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Abstract It is investigated the lower semicontinuity of functionals of the typeR
X Wðx; u;ru; vÞdx with respect to the L1strong �Mweak� topology, when the target

fields (u, v) are in W1,1 9 L1.
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1 Introduction

Let X be a bounded open subset of RN with Lipschitz boundary. We consider the

integral functional of the form

Eðu; vÞ ¼
Z

X
Wðx; u;ru; vÞdx; ð1:1Þ

where u 2 W1;1ðX;RmÞ, ru is its gradient and v 2 L1ðX;RlÞ.
Energies as in (1.1), which generalize those considered by [9, 10], have been

introduced to deal with equilibrium states for systems depending on elastic strain
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and chemical composition. Lower semicontinuity and relaxation have been obtained

in [9, 10] respectively when the target fields ðu; vÞ 2 W1;p � Lq, p; q[ 1 and

ðu; vÞ 2 BV � L1. In this context a multiphase alloy is described by the set X, the
deformation gradient is represented by ru, and v (when l = 1) denotes the chemical

composition of the system. We underline that this type of integrals may be regarded

also in the framework of Elasticity, when dealing with Cosserat’s theory in thin

structures, also for the description of bending moment effects, see [5, 14] in the

Sobolev setting. In particular, in [4] a 3D–2D dimension reduction was elaborated

when the density W has linear growth, thus the limit energy obtained by C
convergence techniques involves a BV deformation and a bending moment

represented by a measure.

In [4, 5, 9, 10, 14] densities of the type Wðru; vÞ have been taken into account,

while in the present paper we deal with heterogeneities and deformation as in

[16, 17] but also allowing for autonomous and heterogeneity in the density W. We

focus on the lower-semicontinuity of (1.1) with respect to L1-strong �M-

weak * convergence, where MðX;RlÞ represents the set of bounded Rl-valued

Radon measures on X andM- weak * denotes the weak * convergence in the sense

of measures.

Observe that bounded sequences ðun; vnÞ in W1;1ðX;RmÞ � L1ðX;RlÞ may

converge in L1-strong �M-weak �, up to a subsequence, to

ðu; vÞ 2 BVðX;RmÞ �MðX;RlÞ.
In this paper we limit our analysis to (u, v) in W1;1ðX;RmÞ � L1ðX;RlÞ, thus our

result has to be considered as a first step, in the same spirit of the results contained in

[7, 8], toward the study of relaxation in BV �M, when the energy density W has

explicit dependence on x and u.

The present lower semicontinuity result, relies on the blow-up method introduced

in [13] and extend the results obtained in [6, 10, 12, 16, 17].

Let us denote by ~E the relaxed functional of E in (1.1).

~Eðu; vÞ ¼ inf lim inf
n!þ1

Z

X
Wðx; un;run; vnÞdx; un 2 W1;1ðX;RmÞ;

�

un ! u in L1ðX;RmÞ; vn 2 L1ðX;RlÞ; vn*
�
v in MðX;RlÞ

o
;

ð1:2Þ

for every u 2 W1;1ðX;RmÞ and v 2 L1ðX;RlÞ. In the special case when

Wðx; u;ru; vÞ � Wðru; vÞ, the relaxed energy in (1.2) can be deduced with argu-

ments similar to those developed in [4] in the context of dimensional reduction.

Here the presence of x and u requires more technicalities.

The integral representation of (1.2) will be achieved in Theorem 1 under the

following hypotheses.

We assume that W : X� Rm � RN�m � Rl ! ½0;þ1Þ is a continuous function

verifying the following linear growth and coercivity conditions, i.e., there exist

constants 0\c; b0 � b\þ1, and a nonnegative, bounded, continuous function

g : X� Rm ! ½c;þ1Þ such that
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(H1) b0gðx; uÞðjnj þ jbjÞ � b�Wðx; u; n; bÞ� bgðx; uÞð1þ jnj þ jbjÞ for all

ðx; u; n; bÞ 2 X� Rm � Rm�N � Rl.

(H2) For every compact K � X� Rm there exists a continuous function xK :
½0;þ1Þ ! ½0;þ1Þ with xKð0Þ ¼ 0 such that

jWðx; u; n; bÞ �Wðx0; u; n; bÞj �xKðjx� x0jÞð1þ jnj þ jbjÞ

and

jWðx; u; n; bÞ �Wðx; u0; n; bÞj �xKðju� u0jÞ;

for all ðx; u; n; bÞ; ðx0; u0; n; bÞ 2 K � RN�m � Rl.

