
Vol.:(0123456789)

Computing and Software for Big Science (2024) 8:4
https://doi.org/10.1007/s41781-024-00114-3

REVIEW

PanDA: Production and Distributed Analysis System

Tadashi Maeno1 · Aleksandr Alekseev2 · Fernando Harald Barreiro Megino2 · Kaushik De2 · Wen Guan1 ·
Edward Karavakis1 · Alexei Klimentov1 · Tatiana Korchuganova3 · FaHui Lin2 · Paul Nilsson1 · Torre Wenaus1 ·
Zhaoyu Yang1 · Xin Zhao1

Received: 15 August 2023 / Accepted: 17 January 2024
© The Author(s) 2024

Abstract
The Production and Distributed Analysis (PanDA) system is a data-driven workload management system engineered to oper-
ate at the LHC data processing scale. The PanDA system provides a solution for scientific experiments to fully leverage their
distributed heterogeneous resources, showcasing scalability, usability, flexibility, and robustness. The system has successfully
proven itself through nearly two decades of steady operation in the ATLAS experiment, addressing the intricate requirements
such as diverse resources distributed worldwide at about 200 sites, thousands of scientists analyzing the data remotely, the
volume of processed data beyond the exabyte scale, dozens of scientific applications to support, and data processing over
several billion hours of computing usage per year. PanDA’s flexibility and scalability make it suitable for the High Energy
Physics community and wider science domains at the Exascale. Beyond High Energy Physics, PanDA’s relevance extends
to other big data sciences, as evidenced by its adoption in the Vera C. Rubin Observatory and the sPHENIX experiment. As
the significance of advanced workflows continues to grow, PanDA has transformed into a comprehensive ecosystem, effec-
tively tackling challenges associated with emerging workflows and evolving computing technologies. The paper discusses
PanDA’s prominent role in the scientific landscape, detailing its architecture, functionality, deployment strategies, project
management approaches, results, and evolution into an ecosystem.

Keywords  Workload management · Distributed computing · Exascale · Heterogeneous computing

Introduction

The Production and Distributed Analysis (PanDA) system
is a data-driven workload management system engineered
to operate at the LHC [1] data processing scale. It has been
developed to meet the intricate requirements for data (re)
processing, detector simulation, and physics analysis in the
ATLAS experiment [2], where diverse resources are distrib-
uted at about 200 computing centers spanning more than 40
countries, thousands of scientists analyze the data remotely,
the volume of processed data is beyond the exabyte scale,
dozens of scientific applications and emerging workflows
are supported, and data processing requires several billion

hours of computing usage per year. A design principle of
PanDA was the tight integration of workload and data man-
agement, i.e., the tight integration with the distributed data
management system Rucio [3], to allow ATLAS to manage
and process close to 100 petabytes of data per year in an effi-
cient way. PanDA was also designed to have the flexibility
to adapt to emerging computing technologies in processing,
storage, networking, and distributed computing middleware.
The system has seamlessly integrated a wide range of com-
puting resources, while the spectrum of computing options
keeps increasing across the Worldwide LHC Computing
Grid (WLCG) [4], volunteer computing, High-Performance
Computing (HPC) operating independently of WLCG,
Leadership Computing Facilities (LCFs) [5, 6], and com-
mercial clouds. The scalability and flexibility make PanDA
well-suited for adoption by various exabyte-scale scientific
communities. The interest in PanDA by other big data sci-
ences, such as the Vera C. Rubin Observatory [7] and the
sPHENIX experiment [8], brought the primary motivation to
generalize PanDA for the High Energy Physics community,

 *	 Tadashi Maeno
	 tmaeno@bnl.gov

1	 Brookhaven National Laboratory, Upton, NY, USA
2	 University of Texas at Arlington, Arlington, TX, USA
3	 University of Pittsburgh, Pittsburgh, PA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-024-00114-3&domain=pdf

	 Computing and Software for Big Science (2024) 8:4 4   Page 2 of 21

other data-intensive sciences, and wider Exascale scientific
domains.

Many other experiments and scientific programs also have
broad needs for large-volume data processing on diverse
and geographically distributed resources. While some such
experiments have adopted PanDA, many other systems have
been developed as well over the years and are in use across
the community. Prominent examples include JAliEn [9] for
the ALICE experiment [10], GlideinWMS [11] for the CMS
experiment [12], DIRAC [13] for the LHCb [14], Belle II
[15], and CTA [16] experiments, and Pegasus WMS [17]
for the LIGO experiment [18]. Signature features of PanDA
within this range of systems include its extreme scalabil-
ity, grounded in its use of still-current technologies such as
REST interfaces fronting horizontally scalable web services;
tight integration with data management, in particular Rucio,
enabling sophisticated choreography of data-intensive work-
flows; modular encapsulation of resource specifics; an inte-
gral workflow management system enabling highly complex
workflows to be defined and executed; and comprehensive
monitoring ranging from high-level system overviews to
drill-down details serving analysis users, operations experts,
and system developers and debuggers.

This paper is structured as follows: In Sect. "Con-
cepts" we outline the main concepts for the rest of this
paper. Section "System Architecture" describes the system
architecture of the PanDA system with implementation high-
lights. Functionality details of PanDA and its adaptability
are discussed in Sect. "Functionality Details", followed by
descriptions of typical PanDA deployment in Sect. "Infra-
structure and Installation" and project management strate-
gies in Sect. "Project Management". Section "Results and
Experience" is dedicated to presenting results and sharing
valuable experiences, while Sect. "The evolving PanDA
Ecosystem" focuses on tracing the evolution of the PanDA
ecosystem. Finally, in Sect. "Conclusions", we close the
paper with a summary and an outlook on future challenges
to expand PanDA for the next generation of big data science
experiments.

