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Abstract It is investigated the lower semicontinuity of functionals of the type
Jo W(x,u, Vu, v)dx with respect to the L{i,,, X Myeak topology, when the target
fields (u, v) are in wht x L
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1 Introduction

Let Q be a bounded open subset of RV with Lipschitz boundary. We consider the
integral functional of the form

E(u,v) = / W (x,u, Vu,v)dx, (1.1)
o
where u € WH(Q; R™), Vu is its gradient and v € L'(Q; R").

Energies as in (1.1), which generalize those considered by [9, 10], have been
introduced to deal with equilibrium states for systems depending on elastic strain
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and chemical composition. Lower semicontinuity and relaxation have been obtained
in [9, 10] respectively when the target fields (u,v) € W' x L4, p,g > 1 and
(u,v) € BV x L. In this context a multiphase alloy is described by the set Q, the
deformation gradient is represented by Vu, and v (when 1 = 1) denotes the chemical
composition of the system. We underline that this type of integrals may be regarded
also in the framework of Elasticity, when dealing with Cosserat’s theory in thin
structures, also for the description of bending moment effects, see [5, 14] in the
Sobolev setting. In particular, in [4] a 3D-2D dimension reduction was elaborated
when the density W has linear growth, thus the limit energy obtained by I’
convergence techniques involves a BV deformation and a bending moment
represented by a measure.

In [4, 5, 9, 10, 14] densities of the type W(Vu,v) have been taken into account,
while in the present paper we deal with heterogeneities and deformation as in
[16, 17] but also allowing for autonomous and heterogeneity in the density W. We
focus on the lower-semicontinuity of (1.1) with respect to L!-strong x.M-
weak * convergence, where M (€Q; [Rl) represents the set of bounded R'-valued
Radon measures on Q and M- weak * denotes the weak * convergence in the sense
of measures.

Observe that bounded sequences (u,,v,) in WH'(Q;R™) x L'(Q; R') may
converge in Ll-strong xM-weak *, up to a subsequence, to
(u,v) € BV(Q; R™) x M(Q; RY).

In this paper we limit our analysis to («, v) in Wh!(Q; R™) x L'(Q; R"), thus our
result has to be considered as a first step, in the same spirit of the results contained in
[7, 8], toward the study of relaxation in BV x M, when the energy density W has
explicit dependence on x and u.

The present lower semicontinuity result, relies on the blow-up method introduced
in [13] and extend the results obtained in [6, 10, 12, 16, 17].

Let us denote by E the relaxed functional of E in (1.1).

E(u,v) = inf{lim inf/ W (x, ty, Vity, vy)dx, u, € WH(Q; R™),
n—+0o  Jo (12)

Uy — uin LY(Q;R™), v, € L'(Q; R'), v,—v in M(; Rl)},

for every ue€ W''(Q:R™) and veL'(QR!). In the special case when
W(x,u, Vu,v) = W(Vu,v), the relaxed energy in (1.2) can be deduced with argu-
ments similar to those developed in [4] in the context of dimensional reduction.
Here the presence of x and u requires more technicalities.

The integral representation of (1.2) will be achieved in Theorem 1 under the
following hypotheses.

We assume that W : Q x R" x RV x R! — [0, +00) is a continuous function
verifying the following linear growth and coercivity conditions, i.e., there exist
constants 0<7, f/ << + oo, and a nonnegative, bounded, continuous function
g:Qx R" — [y,4+00) such that
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HD)  Bgle,u)(|E] + b)) = B<W(x,u,&,b) < Pglx,u)(1+ [&] + [b])  for all
(x,u, &,b) € Q x R™ x R™N x R,

(H2) For every compact K C Q x R™ there exists a continuous function oy :
[0, 400) — [0, 400) with wg(0) =0 such that

(W(x,u, &,b) — W' u, &, b)| < o (lx — ¥ (1 + [&] + [5])
and
|W(x,u, &,b) — W(x,u',&,b)| < wg(Ju—u]),
for all (x,u, &, b), (¥, u, &, b) € K x RV™ x R,

We say that a Borel function W : RY x R™ x RV x R — [0, 400) (satisfying
(H1)) is quasiconvex-convex if for all (x,u, &,v) € RV x R™ x R¥*™ x R' we have

/quf <|D|/quf—i—VH()v—i—n())dy7

for all € W™ (D; R™) and n € L>(D; R') such that Jp n(x)dx = 0, where D is any
bounded open set of R".

