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Abstract Starting from the Hardy–Sobolev–Maz’ya inequality, we present all

known Hardy–Sobolev-type inequalities involving the distance to the boundary of a

half space. We give the simpler proofs known in this particular case. Related

inequalities are discussed and two open questions are stated.
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1 Introduction

Let Rn
þ stand for the following half-space Rn

þ :¼ fðx0; xnÞ j x0 ¼ ðx1; . . .; xn�1Þ 2
Rn�1; xn [ 0g; n 2 N: The Hardy inequality in Rn

þ asserts that i f p[ 1 then

Z
Rn

þ

jrujpdx� p� 1

p

� �pZ
Rn

þ

jujp

x
p
n

dx for all u 2 C1
c ðRn

þÞ; ð1Þ

with the best possible constant. In particular, an integration by parts shows that
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Z
Rn

þ

jujp�1jujxn
x
p�1
n

dx ¼ 1

p

Z
Rn

þ

ðjujpÞxn
x
p�1
n

dx ¼ p� 1

p

Z
Rn

þ

jujp

x
p
n

dx:

An application of Hölder’s inequality with conjugate exponents p and p=ðp� 1Þ on

the left term gives the stronger form of (1) with juxn j in place of jruj.1

The Hardy–Sobolev–Maz’ya inequality: For p ¼ 2, the critical Sobolev norm can

be added on the right hand side of (1). More precisely, Maz’ya in his treatise [10]

proved that for n� 3 there exists a positive constant C such that

Z
Rn

þ

jruj2dx� 1

4

Z
Rn

þ

u2

x2
n

dx

 !1=2

�C

Z
Rn

þ

juj2
�
dx

 !1=2�

for all u 2 C1
c ðRn

þÞ;

ð2Þ

where 2� :¼ 2n=ðn� 2Þ. In [2] the optimal constant C in three dimensions is found

to be the same with the best constant in the Sobolev inequality, while in [13] it has

been shown that this fails in higher dimensions.

The Hardy–Sobolev inequality: The p-version of (2) for 2� p\n is

�Z
Rn
þ

jrujpdx�
�
p� 1

p

�p Z
Rn

þ

up

x
p
n

dx

�1=p

�C

�Z
Rn

þ

jujp
�
dx

�1=p�

for all u 2 C1
c ðRn

þÞ;

ð3Þ

where pH ¼ np=ðn� pÞ. This has been established in [4] (see §3 of this note) and

later on with a different method in [6]. However, both approaches seem to fail

giving (3) for 1\p\2.

Question 1: Is (3) true for 1\p\2?

Having in mind the Sobolev embedding theorem, it is natural to ask for the

corresponding inequalities when p� n.

The Hardy–Morrey inequality: In [5] (see §4 of this note) the complete answer in

the case p[ n was given. More precisely, if p[ n� 2 there exists a positive

constant C such that

sup
x; y 2 Rn

þ
x 6¼ y

juðxÞ � uðyÞj
jx� yj1�n=p

�C

�Z
Rn

þ

jrujpdx�
�
p� 1

p

�p Z
Rn
þ

jujp

x
p
n

dx

�1=p

for all u 2 C1
c ðRn

þÞ:

ð4Þ

1 This observation is well known and applies to the whole note and also to all known Hardy inequalities

obtained by integration by parts and Hölder’s inequality, even with remainder terms. For example, it

follows from the proof in [1], that when the weight in the Hardy inequality involves the distance to the

boundary doX of a weakly mean convex domain X, or the distance to a point x0 of any subset of Rn, then

one can replace jruðxÞj by jruðxÞ � rdoXðxÞj, or jruðxÞ � x�x0

jx�x0 j j, respectively.
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Moreover, (4) fails for n ¼ 1 (see [5, §7] for a sharp substitute in this case).

The Hardy–Moser–Trudinger inequality: In the case p ¼ n ¼ 2, the following

sharp result has been established in [9]: There exists a positive constant C such that

Z
R2

þ

e4pu2 � 1 � 4pu2

x2
2

dx�C;

for all u 2 C1
c ðR2

þÞ satisfying

Z
R2

þ

jruj2dx� 1

4

Z
R2

þ

u2

x2
2

dx� 1:

The proof uses the Riemann mapping theorem and it is natural to ask for a

dimensional free proof and the following generalization

Question 2: Let n 2 Nnf1g. Does there exists a positive constant C[ 0 such that

Z
Rn

þ

exp

�
ðnx1=n

n jujÞn=ðn�1Þ
�
�
Pn�1

j¼0
ðnx1=n

n jujÞjn=ðn�1Þ

j!

xnn
dx�C;

for all u 2 C1
c ðRn

þÞsatisfying

Z
Rn

þ

jrujndx�
�
n� 1

n

�n Z
Rn

þ

jujn

xnn
dx� 1?