Concepts

The main concepts of the PanDA system are Computing
and storage resources, Worker node, PanDA queues, Virtual
Organization, User, Workflow, Workload, Task, Job, Worker,
Priority, and Global share.

Computing and Storage Resources and Worker Node

Computing resource providers offer computing resources
with various processing capabilities, such as the grid, HPC
centers, and commercial cloud services. A worker node

represents various entities depending on the workload or
resource configuration, such as a (virtual) host, a cluster of
multiple hosts, or a slot on a host. It encompasses a combi-
nation of CPUs, GPUs/accelerators/co-processors, memory,
and disk space.

Storage resource providers accommodate data storage
needs. A storage resource is composed of a persistent data
storage with disk or tape, and a storage management service
running on top of it. The association between computing
and storage resources can be arbitrary, but in most cases
resources from the same provider are associated with each
other. PanDA integrates diverse and geographically distrib-
uted computing and storage resources to provide a consistent
interface to users.

PanDA Queues

A PanDA queue represents a group of worker nodes in a
computing resource with a certain set of attributes describ-
ing their specifications and requirements, such as CPU
type and power, memory, disk space, and walltime limit.
For example, certain resource providers make computing
resources available through batch queues in the underlying
batch systems. In such cases, one PanDA queue is typically
defined for each batch queue. It is also possible to define
multiple PanDA queues for a single batch queue, allowing
them to share worker nodes underneath. A PanDA queue is
associated with one or more storage resources for automatic
data motion, which is described in Sect. "Automatic Data
Distribution and Aggregation".

Virtual Organization

A virtual organization (VO) refers to a dynamic set of indi-
viduals defined around a set of resource-sharing rules and
conditions. Its members are geographically apart but work
for a common objective, such as a scientific experiment, for
example, the ATLAS collaboration, or research program.
VOs are implemented in VOMS [19] or Indigo IAM [20],
and can define groups with certain criteria, such as affili-
ation, role, and scientific objective, e.g. a working group
describes a group of people who collaborate together to
achieve a specific objective in the VO.

User

A user is a person interacting with PanDA and is uniquely
identified by a username. PanDA authenticates and author-
izes users to allow or reject access to computing and storage
resources based on their profile information. PanDA has an
Identity and Access Management (IAM) scheme fully com-
pliant with OIDC/OAuth2.0 [21, 22], capable of identity
federation among scientific and academic identity providers.

Computing and Software for Big Science (2024) 8:4 	 Page 3 of 21  4

PanDA also supports legacy X.509 authentication. More
details of the authentication and authorization mechanism
can be found in Sect. "Authentication and Authorization".

Each user has the flexibility to belong to one or more
VOs. Furthermore, a user can hold one or more roles within
each VO, allowing them to have different responsibilities
and privileges. There are six roles:

•	 Scientists run private workloads for their analysis on
PanDA without any special privileges. The difference
between private and managed workloads is described in
Sect. "Workflow and Workload".

•	 Production managers submit coordinated, large-scale
managed workloads on behalf of the VO groups. For
example, this could be campaigns for Monte Carlo simu-
lation, reprocessing and derivations, or testing and vali-
dating new releases of the experiment’s software.

•	 Coordinators define resource allocations among groups
and activities in the VO. They are also responsible for
providing regular reports to auditors and funding agen-
cies.

•	 Computing center administrators are administrators at
computing centers providing computing resources.

•	 Experts are developers of the PanDA system.
•	 Shift team members supervise the system operation and

execution of workloads on their duties for a period of
time, taking first-level actions, e.g. contacting computing
center administrators and developers, in case of failures
or anomalies.

Workflow and Workload

Figure 1 represents the different concepts in the workflow
hierarchy, which will be described in more detail in this

section about workflows and workloads, and in the upcom-
ing Sects. "Task" and "Job and Worker" about tasks and
jobs.

A workflow is a top-level work entity in the hierarchical
organization of the processing. One workflow corresponds to
a scientific objective defining intermediate steps for the user
to accomplish. Illustrative examples of scientific objectives
include the search for new particles, fine-tuning detectors in
multi-dimensional parameter spaces, conducting sky surveys
to identify astronomical objects, and executing bulk data
processing for experiment collaborations.

A workload is a software program or application that uti-
lizes computing resources to achieve one of the intermedi-
ate steps in a workflow. A workflow comprises a group of
constituent workloads and their topological relationship. The
user runs all workloads or a subset of workloads in a work-
flow on PanDA. It is possible to run managed workloads that
are organized and coordinated centrally at the VO level to
utilize a substantial amount of computing resources within
the VO. Individual users can also run workloads indepen-
dently, using their own allocations on behalf of VO groups
with specific objectives, such as studying particular physics
processes. A workflow may comprise both managed work-
loads and those initiated by individual users.