For every W : RY x R™ x R¥™ x R! — [0 + oo) satisfying (H1), denoting by
QCW : RN x R™ x R¥*™ x R! — [0, +00) the quasiconvex-convex envelope of W,
which is the largest quasiconvex-convex function smaller or equal than W, it admits
the following representation obtained in [14]

OCW(x,u,&,b) := inf{%/ W(x,u,E+VO(y),b+n(y))dy;0 € WS’DO(D; R™),
D

n € L(D; R') such that [, n(x)dx = 0},
(1.3)

where D is any bounded domain with regular boundary in R".
Our result is the following

Theorem 1 Let W: Q x R™ x RV x R — [0, +00) be a continuous function
verifying (H1) and (H2). Let E and E be given by (1.1) and (1.2) respectively, and
let J:W"(Q;R™) x L'(Q; R!) be defined by

J(u,v) :/QQCW(x,mVu,v)dx. (1.4)

Then for every (u,v) € Wh1(Q: R™) x L' (Q; R') we have

E(u,v) = J(u,v).

Section 2 is devoted to the proof of Theorem 1, after the establishment of some
notation.
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2 Proof of Theorem 1

Let Q be a generic open subset of R, we denote by M(Q) the space of all Radon
measures in Q with bounded total variation. By the Riesz Representation Theorem,
M(Q) can be identified with the dual of the separable space Co(Q2) of continuous
functions on Q vanishing on the boundary 0Q. The N-dimensional Lebesgue
measure in RY is denoted by £V.

If p, A € M(Q) are nonnegative Radon measures, we denote by %‘ the Radon-
Nikodym derivative of u with respect to A.

We denote by M (Q; R') the set of R’ valued Radon measures, namely vectors in

R’ whose ! components belong to M(Q). By a generalization of the Besicovich
Differentiation Theorem (see [2, Proposition 2.2]), it can be proved that there exists
a Borel set N C Q such that A(N) = 0 and

du . ux+pC)
i) = lim &2 TP/
da (x) pl%l+ AMx+pC)

for all x € Supp /N and any open convex set C containing the origin. We recall
that the exceptional set N above does not depend on C.

The achievement of Theorem 1 relies essentially on the proof of the lower
bound inequality, presented in subsect. 2.1. In fact, in light of Proposition 1,
there is no loss of generality assuming that W is quasiconvex-convex, i.e.
W = QCW. Thus the upper bound inequality easily follows by the definition of E,
the constant sequence (u,,v,) = (u,v) € W'(Q;R™) x L'(Q; R') being admissi-
ble for (1.2).

2.1 Lower bound

Lemma 1 Ler W:Q x R" x RV x R! — [0, +00) be a continuous function
satisfying (H1) — (H2) and let E, E and J be the functionals defined in (1.1), (1.2)
and (1.4) respectively. For every (u,v) € W' (Q; R™) x L'(Q; R') we have that

E(u,v) > J(u,v). (2.1)

Remark 1 We observe that the result of Proposition 1 is not relevant for the proof
of Lemma 1, since W > QCW.