We say that a Borel function W : RN � Rm � RN�m � Rl ! ½0;þ1Þ (satisfying

(H1)) is quasiconvex-convex if for all ðx; u; n; vÞ 2 RN � Rm � RN�m � Rl we have
Z

D

Wðx; u; n; vÞ� 1

jDj

Z

D

Wðx; u; nþrhðyÞ; vþ gðyÞÞ dy;

for all h 2 W
1;1
0 ðD;RmÞ and g 2 L1ðD;RlÞ such that

R
D
gðxÞdx ¼ 0, where D is any

bounded open set of RN .

For every W : RN � Rm � RN�m � Rl ! ½0þ1Þ satisfying (H1), denoting by

QCW : RN � Rm � RN�m � Rl ! ½0;þ1Þ the quasiconvex-convex envelope of W,

which is the largest quasiconvex-convex function smaller or equal than W, it admits

the following representation obtained in [14]

QCWðx; u; n; bÞ :¼ inf
1

jDj

� Z

D

Wðx; u; nþrhðyÞ; bþ gðyÞÞ dy; h 2W
1;1
0 ðD;RmÞ;

g 2 L1ðD;RlÞ such that
R
D
gðxÞdx ¼ 0

o
;

ð1:3Þ

where D is any bounded domain with regular boundary in RN .

Our result is the following

Theorem 1 Let W : X� Rm � RN�m � Rl ! ½0;þ1Þ be a continuous function

verifying (H1) and (H2). Let E and ~E be given by (1.1) and (1.2) respectively, and

let J : W1;1ðX;RmÞ � L1ðX;RlÞ be defined by

Jðu; vÞ ¼
Z

X
QCW x; u;ru; vð Þdx: ð1:4Þ

Then for every ðu; vÞ 2 W1;1ðX;RmÞ � L1ðX;RlÞ we have

~Eðu; vÞ ¼ Jðu; vÞ:

Section 2 is devoted to the proof of Theorem 1, after the establishment of some

notation.
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2 Proof of Theorem 1

Let X be a generic open subset of RN , we denote by MðXÞ the space of all Radon

measures in X with bounded total variation. By the Riesz Representation Theorem,

MðXÞ can be identified with the dual of the separable space C0ðXÞ of continuous
functions on X vanishing on the boundary oX. The N-dimensional Lebesgue

measure in RN is denoted by LN .

If l; k 2 MðXÞ are nonnegative Radon measures, we denote by dl
dk the Radon-

Nikodým derivative of l with respect to k.
We denote by MðX;RlÞ the set of Rl valued Radon measures, namely vectors in

Rl whose l components belong to MðXÞ. By a generalization of the Besicovich

Differentiation Theorem (see [2, Proposition 2.2]), it can be proved that there exists

a Borel set N � X such that kðNÞ ¼ 0 and

dl
dk

ðxÞ ¼ lim
q!0þ

lðxþ qCÞ
kðxþ qCÞ

for all x 2 Supp l=N and any open convex set C containing the origin. We recall

that the exceptional set N above does not depend on C.

The achievement of Theorem 1 relies essentially on the proof of the lower

bound inequality, presented in subsect. 2.1. In fact, in light of Proposition 1,

there is no loss of generality assuming that W is quasiconvex-convex, i.e.

W ¼ QCW . Thus the upper bound inequality easily follows by the definition of ~E,

the constant sequence ðun; vnÞ � ðu; vÞ 2 W1;1ðX;RmÞ � L1ðX;RlÞ being admissi-

ble for (1.2).

2.1 Lower bound

Lemma 1 Let W : X� Rm � RN�m � Rl ! ½0;þ1Þ be a continuous function

satisfying ðH1Þ � ðH2Þ and let E, ~E and J be the functionals defined in (1.1), (1.2)

and (1.4) respectively. For every ðu; vÞ 2 W1;1ðX;RmÞ � L1ðX;RlÞ we have that

~Eðu; vÞ	 Jðu; vÞ: ð2:1Þ

Remark 1 We observe that the result of Proposition 1 is not relevant for the proof

of Lemma 1, since W 	QCW .