While the workflow in Fig. 1 is a simple linear sequence
of steps, the dependencies and relations between steps can
be more complex. For example, it is possible for each work-
load to take multiple output data from upstream workloads
as input and feed its output data to multiple downstream
workloads. The initiation of a downstream workload occurs
either (1) when the upstream workload is completed, ensur-
ing that all input data are ready, or (2) while the upstream
workload is still running and partial input data are avail-
able. The configuration for this behavior is flexible and can
be tailored to specific workflow requirements. In scenario

Fig. 1   Representation of a basic workflow example composed of a
sequence of workloads that depend on the previous step. Each work-
load is divided into jobs, which process an input data subset (e.g. a

set of input files) and generate an output data subset (e.g. one output
file). The output data of one workload are fed as input into the next
workload in the sequence

	 Computing and Software for Big Science (2024) 8:4 4   Page 4 of 21

(2), both the upstream and downstream workloads can run
concurrently, minimizing delays associated with waiting for
complete input data.

Task

A task is a PanDA object with distinct states mapping to a
single workload. A task takes input data and produces output
data. The purpose of the task is to process the input data
entirely. Generally, the input and output data are collections
of files, but there are also other formats, such as a group of
sequence numbers, metadata, a collection of sub-file data,
or notifications.

Job and Worker

A job is a PanDA object with distinct states that corresponds
a sub-unit of a workload partitioned from a task. A single
task consists of multiple jobs, and each job is executed by
a worker, which is an abstraction of the execution point,
such as a worker node and CPU cluster. A worker refers to a
software program or a collection of software programs that
assumes the responsibility of executing one or more jobs
on computing resources. Each job is tailored based on the
user’s preference (if any) and/or constraints of the computing
resource. For example, if jobs are flexible in terms of dura-
tion and disk usage, they are generated to have a short execu-
tion time and produce small output files when processed on
resources with limited time slots and local disk space. The
task input is logically split into multiple subsets, and each
job gets a subset to produce output. The collection of job
outputs is the task output.

Global Share

Global shares define the allocation of computing resources
among various VO groups and/or user activities. The aggre-
gation of available computing resources is dynamically par-
titioned into multiple global shares. Each task is mapped
to a global share according to its VO group and activity
type. Many PanDA system components internally work with
global shares.

Priority

The priority of a task or job determines which task or job
has precedence over other competing tasks or jobs in the
same global share. Their priorities are relevant in each
global share, i.e. high-priority tasks in a global share do
not interfere with low-priority tasks in another global share.
Generally, jobs inherit the priority of their task, but the first
several jobs in each task have higher priorities to collect
various metrics of the task as soon as possible. Task and job

state transitions, as well as access to external systems like
data transfers, are prioritized according to their priorities.

System Architecture

Figure 2 shows a schematic view of the PanDA system.
There are five main components in the system:

•	 JEDI is a high-level engine to tailor jobs for opti-
mal usages of diverse and geographically distributed
resources dynamically.

•	 PanDA server is the central job pool implemented as a
stateless web service to allow asynchronous communica-
tion from users, pilot, and Harvester over HTTPS.

•	 Pilot is a transient agent to execute a job on a worker
node, periodically reporting various metrics to the
PanDA server throughout its lifetime.

•	 Harvester generates and submits pilots using the appro-
priate communication protocol for each resource provider
and communicates with the PanDA server on behalf of
the pilot as necessary.

•	 PanDA monitor is a web-based monitoring of tasks and
jobs processed by PanDA, providing a common interface
for end users, the central operations team, and remote site
administrators.

JEDI and the PanDA server share the central database to
manage tasks and jobs. PanDA monitor reads from the cen-
tral database to offer various views to users. Harvester has a
more lightweight database, which can be either consolidated
or distributed depending on the deployment model. Users
interact with the PanDA system using client tools through
the PanDA server. Details of PanDA components, database,
authentication and authorization mechanism, and client tools
are explained in the following sections.

JEDI

JEDI (Job Execution and Definition Interface) processes
tasks and generates jobs for the PanDA server. The main
functions are as follows:

•	 To receive and parse task specifications, which users sub-
mit through the PanDA server.

•	 To collect information about task input data.
•	 To decide the destination for each task output.
•	 To choose the computing resources based on the char-

acteristics and requirements of each task. The brokerage
algorithm is described in Sect. "Brokerage".

•	 To tailor jobs as described in Sect. "Job Sizing" and
assign jobs to computing resources by taking global
shares into account.

Computing and Software for Big Science (2024) 8:4 	 Page 5 of 21  4

•	 To optimize task parameters for each task based on
results of prior jobs in the same task, as described in
Sect. "Dynamic Optimization of Task Parameters".

•	 To reassign jobs if workload distribution becomes unbal-
anced among computing resources.

•	 To take actions on tasks according to various timeout
configurations or user commands.

•	 To finalize tasks once their input data are fully processed.

JEDI comprises a master process, stateless agents running on
multiple threads/processes, and a fine-grained exclusive lock
mechanism. Agents run independently and do not directly
communicate with each other. They take work entities
such as tasks and jobs from the database, perform actions
on them, and update the database. Each agent is designed
around a plugin structure with the experiment-agnostic core
and plugins. Plugins are software add-ons to enhance JEDI’s
capabilities to perform experiment-specific functions, such
as interfacing with experiment-specific external services and
performing actions required for the experiment-specific use-
cases. It is possible to configure JEDI instances to load new
plugins and add new features.

The exclusive lock mechanism allows operations to be
distributed across threads, processes, and instances, so that

JEDI horizontally scales with multiple instances. For exam-
ple, while one agent process is working on a particular task,
the task is locked, and other agent processes are prevented
from updating the task. This is typically useful to avoid
inconsistent modifications caused by concurrently running
processes.