Proof As in [1, Proof of Theorem I1.4] we can reduce to the case where u, €
C(RY;R™) and v, € C°(RY; R!). Let (u,v) € WH(Q; R™) x L' (Q; RY).
Let (uty,v,) € CF(RY; R™) x C°(RY; R') such that u, — u in L'(Q;R™) and

vniv in M(Q; [R?l) and assume, up to a not relabeled subsequence, that
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E(u,v) = lim W (x, ty, Vity, vyy)dx.
n—-+o00 o)

For every Borel set B C Q, define

10,(B) = / W (%, thn, Vit v2)dx.
B

Since W is nonnegative and using (H1), we have that (p,) is a sequence of non-
negative Radon measures uniformly bounded in M(Q) and thus, there exists a
subsequence, still labeled (1, ), and a nonnegative finite Radon measure p such that
,uni,u in M(Q). Then, we decompose p as the sum of two mutually singular
measures, i = u® + i*, such that ¢ < £V. Thus, (2.1) will be achieved once we
prove that for every u € W''(Q; R™) and v € L'(Q; R")

a

du
acy

(x0) > W (x0, u(xo), Vu(xo), v(x9))  for LN —ae. xg € Q. (2.2)

Indeed, since uni win M(Q), by the lower semicontinuity and the fact that u* is
positive, we obtain that

nEIJPoo W (x, tn (x), Vitn (x), vy (x))dx > /d,u(x)
Q Q

> /d,u“(x) E/W(x,u,Vu,v)dx‘
Q Q

We prove assertion (2.2) using the blow-up method introduced in [12].
Let xo be a Lebesgue point for u, Vu and v verifying the following properties
(which hold £"-a.e. in Q)

diet
dach

_dn
dcy

1(B(xo, €))

()Co) ELO m

(x0) =

< + o0,

limi (/B(xoﬁg) lu(x) — u(xo) — Vu(xo)(x — xo)|%dx> =0

and
tima [ ) = vxo)ldx =0
— v(x) — v(xg)|dx = 0.
=0 &N Jp(xq.0)

Observe that we can choose a sequence ¢ — 01 such that u(0B(xp,¢)) = 0. Let
B := B(0, 1). Applying Proposition 1.203 iii) in [11],
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du’ . u(B(xo,¢))
Zr — ljm 2 %))
ac" 0 = v )
1
=limsup lim ———— W(y,u,(y), Vup,(y),v,(v)) d
imsup lim - & B) /B - O un (), Vi (), va(y)) dy

=limsup lim [ W(xo + ex, u,(xo + &x), Vun(xo + &x), v, (x0 + &x)) dx

g0 "t Jp

>limsup lim W (xo + ex, u(xo) + ewne(x), Vwye(x), 1, .(x)) dx

£—0 n—+o00 B

uy (xo + ex) — u(xg)

where wy.(x) = and 7, . (x) = v, (xo + &x).

Setting wo(x) = Vu(xo)x we have that

21—{% ngrfoc ||Wn,.s B WO”LI =0

On the other hand, since ¢, £V [ = ¢ in M(Q; Rl) and x is a Lebesgue point for
v, for every ¢ € Co(B;R') we have that

lim lim Bnn,a(y)w(y)dy=v(xo) /B @(y)dy.

e—0n—-+o00

Using a classical diagonalization process and the separability of Cy(B;R'), we
choose sequences 7, — 0 and n; — 400 such that

1 .
W = wollys <+ lim_ [ = woll

[ e 0ty =) [ s < o+ tim | [, 00001y = viao) [ |

n—-+00

for every [ € {1,..,k}, where ¢, € {¢;};-7 and the latter set is dense in Co(B; R'),
and

/ W (xo + rix, u(x0) 4 1eWny i (X), VWi, (X), 1y, (%) )dx
B
| B
< T + lim sup/ W (xo 4 riex, u(x0) + 1cWwn,r (X), VW, (X), 1, (X)) dx.
B

n—+00

Exploiting the lower bound in (H1) and the separability of {¢,};°,, we obtain that
the sequence 1y := 1, , € L°(RY;RY), is such that ,—v(xo) in M(B; R'). Indeed
let ¢ € Co(B;R') and let & > 0. Take ¢, € {¢;}:°, such that ||, — ||, < 6. Then,
the uniform L' bound of (1) in B entails that
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/B (me(y) — V(xo))w(y)dy‘

