perðR;Xn�1Þ;ru 2 L1perðR;XnÞ
n o

with the norm

kukY :¼ kuk1;Xn�1
þ kruk1;Xn

:

We define the operator Ks on Y by

ðKsuÞðxÞ :¼
Z

Rn

rEsðx� yÞ 1

T

Z T

0

ðF � u� uÞðs; yÞ dsdy:

Estimates for Ksu are studied in the next lemma.

Lemma 1 Let 0\d\1 and suppose F satisfies (6). For u 2 Y we have

Ksu 2 Xn�1 and rðKsuÞ 2 Xn;

and there exists a constant C ¼ Cðn; dÞ such that

kKsukXn�1
þ krðKsuÞkXn

�C kFk1;Xnþd
þ kdivFk1;Xnþ1

þ kuk2
Y

� 	
:

Proof We first recall the basic estimate
Z

Rn

dy

jx� yjn�1ðjyj þ 1Þl
�Cðjxj þ 1Þ1�n

if l[ n ð10Þ

(see [12, Lemma 3.1]). Since jrjEsðx� yÞj �Cjx� yj2�n�j
(j ¼ 0; 1; . . .), it follows

from (10) that

ðKsuÞðxÞj j �
Z

Rn

C

jx� yjn�1

kFk1;Xnþd

ðjyj þ 1Þnþd
þ

kuk2
1;Xn�1

ðjyj þ 1Þ2n�2

( )

dy

�C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ1�n:

Hence we derive

Ksu 2 Xn�1

with the estimate

kKsukXn�1
�C kFk1;Xnþd

þ kuk2
Y

� 	
:

Next, we write
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rðKsuÞðxÞ ¼
Z

Rn

rEsðx� yÞ 1

T

Z T

0

divðF � u� uÞð Þðs; yÞ dsdy

¼
Z

jx�yj\jxjþ1

2

rEsðx� yÞ 1

T

Z T

0

divðF � u� uÞð Þðs; yÞ dsdy

þ
Z

jx�yj[ jxjþ1

2

rEsðx� yÞ 1

T

Z T

0

divðF � u� uÞð Þðs; yÞ dsdy

¼: I1 þ I2:

Since jx� yj\ðjxj þ 1Þ=2 implies ðjxj � 1Þ=2\jyj\ð3jxj þ 1Þ=2, we see

jI1j �
Z

jx�yj\jxjþ1

2

C

jx� yjn�1

kdivFk1;Xnþ1

ðjyj þ 1Þnþ1
þ
kuk1;Xn�1

kruk1;Xn

ðjyj þ 1Þ2n�1

( )

dy

�
C kdivFk1;Xnþ1

þ kuk1;Xn�1
kruk1;Xn

� 	

ðjxj þ 1Þnþ1

Z

jx�yj\jxjþ1

2

dy

jx� yjn�1

�C kdivFk1;Xnþ1
þ kuk1;Xn�1

kruk1;Xn

� 	
ðjxj þ 1Þ�n:

ð11Þ

We integrate I2 by parts to get

jI2j � I21 þ I22;

where

I21 :¼
Z

jx�yj[ jxjþ1

2

r2Esðx� yÞ








 1

T

Z T

0

ðF � u� uÞðs; yÞj j dsdy;

I22 :¼
Z

jx�yj¼jxjþ1

2

rEsðx� yÞj j 1

T

Z T

0

ðF � u� uÞðs; yÞj j dsdSy:

The assumption d[ 0 leads us to

I21 �
Z

jx�yj[ jxjþ1

2

C

jx� yjn
kFk1;Xnþd

ðjyj þ 1Þnþd
þ

kuk2
1;Xn�1

ðjyj þ 1Þ2n�2

( )

dy

�
C kFk1;Xnþd

þ kuk2
1;Xn�1

� 	

ðjxj þ 1Þn
Z

Rn

dy

ðjyj þ 1Þnþd

�C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ�n:

ð12Þ

Furthermore, jx� yj ¼ ðjxj þ 1Þ=2 implies ðjxj � 1Þ=2� jyj � ð3jxj þ 1Þ=2 and we

thus obtain

On time-periodic Navier–Stokes flows... 59

123



I22 �
Z

jx�yj¼jxjþ1

2

C

jx� yjn�1

kFk1;Xnþd

ðjyj þ 1Þnþd þ
kuk2

1;Xn�1

ðjyj þ 1Þ2n�2

( )

dSy

�C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ1�nðjxj þ 1Þ�n�d

Z

jx�yj¼jxjþ1

2

dSy

�C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ�n�d:

ð13Þ

The estimates (12) and (13) yield

jI2j �C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ�n þ ðjxj þ 1Þ�n�d

n o

�C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ�n:

ð14Þ

It follows from (11) and (14) that

jrðKsuÞðxÞj �C
�
kFk1;Xnþd

þ kdivFk1;Xnþ1
þ kuk2

1;Xn�1

þ kuk1;Xn�1
kruk1;Xn

	
ðjxj þ 1Þ�n:

Therefore, we conclude

rðKsuÞ 2 Xn

with the estimate

krðKsuÞkXn
�C kFk1;Xnþd

þ kdivFk1;Xnþ1
þ kuk2

Y

� 	
:

This completes the proof of Lemma 1.

We also define the operator Kp on Y by

ðKpuÞðt; xÞ :¼
Z

Rn

1

T

Z T

0

rEpðt � s; x� yÞðF � u� uÞðs; yÞ dsdy;

and we use Proposition 1 to obtain the following estimates.

Lemma 2 Let 0\d\1 and suppose F satisfies (6). For u 2 Y we have

Kpu 2 L1perðR;XnþdÞ and rðKpuÞ 2 L1perðR;Xnþ1Þ;

and there exists a constant C ¼ Cðn; d; TÞ such that

kKpuk1;Xnþd
þ krðKpuÞk1;Xnþ1

�C kFk1;Xnþd
þ kdivFk1;Xnþ1

þ kuk2
Y

� 	
:

If F satisfies (7), then we have

Kpu 2 L1perðR;Xnþ1Þ and rðKpuÞ 2 L1perðR;Xnþ2Þ: ð15Þ
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Proof The periodicity of Kpu follows from that of Ep and we may assume

t 2 ½0; TÞ. We write

ðKpuÞðt; xÞ ¼
Z

jx�yj\jxjþ1

2

1

T

Z T

0

rEpðt � s; x� yÞ F � u� uð Þðs; yÞ dsdy

þ
Z

jx�yj[ jxjþ1

2

1

T

Z T

0

rEpðt � s; x� yÞ F � u� uð Þðs; yÞ dsdy

¼: I3 þ I4:

According to Proposition 1, we have rEp 2 L1
perðR� RnÞ and thus

jI3j �
Z

jx�yj\jxjþ1

2

kFk1;Xnþd

ðjyj þ 1Þnþd
þ

kuk2
1;Xn�1

ðjyj þ 1Þ2n�2

( )
1

T

Z T

0

rEpðt � s; x� yÞ








 dsdy

�
C kFk1;Xnþd

þ kuk2
1;Xn�1

� 	

ðjxj þ 1Þnþd

Z

Rn

Z T

0

rEpðt � s; x� yÞ








 dsdy

�C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ�n�d:

ð16Þ

Furthermore, we use the estimate in Proposition 1 to get

jI4j �
Z

jx�yj[ jxjþ1

2

kFk1;Xnþd

ðjyj þ 1Þnþd þ
kuk2

1;Xn�1

ðjyj þ 1Þ2n�2

( )
1

T

Z T

0

rEpðt � s; x� yÞ








 dsdy

�C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	Z

jx�yj[ jxjþ1

2

dy

jx� yjnþ1ðjyj þ 1Þnþd

�
C kFk1;Xnþd

þ kuk2
1;Xn�1

� 	

ðjxj þ 1Þnþ1

Z

Rn

dy

ðjyj þ 1Þnþd

�C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ�n�1:

ð17Þ

It follows from (16) and (17) that

ðKpuÞðt; xÞ








�C kFk1;Xnþd

þ kuk2
1;Xn�1

� 	
ðjxj þ 1Þ�n�d

uniformly in t 2 ½0; TÞ, and we derive

Kpu 2 L1perðR;XnþdÞ

with the estimate
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kKpuk1;Xnþd
�C kFk1;Xnþd

þ kuk2
Y

� 	
:

Concerning the estimate for derivatives, we write

rðKpuÞðt; xÞ ¼
Z

Rn

1

T

Z T

0

rEpðt � s; x� yÞ divðF � u� uÞð Þðs; yÞ dsdy

¼
Z

jx�yj\jxjþ1

2

1

T

Z T

0

rEpðt � s; x� yÞ divðF � u� uÞð Þðs; yÞ dsdy

þ
Z

jx�yj[ jxjþ1

2

1

T

Z T

0

rEpðt � s; x� yÞ divðF � u� uÞð Þðs; yÞ dsdy

¼: I5 þ I6:

In addition, we integrate I6 by parts to obtain

jI6j � I61 þ I62;

where

I61 :¼
Z

jx�yj[ jxjþ1

2

1

T

Z T

0

r2Epðt � s; x� yÞ








 ðF � u� uÞðs; yÞj j dsdy;

I62 :¼
Z

jx�yj¼jxjþ1

2

1

T

Z T

0

rEpðt � s; x� yÞ








 ðF � u� uÞðs; yÞj j dsdSy:

We estimate I5 and I61 in the same way as (16) and (17), respectively, to get

jI5j �C kdivFk1;Xnþ1
þ kuk1;Xn�1

kruk1;Xn

� 	
ðjxj þ 1Þ�n�1;

I61 �C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ�n�2:

Furthermore, we see that

I62 �
Z

jx�yj¼jxjþ1

2

kFk1;Xnþd

ðjyj þ 1Þnþd þ
kuk2

1;Xn�1

ðjyj þ 1Þ2n�2

( )
1

T

Z T

0

rEpðt � s; x� yÞ








 dsdSy

�C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	Z

jx�yj¼jxjþ1

2

dSy

jx� yjnþ1ðjyj þ 1Þnþd

�C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ�n�d�2:

Hence

jI6j �C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ�n�2

and the estimates for I5 and I6 lead us to
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jrðKpuÞðt; xÞj �C
�
kFk1;Xnþd

þ kdivFk1;Xnþ1
þ kuk2

1;Xn�1

þ kuk1;Xn�1
kruk1;Xn

	
ðjxj þ 1Þ�n�1

uniformly in t 2 ½0; TÞ. It follows that

rðKpuÞ 2 L1perðR;Xnþ1Þ

with the estimate

krðKpuÞk1;Xnþ1
�C kFk1;Xnþd

þ kdivFk1;Xnþ1
þ kuk2

Y

� 	
:

We can easily verify (15) by using (7), instead of (6), in the estimates for I3 and I5.

Remark 4 Let 0\c� 1 and set ~Y :¼ fu 2 Y; otu 2 L1perðR;XnþcÞg. Assuming that

otF 2 L1perðR;XnþcÞ, we can observe that otðKpuÞ 2 L1perðR;XnþcÞ (u 2 ~Y) with the

estimate kotðKpuÞk1;Xnþc
�CðkotFk1;Xnþc

þ kuk1;Xn�1
kotuk1;Xnþc

Þ. This observa-

tion, together with suitable modifications of the proof of Theorem 1 below, yields

Remark 3.

Set

K :¼ Ks þ Kp;

that is,

ðKuÞðt; xÞ ¼
Z

Rn

1

T

Z T

0

rEðt � s; x� yÞðF � u� uÞðs; yÞ dsdy:

Since the embedding L1perðR;Xl1
Þ � L1perðR;Xl2

Þ for l2\l1 is continuous, Lemmas

1 and 2 yield the following lemma.

Lemma 3 Let 0\d\1 and suppose F satisfies (6). The operator K maps Y to

itself and there exists a constant C ¼ Cðn; d; TÞ such that

kKukY �C kFk1;Xnþd
þ kdivFk1;Xnþ1

þ kuk2
Y

� 	
ðu 2 YÞ:

Remark 5 The constant C in Lemma 3 is determined as follows. By Lemmas 1 and

2, there exists a constant C1 ¼ C1ðn; d; TÞ such that the estimate for Ku above holds.

On the other hand, in the proof of Theorem 1 below, we also need the estimate

Z

Rn

Z T

0

rEð� � s; � � yÞðu� vÞðs; yÞ dsdy
�
�
�
�

�
�
�
�
Y

�C2kukYkvkY ðu; v 2 YÞ; ð18Þ

which follows immediately from the proofs of Lemmas 1 and 2. Here C2 is a

constant depending only on n and T. It is not clear from the proofs of Lemmas 1 and
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2 whether C1 is larger than C2. The proof of Theorem 1 shall require the condition

C� maxfC1;C2g, and hence we take C ¼ maxfC1;C2g.