PanDA Server

The PanDA server is the central job pool. It consists of Web
applications with a RESTful interface running on Apache
HTTP servers [23] and time-based process schedulers. It
takes care of jobs throughout their lifetime. The main func-
tions are as follows:

•	 To receive jobs from JEDI and other job sources that
directly generate jobs mainly for testing purposes.

•	 To guarantee input data availability in the storage
resources associated with the computing resources where
jobs are scheduled to run.

•	 To dispatch jobs to worker nodes once the input data are
transferred or when the input data are already available.

•	 To monitor jobs while they are running on worker nodes.

Fig. 2   A schematic view of the PanDA system with white boxes representing the main components. Dashed arrows show connections to data-
bases, while solid arrows describe interactions between components or from users

	 Computing and Software for Big Science (2024) 8:4 4   Page 6 of 21

•	 To dispatch metadata of sub-file data and keep track of
the processing at the sub-file level, if the job is config-
ured to perform the fine-grained processing [24].

•	 To post-process output data once jobs are done on worker
nodes.

•	 To take actions on jobs according to various timeout con-
figurations or user commands.

•	 To report job states to JEDI if those jobs were generated
by JEDI.

The PanDA server scales horizontally by adding instances
since Web servers are stateless and time-based processes
are fine-grained.

Figure 3 below shows the architecture of a single PanDA
server instance. PanDA Web applications are embedded in
Web Server Gateway Interface (WSGI) [25] daemons run-
ning behind an Apache HTTP server. The parent Apache
HTTP process spawns WSGI daemons via mod_wsgi [26]
in addition to child HTTP processes. The number of WSGI
daemons is static, while the number of child processes
dynamically changes depending on the load to optimize
resource usage of the instance. Child processes receive
requests from actors such as users and pilots. The requests
are passed to PanDA Web applications through an internal
request queue and WSGI daemons. There are two types of
requests:

•	 Synchronous requests: Actors are blocked for a while
and receive responses when PanDA Web applications
complete processing the requests.

•	 Asynchronous requests: Actors immediately receive a
response and the requests are asynchronously processed.
This is typically done when the requests invoke heavy
procedures like access to external services. This mode
prevents the HTTP server from being clogged.

The time-based process scheduler, the so-called PanDA dae-
mon, is a daemon in charge of launching various scripts peri-
odically. Its functionalities are very similar to the standard
cron daemon, but it has the following advantages:

•	 No need to maintain an extra crontab configuration file.
•	 On each instance, the same script runs sequentially, i.e.

only one process for each script, which is especially
helpful when the script may run longer than the period
configured. No new process will spawn until the exist-
ing one finishes, while the cron daemon blindly launches
processes so that one has to fine-tune the frequency or
let the script itself kill old processes to avoid duplicated
execution.

•	 There is an exclusive control mechanism to prevent mul-
tiple instances from running the same script concurrently.
It is also useful for sharing results between instances and
avoiding repeating the same action multiple times. If
this is enabled for a script, only one instance can run the
script at a time, which is useful for long-running scripts
that can run on any instance.

•	 Better system resource usages, e.g. limited total pro-
cesses n_proc to run scripts, reduction of the overhead
to launch processes, and sharing of database connections

Fig. 3   The architecture of a single PanDA server instance

Computing and Software for Big Science (2024) 8:4 	 Page 7 of 21  4

among scripts to avoid making a new database connec-
tion in every run.

Pilot

The pilot is a transient agent to execute and monitor grid
jobs on a worker node. A grid job contains a payload that a
user wants to execute. The payload has certain requirements,
e.g. input and output files, that are staged by the pilot, and
needs a working environment that is set up by the pilot. The
payload may require running inside a container, which is
also set up by the pilot, or in some cases by the wrapper
script that launches the pilot. On the fine-grained processing,
the pilot launches and feeds a payload with a metadata set of
sub-file data downloaded from the PanDA server.

Pilot Highlights

The pilot runs on the worker nodes on local resources, grids,
clouds, HPCs, and volunteer computers. It is downloaded
and executed by wrapper scripts that are sent by Harvester
3.5 to the worker nodes via batch systems. The wrapper
selects the pilot version after checking with the CRIC infor-
mation system [27]. The pilot interacts with the PanDA
server either directly, via the ARC Control Tower [28], or
with the resource-facing Harvester service. Some of the pilot
highlights are listed below:

•	 The pilot is responsible for running payloads created by
users, while monitoring all steps and keeping the PanDA
server updated.

–	 Any necessary input files, and produced output files
will be transferred from/to the relevant storage ele-
ment.

–	 Input files may be accessed directly from storage by
the payload, in which case the pilot will not transfer
the file.

–	 The job may consist of a suite of pre-, co- and post-
processes as well as the main payload itself.

–	 The pilot can execute special utility processes, e.g.
memory monitoring tools, running in parallel with
the payload.

–	 All processes can be executed in their own contain-
ers, either predetermined or set by the users.

•	 All communications between pilot and external services
(e.g. PanDA, Rucio, and others) are done with HTTPS.

•	 File transfers are handled by dedicated copy tools.

–	 Currently supported copy tools include Rucio (using
the Rucio API), xrdcp, gfal, gs, s3, mv/cp/
ln, objectstore, lsm (locally defined site
mover).

–	 For each file transfer (as well as for directly accessed
files), the pilot can send a detailed report, such as
access protocol, timestamps, and hostname, to the
Rucio trace server.

•	 HPCs with no outbound network are supported by del-
egating communications to proxy services.