< | [0 =GNt + | [ 0:0) =60 00) — 01>

;mwﬂwmmwﬂ+wsw+m,

for sufficiently large k. Moreover, setting wy :=w,, , it results that
wi € WH (RN R™), wy — wp in L' (B; R™) and,

d a
LN (x0) > lim W (xo + rix, u(xo) + riwe(x), Vwe(x), i (x) )dx.
d[: k—+o00 B

Then, using (H,), we obtain that
apt
—y (x0) > lim | W(xo,u(xo), Vwi(x), i (x)) — og(|rewe(x)])
dr k—+o0 Jp
— og(|rex) (1 + [Vwi (x)] + |y (x))dx

:/BW(xo,u(xo),Vwk(x),nk(x))dx.

At this point, in order to get the desired inequality, we use a slicing method as in [9]
in order to modify #, and wy, exploiting the quasiconvexity-convexity of W, by new

sequences denoted by {7} C L'(B;R') N C3°(R"; R') and wy such that
/ ﬁk(z) dz = V(XO) and Wi € wo + W&’DO(B7 Rm).
B

Indeed, for each k € N define a layer L, = {z € B : dist(z,0B) <1/k}. Consider
the layer L, and recall that, by construction of #; and wj, there exists ¢ € R* such
that sup;en (1711115 + supjen [ VWl g) < c. If we divide Ly in two sublayers, say

S} and $3, we have

N o
NlO

vieN [ (n@l+Om@hass o [ (n@l+ Vw) < S,

Thus for some subsequences of {n;} and {w;}, say {n;,} and {wj, }, and one of the
sublayers S% or S%, say S», we have

. c
VieN [ (@l+ V@) < 5.
2

Note that for some 0 <, <, <1/2 we can write

S, ={z€B: ap<dist(z,0B) <f,}.
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100 E. Zappale, H. Zorgati

Define then a cutoff function & :B—[0,1] such that & =0 in
OBU{z € B : dist(z,0B) <oy}, and & =1 in {z€ B:dist(z,0B) > f,} and

IVl < 75
Since
jzlivaxo /62 ), (2) dz| = [v(xo)| 1—/52 ) dz|,

then for j(2) sufficiently large

‘V(XO) — [z &@njn(2) dz‘
|1 - fB &(2) dz‘

<|v(xo)| +1
and

| =

5 L @) — mo(o) e <

Repeating the procedure in the layer L3 (now working with three sublayers) and so
on for the next layers, we get j(k) € N increasing with k, Sy:={z€B:
oy <dist(z, 0B) < f } layer of diameter klz, and ¢, a cutoff function on B verifying
& =01in 0BU {z € B : dist(z,0B) < ax}, and & =1 in {z € B : dist(z,0B) > 5, }
such that

’ — [z &@njp (2 )d)

]1 — [y é(2) dz] < o)l +1, @3)
[ @)1+ (9w ) o< 5 (.4
and
Then, defining
T(2) = (1 = &(2)) vxo) 1 fif"fk &)z | G@mwk)  (26)
and
wi(2) := (1 = &(2))wo(z) + & (2)wjw (2) (2.7)

we have 77, € L'(B; R") N C°(B; R') with

Am@azwm
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and Wy € wo + Wy (B; R"). Therefore, since

Wt . = | W (0, (k0. Vo (2), i ()
B {z€B: dist(z,0B) > B}

+ [ W(xo, u(xo), Vwi(2), 7y (2)) dz +

/ W (a0, ux0), V(2) 1y (2))
Sk {z€B: dist(z,0B) <oy }

Using the quasiconvexity-convexity of W in the last two variables, hypothesis (H1),
the definition of &, (2.3), (2.4), (2.5), (2.6) and (2.7), we obtain that

a

du . .
v (x0) = lim SUP/ W (xo, u(x0), VWi (2), ) (2)) dz = limsup
k—+o0c JB k—+00