Here we have denoted by xn the volume of the unit ball in Rn. Some subcritical

results have been obtained in [5]: a Hardy–John–Nirenberg inequality and also

Theorem B for p ¼ n there, which in this note is the outcome of (6) applied to (7)

and taking p ¼ n.

2 Two lower estimates on the Hardy difference

We recall here two estimates that we are going to use in the proofs of (3) and (4).

2.1 A lower estimate from the ground state transform

In [1] the authors obtained various auxiliary lower bounds for the Hardy difference:

Ip½u;Rn
þ� :¼

Z
Rn

þ

jrujpdx� p� 1

p

� �pZ
Rn

þ

jujp

x
p
n

dx; u 2 C1
c ðRn

þÞ:

In particular, the ground state transform

u ¼ x1�1=p
n v; ð5Þ

implies

Ip½u;Rn
þ� ¼

Z
Rn

þ

����� p� 1

p
x�1=p
n ven þ x1�1=p

n rv

����
p

�
���� p� 1

p
x�1=p
n ven

����
po

dx:
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This together with the vectorial inequality (see [8])

jaþ bjp � jajp �ð2p�1 � 1Þ�1jbjp þ pjajp�2
a � b; for all a; b 2 Rnand p� 2;

gives the following lower estimate on Ip½u;Rn
þ� (see [1, Lemma 3.3])

Ip½u;Rn
þ�� cp

Z
Rn

þ

xp�1
n jrvjpdxþ

�
p� 1

p

�p�1 Z
Rn

þ

rjvjp � endx

¼ cp

Z
Rn

þ

xp�1
n jrvjpdx;

ð6Þ

where cp ¼ ð2p�1 � 1Þ�1
and p� 2.

2.2 A lower estimate from an inequality by Cabré and Ros-Oton

In [5] the following sharp lower estimate of the functional that appears on the right

hand side of (6) is given: Let b, p, q satisfy

�1\b� 0; 1� p\
n

bþ 1
; and q :¼ np

n� pðbþ 1Þ :

There exists a positive constant C such that

Z
Rn

þ

xp�1
n jrvjpdx�C

�Z
Rn

þ

�
xbþ1=p0

n jvj
�q

dx

�p=q

for all v 2 C1
c ðRn

þÞ: ð7Þ

This is to be compared with the case where the monomial weight in [3, Theo-

rem 1.3], degenerates to the distance from the boundary of the half-space. In par-

ticular, by the choice Ai ¼ 0 for all i ¼ 1; . . .; n� 1 and An ¼ p� 1 in [3], one

deduces the following weighted Sobolev inequality

Z
Rn

þ

xp�1
n jrvjpdx�C

�Z
Rn

þ

xp�1
n jvjpðpþn�1Þ=ðn�1Þ

dx
�ðn�1Þ=ðpþn�1Þ

forall v2C1
c ðRnÞ;

ð8Þ

which for v2C1
c ðRn

þÞ is a special case of (7), as one can easily check by taking

b¼�ðp� 1Þ=ðpþ n� 1Þ. Let us mention that the best constant C in the above

inequality is obtained in [3], and that for p¼ 2 this inequality (with its sharp

constant) was known before by a result of Maz’ya and Shaposhnikova (see [11, §6]).

3 Proof of the Hardy–Sobolev inequality

Let u 2 C1
c ðRn

þÞ. Following [4], we start from the Gagliardo-Nirenberg inequality

nx1=n
n

�Z
Rn

jf jn=ðn�1Þ
dx
�1�1=n

�
Z
Rn

jrf jdx for all f 2 W1;1ðRnÞ;
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and setting f ¼ jujp
Hð1�1=nÞ

we get

nx1=n
n

n� p

pðn� 1Þ

�Z
Rn

þ

jujp
H

dx
�1�1=n

�
Z
Rn

þ

jujp
Hð1�1=pÞjrujdx: ð9Þ

To estimate the term of the right hand side of (9), we set u ¼ x1�1=p
n v to obtain

Z
Rn

þ

jujp
�ð1�1=pÞjrujdx ¼

Z
Rn

þ

jujp
�ð1�1=pÞ

���x1�1=p
n rvþ p� 1

p
x�1=p
n ven

���dx

�
Z
Rn

þ

jujp
�ð1�1=pÞ

x1�1=p
n jrvjdx

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:A

þ p� 1

p

Z
Rn

þ

xp
�ð1�1=pÞ2�1=p

n jvjp
�ð1�1=pÞþ1

dx:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:B

ð10Þ

To ease the computation, we set

b :¼ p�ð1 � 1=pÞ2 þ 1 � 1=p;

so that

B ¼
Z
Rn

þ

xb�1
n jvjbp=ðp�1Þ

dx:

To estimate B we integrate by parts as follows

B ¼ 1

b

Z
Rn

þ

rxbn � en jvjbp=ðp�1Þ
dx;

¼� p

p� 1

Z
Rn

þ

xbn jvj
bp=ðp�1Þ�1rjvj � en dx

¼� p

p� 1

Z
Rn

þ

jujp
�ð1�1=pÞ

x1�1=p
n rjvj � en dx

� p

p� 1
A:

Inserting this into (10), we obtain

Z
Rn

þ

jujp
�ð1�1=pÞjrujdx� 2A: ð11Þ

Now we estimate A using Hölder’s inequality as follows
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A ¼
Z
Rn

þ

n
jujp

�ð1�1=pÞ
on

x1�1=p
n jrvj

o
dx

�kukp
�ð1�1=pÞ

Lp
� ðRn

þÞ

�Z
Rn

þ

xp�1
n jrvjpdx

�1=p

� c�1=p
p kukp

�ð1�1=pÞ
Lp

� ðRn
þÞ

ðIp½u;Rn
þ�Þ

1=p;

where we have used (6). Inserting the above estimate of A in (11), we get

Z
Rn

þ

jujp
�ð1�1=pÞjrujdx� 2c�1=p

p kukp
�ð1�1=pÞ

Lp
� ðRn

þÞ
ðIp½u;Rn

þ�Þ
1=p:

Coupling this with (9) we deduce (3).

4 Proof of the Hardy–Morrey inequality

We first recall Morrey’s ‘‘Dirichlet growth’’ theorem (see [12, Theorem 3.5.2] or [7,

Theorem 7.19]).

Theorem 4.1 Let X be a domain in Rn; n� 1: Let u 2 C1
c ðXÞ and suppose that for

some M[ 0 and a 2 ð0; 1� the following estimate is true for all Br � Rn

Z
Br

jrujdx�Mrn�1þa: ð12Þ

Then there exists cðn; aÞ[ 0 such that for all Br � Rn

sup
x;y2Br

juðxÞ � uðyÞj� cMra;

or, equivalently (since u is compactly supported)

sup
x; y 2 X

x 6¼ y

juðxÞ � uðyÞj
jx� yja � cM:

In view of the above theorem, for (4) to be true, it is enough to establish the

following estimate Z
Br

jrujdx� c


I½u;Rn

þ�
�1=p

rnð1�1=pÞ; ð13Þ

for all r[ 0 and for some positive constant c that depends only on n. To this end, let

Br � Rn such that Br \ Rn
þ 6¼ ;: Setting u ¼ x1�1=p

n v we have
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Z
Br

jrujdx�
Z
Br

x1�1=p
n jrvjdx

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼:Kr

þ p� 1

p

Z
Br

x�1=p
n jvjdx

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼:Lr

:

Using first Hölder’s inequality and then (6) we get

Kr �
�Z

Br

xp�1
n jrvjpdx

�1=p

ðxnr
nÞ1�1=p

�Cðn; pÞ


Ip½u;Rn

þ�
�1=p

rnð1�1=pÞ:

ð14Þ

We will next estimate Lr. Setting q :¼ pðpþ n� 1Þ=ðn� 1Þ we apply Holder’s

inequality as follows

Lr ¼
Z
Br

fxðp�1Þ=q
n jvjgfx�1=p�ðp�1Þ=q

n gdx

�
�Z

Br

xp�1
n jvjqdx

�1=q�Z
Br\Rn

þ

x�h
n dx

�1�1=q

; h :¼
�

1

p
þ p� 1

q

�
q

q� 1
:

ð15Þ

To estimate the right factor in (15), let Q2r be the cube with the same center as Br

and edges of length 2r that are parallel to the coordinate axes. Then

Z
Br\Rn

þ

x�h
n dx�

Z
Q2r\Rn

þ

x�h
n dx

¼ ð2rÞn�1

Z ynþr

maxf0;yn�rg
x�h
n dxn

¼ 1

1 � h
ð2rÞn�1



ðyn þ rÞ1�h � maxf0; yn � rg1�h�;

where yn is the n-th coordinate of the center of Br: If yn � r then

Z
Br\Rn

þ

x�h
n dx� 1

1 � h
ð2rÞn�h: ð16Þ

If yn [ r; then since h 2 ð0; 1Þ there holds a1�h � b1�h �ða� bÞ1�h; for all

a� b� 0; and thus (16) again holds true.

The left factor in (15) increases if we integrate in the whole Rn
þ and we may use

first (8) and then (6) to estimate it by the Hardy difference. Altogether, we arrive at

Lr �Cðn; pÞ


Ip½u;X�

�1=p
rðn�hÞðq�1Þ=q:

This is the desired estimate (13), since

ðn� hÞ q� 1

q
¼ n

p� 1

p
:

The proof is complete. h
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