•	 Identification and reporting of 130+ unique errors,
including detailed error diagnostics whenever available.
It is possible to customize error handling and messages.

•	 Multiple options exist for debugging troublesome pay-
loads.

–	 Debug mode can be activated when the job or task is
created, or after it has started.

–	 An individual job running in debug mode can be
followed on the PanDA monitor via the tail of the
latest modified file uploaded on each server update
(every 5 minutes in debug mode) or live via near
real-time logging of the payload with the help of
Google Cloud Logging [29], Fluentd [30] and Log-
stash [31].

–	 The pilot can execute ls on a requested work direc-
tory and ps for a given process id, as well as report
on disk usage, and make the output available on the
PanDA monitor. It can also run the gdb debugger to
generate core files and place them in the job log for
later retrieval.

•	 The pilot may run in staging mode, in which it only per-
forms file staging.

•	 A single pilot can run multiple jobs sequentially until it
runs out of time.
–	 It also has support for prompt processing, where the

pilot immediately starts processing a payload if it
receives job information from ActiveMQ [32]. When
the current job has finished, the pilot resumes the
listening mode, waiting for another payload.

•	 The pilot is user (“experiment”) independent with the
user code stored in plugins.

–	 The plugins encapsulate all the code that is relevant
for each pilot user.

–	 Plugins currently exist for the ATLAS, sPHENIX
and Vera C. Rubin experiments.

–	 A joining VO can add their code specifics (e.g. how
the payload and other tools should be executed, spe-
cial checks and algorithms) starting from a generic
plugin

–	 Fully implemented pilot plugins range from 1,700
to over 8,000 lines of code (the generic plugin has
1,200 lines of code).

•	 The current pilot version is Python 3 compliant.

	 Computing and Software for Big Science (2024) 8:4 4   Page 8 of 21

–	 A pull request to the pilot GitHub repository triggers
unit tests and runs Flake8 verification for Python 3.7,
3.8 and 3.9 versions.

PanDA Monitor

The PanDA monitor (BigPanDAmon) is a web application
that has been developed to serve the monitoring needs of all
PanDA users according to their roles and behavioral charac-
teristics. It provides a set of aggregated reports, dashboards
and graphical representations of the PanDA system objects
such as jobs, tasks, sites, and users. The interface allows
users to drill down into the reason for a job failure or observe
the broad picture such as tracking the computing site per-
formance or the progress of a whole production campaign.

PanDA Monitor Architecture

The BigPanDAmon system is a Django-based [33] web
application consisting of a set of core views and separate
modules which can be plugged in. It collects data from dif-
ferent sources in particular the PanDA database, the CRIC
information system, Rucio providing payload logs of jobs,
the Elasticsearch [34] cluster where PanDA/JEDI application
logs are exported, and the MONIT Grafana [35] instance
where accounting data are available for the ATLAS instance.

Due to the Django object-relational mapping layer, the
system supports Oracle and PostgreSQL databases. The
BigPanDAmon uses the OAuth2 protocol for the authoriza-
tion of users and supports the following third-party single
sign-on services: CERN, GitHub and Google. To improve
response time, the system has advanced caching mechanisms
and scheduled preprocessing tasks, which are shown in the

data-flow diagram (Fig. 4). The database-level caching is
used to store the prepared-to-render data and not rendered
pages themselves. This allows one to treat the general and
user-specific data separately. Also, a common CephFS stor-
age is mounted on all application nodes for data like job logs
or rendered plots from Grafana.

The front-end of the application is implemented using the
Django built-in server-side rendering of static content and
AngularJS for interactive features. For visualizations, several
libraries are used, in particular D3.js [36] as the default one,
and Chart.js [37], based on HTML5 features for plots with a
large number of objects, for example, a profile of a task with
a few thousand jobs.

PanDA Monitor Views

In total, there are 70 different views, all of which can return
information in the form of an interactive web page or as
JSON output. In addition, there are 54 APIs for delivering
complementary information on demand. The core views pro-
vide essential information about the principal objects of the
PanDA system listed in Sect. "Concepts". Therefore, they
cover various monitoring needs of users according to their
roles.

Core Views

This group of views consists of three types: summary, info,
and regional summary. The summary view aggregates attrib-
utes of objects by counting the number of occurrences for
each property value and represents it in a table where the
number of occurrences is a link to the same view filtered
by it (Fig. 5). This way, a user can obtain a detailed view

Fig. 4   BigPanDAmon data flow diagram

Computing and Software for Big Science (2024) 8:4 	 Page 9 of 21  4

of certain objects of interest or observe the broader picture.
This type of view exists for jobs, tasks, PanDA queues, and
computing resources.

The info view collects information related to a particu-
lar object. For example, in a task info view, there is a list
of all task parameters, a summary of its job states, a list
of associated datasets, processing progress in the number
of files, and staging progress from the tape storage if it
is applicable for the task. There are info views for jobs,
tasks, datasets, files, PanDA queues, computing resources,
and users.

The regional summary view represents the number of
job states for each PanDA queue, computing resource, and
a group of computing resources. This is an essential view
for system administrators of computing sites and operators.

Modules

It is possible to customize a BigPanDAmon instance with
various modules. Each module provides optimal views to
diagnose issues on a specific workflow, system components/
objects (e.g. Harvester and global shares), or campaigns,
with a helpful interface to track them down. The experi-
ment-specific modules compose the information of PanDA
objects and other systems used in experiments. For example,
the ATLAS instance installs the ATLAS release tester [38]
module to monitor nightly tests running as PanDA jobs that
verify newly added merge requests on the main repository of
the ATLAS offline software framework, Athena [39].