x UB W (xo, u(x0), VWi(2), i (2)) dz — ; W (xo, u(x0), VWwe(2), i (2)) dz

W(X(), M(X()% VW/((Z), ﬁk(z)) dz

/{zEB: dist(z,0B) <oy}

> lim sup [W(xo, u(xo), Vu(xo),v(xo))—/ C(1 + V] + [v(x0)] + |VWi(2)]) dz

k—+00 Sk

- / C(1+v(xo)| +[Vu(x)]) dz} = W(xo,u(xo), Vu(xo), v(x0)),
{z€B: dist(z,0B) <oy }

which gives the desired inequality. O
2.2 Upper bound

In order to prove the opposite inequality to (2.1), by the very definition of E, it is
enough to consider the constant sequence (u,v) € W!(Q; R™) x L'(Q; R') as a test
sequence in (1.2). Indeed one can prove that

E(u,v) = inf{liminf / QCW (x, tty, Vity, v, )dx
n—oQ Q

(2.8)
U, — u in L' (Q; R™), v,—v in M(Q; R)}.

In fact, arguing as in [17], we can prove the following result, that allows us to
replace W by its quasiconvex-convex envelope QCW in definition (1.2).

Proposition 1 Let W : Q x R" x RV x R — [0, +00) be a continuous func-
tion satisfying conditions ~ (H) and (H,), then (2.8) holds for every
(u,v) € BV(Q; R™) x M(Q; R)).

Proof Define for every (u,v) € BV(Q; R™) x M(Q; R'), the functional

n—oo

E(u,v) ::inf{liminf/ QCW (x, uy, Vity, vy )dx :
Q (2.9)

Uy — uin L' (Q; R™), v,—v in M(Q; R)}.
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102 E. Zappale, H. Zorgati

We first recall that QCW < W and it satisfies (H,) and (H,). Consequently E < E,
for every (u,v) € BV(Q;R™) x M(Q;R!). For what concerns the opposite
inequality, without loss of generality we assume that E(u,v) < + oc. Then for fixed
5 > 0, we can consider u, € WH!(Q; R™) with u, — u strongly in L'(Q; R™) and
v, € LY(Q; R)), with v,—v weakly in M(Q; R') and such that

E(u,v) > lim /QCW(x, Uy, Vity, v, )dx — 0.
Q

n—-+o0

Applying the relaxation result in [6], we know that for each n there exists a sequence
(un ) converging to u, weakly in W1 (Q; R™) and (v, ) converging to v, weakly in
L'(Q; R) as k — o0, such that

/ OCW (x, uy(x), Vity (x), vy(x))dx = kET W(x, tn ke (x), Vi (x), vai(x))dx.
Q < Ja

Consequently

E(u,v)> lim UHm [ W((x, upr(x), Vitnr(x), var(x))dx — 0, (2.10)

T n—to0k—+oo Jo

nllgknoo kEIJPoc lluns — ullr =0,

and for every ¢ € Co(Q; R!),

lim lim

n—00 k—00

/ () — V() p(x)dx| = 0.
Q

Thus, taken (¢;) a dense sequence in the separable space Co(€2; R’), it results that,
for every ¢ > 0 there exists n € N and k(n) € N increasing in n such that

/(mG(n) - V)(pjdx
Q

On the other hand the coercivity assumption (H;) and (2.10) guarantee that (v,, x(n))

<e, foreveryj=1,...,n (2.11)

is bounded in L' (Q; R/ ). Thus via a diagonal argument as that in [16, Remark 9] (see
also the proof of Lemma 1 at page 5 herein) we can conclude that there exists a

sequence (U k(n)> Vak(n)) Satisfying u, x(,y — u in L'(Q; R™), v,,‘k(n)iv in M(Q; R
and realizing the double limit in the right hand side of (2.10). Thus, it results

E(u,v)> Hm [ W, g (%), Vit k() (X), Vig(ny () )dx — 6 > E(u,v) — 0.

n—-+oo o)
Letting 0 go to O the conclusion follows. O

Proof (of Theorem 1) The thesis is a consequence of Lemma 1 and Proposition 1. [
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