Proof As in [1, Proof of Theorem II.4] we can reduce to the case where un 2
C1
0 ðRN ;RmÞ and vn 2 C1

0 ðRN ;RlÞ. Let ðu; vÞ 2 W1;1ðX;RmÞ � L1ðX;RlÞ.
Let ðun; vnÞ 2 C1

0 ðRN ;RmÞ � C1
0 ðRN ;RlÞ such that un ! u in L1ðX;RmÞ and

vn*
�
v in MðX;RlÞ and assume, up to a not relabeled subsequence, that
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~Eðu; vÞ ¼ lim
n!þ1

Z

X
Wðx; un;run; vnÞdx:

For every Borel set B � X, define

lnðBÞ ¼
Z

B

Wðx; un;run; vnÞdx:

Since W is nonnegative and using (H1), we have that ðlnÞ is a sequence of non-

negative Radon measures uniformly bounded in MðXÞ and thus, there exists a

subsequence, still labeled ðlnÞ, and a nonnegative finite Radon measure l such that

ln*
�
l in MðXÞ. Then, we decompose l as the sum of two mutually singular

measures, l ¼ la þ ls, such that la 
 LN . Thus, (2.1) will be achieved once we

prove that for every u 2 W1;1ðX;RmÞ and v 2 L1ðX;RlÞ

dla

dLN
ðx0Þ	W x0; uðx0Þ;ruðx0Þ; vðx0Þð Þ for LN � a.e. x0 2 X: ð2:2Þ

Indeed, since ln*
�
l in MðXÞ, by the lower semicontinuity and the fact that ls is

positive, we obtain that

lim
n!þ1

Z

X
Wðx; unðxÞ;runðxÞ; vnðxÞÞdx	

Z

X
dlðxÞ

	
Z

X
dlaðxÞ 	

Z

X
W x; u;ru; vð Þdx:

We prove assertion (2.2) using the blow-up method introduced in [12].

Let x0 be a Lebesgue point for u, ru and v verifying the following properties

(which hold LN-a.e. in X)

dla

dLN
ðx0Þ ¼

dl

dLN
ðx0Þ ¼ lim

e!0

lðBðx0; eÞÞ
LNðBðx0; eÞÞ

\þ1;

lim
e!0

1

eN

Z

Bðx0;eÞ
juðxÞ � uðx0Þ � ruðx0Þðx� x0Þj

N
N�1dx

 !N�1
N

¼ 0

and

lim
e!0

1

eN

Z

Bðx0;eÞ
jvðxÞ � vðx0Þjdx ¼ 0:

Observe that we can choose a sequence e ! 0þ such that l oB x0; eð Þð Þ ¼ 0. Let

B :¼ Bð0; 1Þ. Applying Proposition 1.203 iii) in [11],
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dla

dLN
ðx0Þ ¼ lim

e!0

lðBðx0; eÞÞ
eNLNðBÞ

¼ lim sup
e!0

lim
n!þ1

1

eNLNðBÞ

Z

Bðx0;eÞ
Wðy; unðyÞ;runðyÞ; vnðyÞÞ dy

¼ lim sup
e!0

lim
n!þ1

Z

B

Wðx0 þ ex; unðx0 þ exÞ;runðx0 þ exÞ; vnðx0 þ exÞÞ dx

	 lim sup
e!0

lim
n!þ1

Z

B

Wðx0 þ ex; uðx0Þ þ ewn;eðxÞ;rwn;eðxÞ; gn;eðxÞÞ dx

where wn;eðxÞ ¼
unðx0 þ exÞ � uðx0Þ

e
and gn;eðxÞ ¼ vnðx0 þ exÞ:

Setting w0ðxÞ ¼ ruðx0Þx we have that

lim
e!0

lim
n!þ1

jjwn;e � w0jjL1 ¼ 0:

On the other hand, since inMðX;RlÞ and x0 is a Lebesgue point for
v, for every u 2 C0ðB;RlÞ we have that

lim
e!0

lim
n!þ1

Z

B

gn;eðyÞuðyÞdy ¼ vðx0Þ
Z

B

uðyÞdy:

Using a classical diagonalization process and the separability of C0ðB;RlÞ, we
choose sequences rk ! 0 and nk ! þ1 such that

jjwnk ;rk � w0jjL1\
1

k
þ lim

n!þ1
jjwn;rk � w0jjL1 ;