Harvester

Harvester is a resource-facing service between the PanDA
server and a collection of pilots for resource provisioning
and workload shaping. It is a lightweight stateless service

Fig. 5   Example of jobs summary view

	 Computing and Software for Big Science (2024) 8:4 4   Page 10 of 21

running on virtual machines for the virtual organization or
edge nodes of HPC centers, to provide a uniform view for
various resources, with a modular design to support different
resource types and workflows.

Harvester Workload Mapping

There are various types of computing resources, including
but not limited to:

•	 Grid resources are dedicated to the experiment, hence
available 24/7 with stable throughput. Grid sites are
rather homogeneous, i.e. they have similar architecture,
policies, and behavior.

•	 HPC and opportunistic resources usually provide a huge
amount of slots but at irregular intervals, which yield
bursty and intermittent throughput. Each HPC center can
have different edge services and operational policies.

•	 Cloud resources, including industrial clouds in research
infrastructures and various commercial clouds, have
gained importance in scientific research. Different
clouds have different policies and require different APIs
to access.

Thus, the Harvester needs to face diverse resources with
common machinery for pilot provisioning and to have the
capability of dynamically optimizing resource allocation
among PanDA queues (for example, single-core, multi-core,
and high-memory). To achieve this, the Server-Harvester-
Pilot model has been adopted. The concept of job-worker
mapping is introduced in Harvester, where Job and Worker
are described in Sect. "Job and Worker". A worker is a rep-
resentative of a collection of pilots that run on a designated
computing resource such as a worker node and CPU cluster.
A worker corresponds to a pilot in most Grid usecases.

Harvester supports various types of Worker provi-
sioning schemes with push/pull modes and different job-
worker mapping. Here are the types of Worker provisioning
schemes.

Pull

Figure 6 shows the worker provisioning scheme in simple
pull mode. Harvester submits workers without jobs. Once
acquiring a computing resource, each worker pulls a job
directly from the PanDA server. Harvester decides the quan-
tity of workers to submit for a PanDA queue according to
Harvester’s configuration.

Pull Unified-Pilot-Streaming (Pull UPS)

In simple pull mode, the worker submission is typi-
cally made independently from the job generation. The

disadvantage of this mode is that the blind submission of
workers is inefficient and can waste worker node resources
when there are no jobs available for a worker. The Unified
Pilot Streaming (UPS) mode intelligently submits workers to
solve the above issue. Figure 7 shows the worker provision-
ing scheme in pull UPS mode. It works as follows:

1.	 PanDA calculates how many workers of each type are
needed based on the queued and running jobs at a com-
puting resource, and the overall Global Share prefer-
ences. The types are generic (i.e. not job-specific) cat-
egories: single-core, multi-core, and high-memory.

2.	 PanDA sends commands based on this information to
Harvester.

3.	 Harvester submits the workers with the proper require-
ments to the site.

Fig. 6   Worker provisioning with simple pull mode

Fig. 7   Worker provisioning with pull UPS mode

Computing and Software for Big Science (2024) 8:4 	 Page 11 of 21  4

4.	 When a worker starts, it will ask for a job matching the
requirements.

5.	 PanDA dispatches again the job according to the Global
Shares.

PanDA decides how many workers of each type are sub-
mitted, and the decision is not randomly left to Harvester.
This mode is used for most Grid resources.

1-to-1 Push

Figure 8 shows the worker provisioning scheme with 1-to-1
push mode. Jobs are prefetched and bound to workers before
Harvester submits them. Each worker has one job. This
workflow is used for some Grid and HPC resources.

1-to-1 Push and Job Late-Binding

Jobs are prefetched while workers are submitted to schedul-
ing systems asynchronously. Harvester assigns one job to
each worker once the worker gets a computing resource. This
workflow is used for HPCs with long-waiting batch queues.

1-to-Many Push (Multi-worker)

Jobs are prefetched, and multiple workers are submitted for
each single job. Harvester collects and combines informa-
tion from all associated workers for each job. Typically this
mode is used for HPCs to fill unused slots using special
jobs. The job must have the capability of allowing multiple
workers to collaboratively process a part of the workload in
the job while being aware of what others are doing through
an external mechanism, such as a parameter serve and an
exclusive file lock.

Harvester Architecture

Figure 9 shows a schematic view of the Harvester architec-
ture. Harvester comprises a database, agents, and plugins.

Harvester Database

Harvester stores the states of jobs and workers, and other
cached information from external sources into its database.
The engine of the Harvester database can be MySQL, Mari-
aDB, and SQLite.

Harvester Agents

Harvester has several stateless and multi-threaded agents,
one for each action (e.g. worker submission, job fetching,
pre-staging, and credential renewal). Harvester takes action
based on the state transition of jobs and workers. The infor-
mation which the agents require is stored and updated in the
database. There is no direct messaging between agents. The
functions of agents are explained below.

•	 Submitter periodically looks up queues to fill, creates
entries of new workers in the database, and submits
workers for the queues to the computing resources via
submitter plugins.

•	 Monitor checks and updates the state of workers by com-
municating with the resources via monitor plugins.

•	 Sweeper kills the workers at the resource via sweeper
plugins, and cleans up entries of terminated workers in
the database.