Now we follow the standard argument via the contraction mapping principle to

construct a solution with desired decay properties of (4). We prove only Theorem 1,

since Theorem 2 follows from Lemmas 1 and 2 together with the proof of

Theorem 1 below. Indeed, the argument in the third paragraph of the proof of

Theorem 1 is applicable to arbitrary solutions u 2 Y of (4) and the pointwise decay

properties stated in Theorem 2 follow immediately from Lemmas 1 and 2.

Proof of Theorem 1 We employ the successive approximation

v0ðt; xÞ ¼
Z

Rn

1

T

Z T

0

rEðt � s; x� yÞFðs; yÞ dsdy;

vkþ1ðt; xÞ ¼
Z

Rn

1

T

Z T

0

rEðt � s; x� yÞðF � vk � vkÞðs; yÞ dsdy:

According to Lemma 3, we have vk 2 Y for all k ¼ 0; 1; . . . with the estimate

kvkþ1kY �M0 kFk1;Xnþd
þ kdivFk1;Xnþ1

þ kvkk2
Y

� 	
;

where M0 is the constant in the lemma and is independent of k. We assume

kFk1;Xnþd
þ kdivFk1;Xnþ1

\
1

4M2
0

to deduce for all k� 1 that

kvkkY �M1 :¼
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4M2

0ðkFk1;Xnþd
þ kdivFk1;Xnþ1

q
Þ

2M0

\
1

2M0

:

We put

wk : ¼ vkþ1 � vk

¼ �
Z

Rn

1

T

Z T

0

rEðt � s; x� yÞðwk�1 � vk þ vk�1 � wk�1Þðs; yÞ dsdy:

In view of Remark 5, we have

kwkkY �M0 kvkkY þ kvk�1kYð Þkwk�1kY � 2M0M1kwk�1kY ;

so that

kwkkY �ð2M0M1Þkkw0kY :

Since 2M0M1\1, we see that fvkg converges in Y to a function u satisfying
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uðt; xÞ ¼
Z

Rn

1

T

Z T

0

rEðt � s; x� yÞðF � u� uÞðs; yÞ dsdy:

Noting that this solution u 2 Y of (4) satisfies the estimate kukY �CðkFk1;Xnþd
þ

kdivFk1;Xnþ1
Þ with C ¼ Cðn; d; TÞ and that F and divF are sufficiently small in

L1perðR;XnþdÞ and L1perðR;Xnþ1Þ respectively, we can easily verify that u is unique in

the class of small solutions in Y by applying the estimate (18).

Next, we prove the decay property of the associated pressure p. By the inte-

gration by parts, we get

pðt; xÞ ¼
Z

Rn

Qsðx� yÞ � ðdivF � u � ruÞðt; yÞ dy

� I7 þ I8 þ I9;

where

I7 :¼
Z

jx�yj\jxjþ1

2

Qsðx� yÞj j divF � u � ruð Þðt; yÞj j dy;

I8 :¼
Z

jx�yj[ jxjþ1

2

jrQsðx� yÞj ðF � u� uÞðt; yÞj j dy;

I9 :¼
Z

jx�yj¼jxjþ1

2

jQsðx� yÞj ðF � u� uÞðt; yÞj j dSy:

It is clear that p is T-periodic and we may assume t 2 ½0; TÞ. Recalling the estimate

jrjQsðx� yÞj �Cjx� yj1�n�j ðj ¼ 0; 1; . . .Þ, we calculate I7, I8 and I9 in the same

way as (11), (12) and (13), respectively, to deduce

I7 �C kdivFk1;Xnþ1
þ kuk1;Xn�1

kruk1;Xn

� 	
ðjxj þ 1Þ�n;

I8 �C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ�n;

I9 �C kFk1;Xnþd
þ kuk2

1;Xn�1

� 	
ðjxj þ 1Þ�n�d:

Consequently,

jpðt; xÞj �C kFk1;Xnþd
þ kdivFk1;Xnþ1

þ kuk2
Y

� 	
ðjxj þ 1Þ�n

uniformly in t 2 ½0; TÞ and we conclude

p 2 L1perðR;XnÞ:

Finally, let us and up be the steady and time-periodic parts of the solution u ob-

tained above. By Lemma 1, we have us 2 Xn�1 and rus 2 Xn. Calculations similar

to those of the estimate for the associated pressure p above yield
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psðxÞ :¼
Z

Rn

Qsðx� yÞ � 1

T

Z T

0

ðdivF � u � ruÞðs; yÞ dsdy 2 Xn:

The pair fus; psg is a solution of the stationary Stokes equation

�Dus þrps ¼
1

T

Z T

0

ðdivF � u � ruÞðs; �Þ ds in Rn;

div us ¼ 0 in Rn;

8
<

:

in the sense of distributions. By the class of fus; psg and
R T

0
ðdivF � u � ruÞðs; �Þ ds 2 Xnþ1, we can apply the theory for the existence and

uniqueness of strong solutions to the stationary Stokes equation ([6, Proposition

2.9]) to deduce that

r2us 2 LqðRnÞ forall 1\q\1:

Also, we write

r2upðt; xÞ ¼ r2

Z

Rn

1

T

Z T

0

Epðt � s; x� yÞðdivF � u � ruÞðs; yÞ dsdy;

and the estimate for convolution in Proposition 1, together with

divF � u � ru 2 L1perðR;Xnþ1Þ, implies

r2up 2 LqperðR� RnÞ forall 1\q\1:

Consequently, we derive

r2u ¼ r2us þr2up 2 LqperðR� RnÞ forall 1\q\1:

Similarly, the property otu 2 LqperðR� RnÞ (1\q\1) follows from the

representation

otupðt; xÞ ¼ ot

Z

Rn

1

T

Z T

0

Epðt � s; x� yÞðdivF � u � ruÞðs; yÞ dsdy

and Proposition 1. The proof of Theorem 1 is complete.

Acknowledgements The research was supported by the Academy of Sciences of the Czech Republic,

Institute of Mathematics (RVO: 67985840). The author would like to thank Professor M. Kyed for useful

comments.

References

1. Eiter, T., Kyed, M.: Estimates of time-periodic fundamental solutions to the linearized Navier–Stokes

equations. J. Math. Fluid Mech. (to appear)

2. Farwig, R., Nakatsuka, T., Taniuchi, Y.: Uniqueness of solutions on the whole time axis to the

Navier–Stokes equations in unbounded domains. Commun. Partial Differ. Equ. 40, 1884–1904

(2015)

66 T. Nakatsuka

123



3. Galdi, G.P., Sohr, H.: Existence and uniqueness of time-periodic physically reasonable Navier–

Stokes flow past a body. Arch. Ration. Mech. Anal. 172, 363–406 (2004)

4. Kang, K., Miura, H., Tsai, T.-P.: Asymptotics of small exterior Navier–Stokes flows with non-

decaying boundary data. Commun. Partial Differ. Equ. 37, 1717–1753 (2012)

5. Kozono, H., Nakao, M.: Periodic solutions of the Navier–Stokes equations in unbounded domains.

Tohoku Math. J. 48, 33–50 (1996)

6. Kozono, H., Sohr, H.: New a priori estimates for the Stokes equations in exterior domains. Indiana

Univ. Math. J. 40, 1–27 (1991)

7. Kyed, M.: Time-periodic solutions to the Navier–Stokes equations. Habilitationsschrift, Technische

Universität Darmstadt (2012)

8. Kyed, M.: Maximal regularity of the time-periodic linearized Navier–Stokes system. J. Math. Fluid

Mech. 16, 523–538 (2014)

9. Kyed, M.: A fundamental solution to the time-periodic Stokes equations. J. Math. Anal. Appl. 437,

708–719 (2016)

10. Maremonti, P.: Existence and stability of time-periodic solutions to the Navier–Stokes equations in

the whole space. Nonlinearity 4, 503–529 (1991)

11. Miyakawa, T.: On Stationary Incompressible Navier–Stokes Flows with Fast Decay and the Van-

ishing Flux Condition, Topics in Nonlinear Analysis, Prog. Nonlinear Differ. Equ. Appl. vol. 35,

pp 535–552. Birkhäuser, Basel (1999)
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