Z

B

gnk ;rkðyÞulðyÞdy� vðx0Þ
Z

B

ulðyÞdy
�
�
�
�

�
�
�
�\

1

k
þ lim

n!þ1

Z

B

gn;rkðyÞulðyÞdy� vðx0Þ
Z

B

ulðyÞdy
�
�
�
�

�
�
�
�;

for every l 2 f1; ::; kg, where ul 2 fuig
þ1
i¼1 and the latter set is dense in C0ðB;RlÞ,

and

Z

B

Wðx0 þ rkx; uðx0Þ þ rkwnk ;rkðxÞ;rwnk;rkðxÞ; gnk ;rkðxÞÞdx

� 1

k
þ lim sup

n!þ1

Z

B

Wðx0 þ rkx; uðx0Þ þ rkwn;rkðxÞ;rwn;rkðxÞ; gn;rkðxÞÞdx:

Exploiting the lower bound in (H1) and the separability of fuig1i¼1, we obtain that

the sequence gk :¼ gnk ;rk 2 L1ðRN ;RlÞ, is such that gk*
�
vðx0Þ in MðB;RlÞ. Indeed

let u 2 C0ðB;RlÞ and let d[ 0. Take ul 2 fuig
1
i¼1 such that kul � ukL1 � d. Then,

the uniform L1 bound of ðgkÞ in B entails that

98 E. Zappale, H. Zorgati

123



Z

B

ðgkðyÞ � vðx0ÞÞuðyÞdy
�
�
�
�

�
�
�
�

�
Z

B

ðgkðyÞ � vðx0ÞÞulðyÞdy
�
�
�
�

�
�
�
�þ

Z

B

ðgkðyÞ � vðx0ÞÞðulðyÞ � uðyÞÞdy
�
�
�
�

�
�
�
�

�
Z

B

ðgkðyÞ � vðx0ÞÞulðyÞdy
�
�
�
�

�
�
�
�þ Cd�ðC þ 1Þd;

for sufficiently large k. Moreover, setting wk :¼ wnk ;rk it results that

wk 2 W1;1ðRN ;RmÞ, wk ! w0 in L1ðB;RmÞ and,

dla

dLN
ðx0Þ	 lim

k!þ1

Z

B

Wðx0 þ rkx; uðx0Þ þ rkwkðxÞ;rwkðxÞ; gkðxÞÞdx:

Then, using ðH2Þ, we obtain that

dla

dLN
ðx0Þ	 lim

k!þ1

Z

B

Wðx0; uðx0Þ;rwkðxÞ; gkðxÞÞ � xBðjrkwkðxÞjÞ

� xBðjrkxjÞð1þ jrwkðxÞj þ jgkðxÞjÞdx

¼
Z

B

Wðx0; uðx0Þ;rwkðxÞ; gkðxÞÞdx:

At this point, in order to get the desired inequality, we use a slicing method as in [9]

in order to modify gk and wk, exploiting the quasiconvexity-convexity of W, by new

sequences denoted by f�gkg � L1ðB;RlÞ \ C1
0 ðRN ;RlÞ and �wk such that

Z

B

�gkðzÞ dz ¼ vðx0Þ and �wk 2 w0 þW
1;1
0 ðB;RmÞ:

Indeed, for each k 2 N define a layer Lk ¼ fz 2 B : distðz; oBÞ\1=kg. Consider
the layer L2 and recall that, by construction of gj and wj, there exists c 2 Rþ such

that supj2N kgjkL1ðBÞ þ supj2N jjrwjjjL1ðBÞ � c. If we divide L2 in two sublayers, say

S12 and S22, we have

8 j 2 N

Z

S1
2

ðjgjðzÞj þ jrwjðzÞjÞ dz�
c

2
or

Z

S2
2

ðjgjðzÞj þ jrwjðzÞjÞ dz�
c

2
:

Thus for some subsequences of fgjg and fwjg, say fgj2g and fwj2g, and one of the

sublayers S12 or S22, say S2, we have

8 j2 2 N

Z

S2

ðjgj2ðzÞj þ jrwj2ðzÞjÞ dz�
c

2
:

Note that for some 0� a2\b2 � 1=2 we can write

S2 ¼ fz 2 B : a2\distðz; oBÞ\b2g:
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Define then a cutoff function n2 : B ! ½0; 1� such that n2 ¼ 0 in

oB [ fz 2 B : distðz; oBÞ� a2g, and n2 ¼ 1 in fz 2 B : distðz; oBÞ	 b2g and

jjrn2jj � c
b2�a2

.