•	 Credential Manager calls credential manager plugins to
check and renew credentials, e.g. VOMS proxy certificate
and JSON web tokens (JWTs) [40], to be used for authen-
tication and authorization with computing resources.

•	 Propagator periodically reports information on jobs and
workers in Harvester to the PanDA server.

•	 Job Fetcher prefetches the jobs from the PanDA server
and stored them in the Harvester database. The jobs are
later bound to workers and submitted.

•	 Command Manager fetches commands from the PanDA
server and stores them in the Harvester database. Other
agents take action according to the commands.

•	 Cacher periodically downloads information from exter-
nal data sources, such as PanDA queue configurations
from the CRIC information system, and caches them into
the database.

Harvester Plugins

Harvester plugins are developed to communicate with
diverse resources. Functions in the plugin are called by their
corresponding Harvester agent. For example, the Submitter Fig. 8   Worker provisioning with 1-to-1 push mode

	 Computing and Software for Big Science (2024) 8:4 4   Page 12 of 21

agent calls HTCondor [41] submitter plugin to submit pilots
to a HTCondor batch system, HTCondor CE [42], or ARC
CE [43]. The plugins to be used for each PanDA queue are
specified in the Harvester configuration. Experts of each
resource develop their dedicated plugins and submit the
code to the Harvester GitHub repository. Currently, there
are plugins available for HTCondor, ARC Control Tower,
Kubernetes [44], SLURM [45], PBS [46], and Lancium [47].

PanDA Database

Operations are check-pointed and persisted on a transac-
tional database shared by all the PanDA and JEDI servers.
The database contains the state for all the jobs and tasks,
related metadata for files and datasets, as well as informa-
tion for other entities like users and sites. PanDA supports
Oracle and PostgreSQL as database backends. The database
interface module contains SQL code written and optimized
for Oracle, since it has historically been the main database
technology. When using a PostgreSQL database, queries are
translated to the PostgreSQL dialect through an in-house
layer.

The database usage has been highly optimized to keep
up with the transaction rate required by big science experi-
ments. In addition to the usage of targeted indexes, Oracle
partitioning is also used to optimize data access. Depending
on the size and relevance of the tables, older entries can be
deleted through a sliding window procedure. However, for

many tables the information is kept over extended periods
of time in order to be able to browse the data in the monitor-
ing. This leads to very large tables with many million rows.

In the case of ATLAS, all task and job definitions are kept
since 2006. The current policy is to keep the current and
the last two years on the main database. Completed jobs are
moved to an archive table, in order to control the size of the
active jobs table. Once per year, the archived jobs older than
2 years are manually moved to a separate archival database
with less performant storage and CPUs.

PanDA frequently requires to calculate aggregations of
jobs (sums, averages) to gather share, site or user statistics.
It is very costly to run independent aggregations of the tables
within seconds. For this reason, background procedures pre-
compute and store aggregations on auxiliary tables every
couple of minutes. This reduces the load on the database
significantly.

In addition, central tables are replicated to Elasticsearch
to off-load analytics and accounting procedures to external
infrastructure.

Authentication and Authorization

PanDA has an Identity and Access Management (IAM)
scheme fully compliant with OIDC/OAuth2.0, capable of
identity federation among scientific and academic identity
providers.

Fig. 9   Harvester architecture diagram

Computing and Software for Big Science (2024) 8:4 	 Page 13 of 21  4

PanDA IAM consists of Indigo IAM, CILogon [48],
and identity providers. Indigo IAM is an account and
group membership management service to define VOs and
groups, to add/remove users to/from VOs and groups, and
issue ID tokens once users are authenticated. CILogon is
a federated ID broker to delegate authentication to ID pro-
viders such as CERN [49], BNL SDCC [50], and Google
Identity Platform [51].

Figure 10 shows the procedure of user authentication
and authorization, where the device code flow is used to
allow users to run command-line tools. First, the user
invokes a command-line tool that checks if a valid ID
token is locally available. If not, the command-line tool
sends an authentication request to Indigo IAM on behalf
of the user and retrieves a verification URL. Then, the
user opens a web browser to go to the verification URL
and is eventually redirected to their ID provider through
CILogon. Once the user successfully logs on, a couple of
tokens are exchanged between CILogon and Indigo IAM,
and an ID token is issued. The command-line tool gets the
ID token and places it in the HTTP request header when
accessing the PanDA server. The PanDA server decodes
the token and authorizes the user based on OIDC claims
such as name, username, and groups.

Legacy X.509-based user authentication is also supported
and is performed via the GridSite library [52] that is loaded
inside the Apache HTTP processes of the PanDA server.

Resource Authentication and Authorization

The pilot is authenticated and authorized via JWTs or
X.509 certificates. If a computing resource provider accepts
JWTs, Harvester fetches access tokens from the token issuer
deployed by each experiment, and submits the worker with
the access tokens to the gateway services of the comput-
ing resources. Access tokens have a very short lifetime
and specify the gateway services in the audience claim, to
avoid being abused for access to other resources. On the
other hand, if a computing resource provider works only
with X.509 certificates, Harvester obtains proxy certificates
with X.509 certificates from VOMS servers, which add the
authorization attributes, such as VO groups and roles, as
extensions, submitting the pilot with proxy certificates.