Since

lim
j2!þ1

vðx0Þ �
Z

B

n2ðzÞgj2ðzÞ dz
�
�
�
�

�
�
�
� ¼ vðx0Þj j 1�

Z

B

n2ðzÞ dz
�
�
�
�

�
�
�
�;

then for j(2) sufficiently large

vðx0Þ �
R
B
n2ðzÞgjð2ÞðzÞ dz

�
�
�

�
�
�

1�
R
B
n2ðzÞ dz

�
�

�
� � vðx0Þj j þ 1

and

1

jS2j

Z

S2

jwjð2ÞðzÞ � w0ðzÞj dz�
1

2
:

Repeating the procedure in the layer L3 (now working with three sublayers) and so

on for the next layers, we get jðkÞ 2 N increasing with k, Sk :¼ fz 2 B :

ak\distðz; oBÞ\bkg layer of diameter 1
k2
, and nk a cutoff function on B verifying

nk ¼ 0 in oB [ fz 2 B : distðz; oBÞ� akg, and nk ¼ 1 in fz 2 B : distðz; oBÞ	 bkg
such that

vðx0Þ �
R
B
nkðzÞgjðkÞðzÞ dz

�
�
�

�
�
�

1�
R
B
nkðzÞ dz

�
�

�
� � vðx0Þj j þ 1; ð2:3Þ

Z

Sk

ðjgjðkÞÞðzÞj þ jrwjðkÞðzÞjÞ dz�
c

k
ð2:4Þ

and

1

jSkj

Z

Sk

jwjðkÞðzÞ � w0ðzÞj dz�
1

k
: ð2:5Þ

Then, defining

�gkðzÞ :¼ ð1� nkðzÞÞ
vðx0Þ �

R
B
nkðzÞgjðkÞðzÞ dz

1�
R
B
nkðzÞ dz

þ nkðzÞgjðkÞðzÞ ð2:6Þ

and

�wkðzÞ :¼ ð1� nkðzÞÞw0ðzÞ þ nkðzÞwjðkÞðzÞ ð2:7Þ

we have �gk 2 L1ðB;RlÞ \ C1
0 ðB;RlÞ with

Z

B

�gkðzÞ dz ¼ vðx0Þ
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and �wk 2 w0 þW
1;1
0 ðB;RnÞ. Therefore, since

Z

B

Wðx0; uðx0Þ;r �wkðzÞ; �gkðzÞÞ dz ¼
Z

fz2B: distðz;oBÞ	 bkg
Wðx0; uðx0Þ;rwjðkÞðzÞ; gjðkÞðzÞÞ dz

þ
Z

Sk

Wðx0; uðx0Þ;r �wkðzÞ; �gkðzÞÞ dzþ
Z

fz2B: distðz;oBÞ � akg
Wðx0; uðx0Þ;r �wkðzÞ; �gkðzÞÞ dz

Using the quasiconvexity-convexity of W in the last two variables, hypothesis (H1),

the definition of nk, (2.3), (2.4), (2.5), (2.6) and (2.7), we obtain that

dla

dLN
ðx0Þ	 lim sup

k!þ1

Z

B

Wðx0; uðx0Þ;rwjðkÞðzÞ; gjðkÞðzÞÞ dz 	 lim sup
k!þ1

�
Z

B

Wðx0; uðx0Þ;r �wkðzÞ; �gkðzÞÞ dz
�

�
Z

Sk

Wðx0; uðx0Þ;r �wkðzÞ; �gkðzÞÞ dz

�
Z

fz2B: distðz;oBÞ � akg
Wðx0; uðx0Þ;r �wkðzÞ; �gkðzÞÞ dz

#

	 lim sup
k!þ1

h
W x0; uðx0Þ;ruðx0Þ; vðx0Þð Þ�

Z

Sk

Cð1þ j~vkj þ vðx0Þj j þ jr �wkðzÞjÞ dz

�
Z

fz2B: distðz;oBÞ� akg
Cð1þ vðx0Þj þ jruðx0ÞjÞ dz

#

¼ W x0; uðx0Þ;ruðx0Þ; vðx0Þð Þ;

which gives the desired inequality. h

2.2 Upper bound

In order to prove the opposite inequality to (2.1), by the very definition of ~E, it is

enough to consider the constant sequence ðu; vÞ 2 W1;1ðX;RmÞ � L1ðX;RlÞ as a test
sequence in (1.2). Indeed one can prove that

~Eðu; vÞ ¼ inf lim inf
n!1

Z

X
QCWðx; un;run; vnÞdx :

�

un ! u in L1ðX;RmÞ; vn*
�
v in MðX;RlÞg:

ð2:8Þ

In fact, arguing as in [17], we can prove the following result, that allows us to

replace W by its quasiconvex-convex envelope QCW in definition (1.2).

Proposition 1 Let W : X� Rm � RN�m � Rl ! ½0;þ1Þ be a continuous func-

tion satisfying conditions ðH1Þ and ðH2Þ, then (2.8) holds for every

ðu; vÞ 2 BVðX;RmÞ �MðX;RlÞ.

Proof Define for every ðu; vÞ 2 BVðX;RmÞ �MðX;RlÞ, the functional

�Eðu; vÞ :¼ inf lim inf
n!1

Z

X
QCWðx; un;run; vnÞdx :

�

un ! u in L1ðX;RmÞ; vn*
�
v in MðX;RlÞg:

ð2:9Þ
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We first recall that QCW �W and it satisfies ðH1Þ and ðH2Þ. Consequently �E� ~E,

for every ðu; vÞ 2 BVðX;RmÞ �MðX;RlÞ. For what concerns the opposite

inequality, without loss of generality we assume that �Eðu; vÞ\þ1. Then for fixed

d[ 0, we can consider un 2 W1;1ðX;RmÞ with un ! u strongly in L1ðX;RmÞ and

vn 2 L1ðX;RlÞ, with vn*
�
v weakly in MðX;RlÞ and such that

�Eðu; vÞ	 lim
n!þ1

Z

X
QCWðx; un;run; vnÞdx� d:

Applying the relaxation result in [6], we know that for each n there exists a sequence

ðun;kÞ converging to un weakly in W1;1ðX;RmÞ and ðvn;kÞ converging to vn weakly in

L1ðX;RlÞ as k ! þ1, such that

Z

X
QCWðx; unðxÞ;runðxÞ; vnðxÞÞdx ¼ lim

k!þ1

Z

X
Wðx; un;kðxÞ;run;kðxÞ; vn;kðxÞÞdx:

Consequently

�Eðu; vÞ	 lim
n!þ1

lim
k!þ1

Z

X
Wððx; un;kðxÞ;run;kðxÞ; vn;kðxÞÞdx� d; ð2:10Þ

lim
n!þ1

lim
k!þ1

kun;k � ukL1 ¼ 0;

and for every u 2 C0ðX;RlÞ,

lim
n!1

lim
k!1

Z

X
ðvn;kðxÞ � vðxÞÞuðxÞdx

�
�
�
�

�
�
�
� ¼ 0:

Thus, taken ðujÞ a dense sequence in the separable space C0ðX;RlÞ, it results that,
for every e[ 0 there exists n 2 N and kðnÞ 2 N increasing in n such that

Z

X
ðvn;kðnÞ � vÞujdx

�
�
�
�

�
�
�
�� e; for every j ¼ 1; . . .; n: ð2:11Þ

On the other hand the coercivity assumption ðH1Þ and (2.10) guarantee that ðvn;kðnÞÞ
is bounded in L1ðX;RlÞ. Thus via a diagonal argument as that in [16, Remark 9] (see

also the proof of Lemma 1 at page 5 herein) we can conclude that there exists a

sequence ðun;kðnÞ; vn;kðnÞÞ satisfying un;kðnÞ ! u in L1ðX;RmÞ, vn;kðnÞ*
�
v in MðX;RlÞ

and realizing the double limit in the right hand side of (2.10). Thus, it results

�Eðu; vÞ	 lim
n!þ1

Z

X
Wðx; un;kðnÞðxÞ;run;kðnÞðxÞ; vn;kðnÞðxÞÞdx� d	 ~Eðu; vÞ � d:

Letting d go to 0 the conclusion follows. h

Proof ( of Theorem 1) The thesis is a consequence of Lemma 1 and Proposition 1. h
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