Client Modules and Tools

There are two Python modules and client tools for users to
send commands to the PanDA server through its RESTful
interface using standard HTTP methods. One Python module

Fig. 10   The procedure of user authentication and authorization

	 Computing and Software for Big Science (2024) 8:4 4   Page 14 of 21

provides a set of limited client APIs for non-administrative
users to submit and manage tasks and jobs, go through the
authentication procedure, and retrieve system information.
The other Python module allows the execution of adminis-
trative commands, such as eliminating problematic users, or
changing system configuration. Client tools are a variety of
command-line applications built on top of client APIs for the
execution of specific workloads, bookkeeping, and workflow
management. Ordinary users typically use client tools to run
their analysis on PanDA. The non-administrative Python
module and client tools are part of a Python package, while
the other module is included in a separate Python package.

Functionality Details

Brokerage

Brokerage is one of the most crucial functions in the system
to distribute workload among computing resources. It has
the following goals:

•	 To distribute jobs among all available computing
resources.

•	 To minimize the waiting time for each job to produce
output data.

•	 To execute jobs in such a way that the jobs respect their
priorities and resource allocations.

•	 To choose computing resources for each job based on the
characteristics of the job and constraints of the comput-
ing resources.

It is not straightforward to satisfy these goals for all kinds
of jobs since some of them are logically contradictory. The
brokerage has a plugin structure so that each VO can provide
an algorithm according to its own needs and use cases, based
on task and job priorities, global shares and allocations, data

localities, costs for data transfers, data placement policies,
matching between resource specifications and data process-
ing requirements, constraints and downtime of computing
resources, transfer backlog over the network, and so on. For
example, when certain resource providers enforce stringent
policies that restrict the execution of arbitrary jobs due to
security concerns, the brokerage assigns only centrally man-
aged jobs by the VO experts to the computing resources that
are generated from managed workloads.

Dynamic Optimization of Task Parameters

JEDI automatically optimizes task parameters for compute/
storage resource requirements and strategies to partition
workload while running those tasks. In the early stage of
task execution, JEDI generates several jobs for each task
using only a small portion of input data, collects various
metrics such as data processing rate and memory footprints,
and adjusts the following task parameters. Those first jobs
are called scout jobs. The automatic optimization is trig-
gered twice for each task; when half of the scout jobs are
finished, and when the first 100 jobs are finished while gen-
erating the remaining jobs after completion of the scout jobs.

Job Sizing

JEDI generates jobs based on the requirements of comput-
ing resources in terms of CPU core, disk space, RAM, and
walltime, using the task parameters shown in Table 1.

If one of the first three parameters in Table 1 (n*PerJob)
is specified, jobs are generated accordingly to respect the
parameter. If some computing resources cannot accept those
jobs due to resource limitations, such as small disk spaces
and short walltime, the brokerage avoids those resources.

If they are not specified, jobs are generated to meet the
requirements of each computing resource. The number of

Table 1   Task parameters for
JEDI to size jobs

Name Description

nFilesPerJob The number of input files per job
nGBPerJob The total size of input/output files and working directory
nEventsPerJob The number of events per job
cpuTime CPU time per event
cpuEfficiency CPU efficiency (0.9 by default)
baseTime The part of the job execution time not scaling with CPU

power, such as periods for payload initialization and
finalization

outDiskCount The expect output size per event
workDiskCount The working directory size
coreCount The number of CPU cores
ramCount Resident set size per CPU core

Computing and Software for Big Science (2024) 8:4 	 Page 15 of 21  4

events nEvents in each job must satisfy the following two
formulae:

where S, W, C, and P are the disk space size, the walltime
limit, the number of CPU cores, and the averaged benchmark
score measuring CPU performance [53] at the computing
resource, respectively. inputDiskCount is the total size of
the job input files, a discrete function of nEvents. Note that
inputDiskCount is zero if the computing resource is con-
figured to read input files directly from the local storage
resource.

Automatic Data Distribution and Aggregation

Data stage-in and stage-out can cause significant bottlenecks
in data-intensive processing. Dynamic and asynchronous
data placement is crucial for efficient usage of computing
and storage resources. PanDA relies on Rucio for distributed
data management. PanDA interacts with Rucio using the cli-
ent API for name and location lookup, requesting transfers,
retrieving attributes and metadata, organizing and deleting
data, etc. Rucio sends notifications via STOMP-compatible
message-queuing services, e.g. ActiveMQ, when asynchro-
nous operations are fulfilled, and PanDA consumes the noti-
fications to take subsequent actions.

Temporary input data replicas are dynamically created for
jobs when all the following conditions are met:

•	 I/O intensities to process those jobs are not significant,
since I/O-intensive jobs usually require more data trans-
fers than CPU-intensive jobs to fill computing resources
over the same period. Replicating data for the latter is
more optimal in terms of network usage.

•	 Computing resources, associated with the storage
resource where the original data are available, are busy.

•	 Other computing resources are idle.
•	 The input data are unavailable at the storage resources

associated with the idle resources.

PanDA makes transfer requests to Rucio, Rucio notifies
PanDA once the transfers are done, and then PanDA dis-
patches the jobs to the idle computing resources, so that they
do not have to wait on the computing resources while input
data are being staged. Jobs release the CPUs as soon as they
upload the output data to the storage resource associated
with the computing resource where the jobs are running.

S ≥ inputDiskCount

+max(0.5GB, outDiskCount × nEvents)

+ workDiskCount

W ≥
cpuTime × nEvents

C × P × cpuEfficiency
+ baseTime

Then, PanDA requests Rucio to transfer the output data to
the final destination.

In most cases, computing and storage resources are
located within the same provider, meaning that the storage
resource is locally connected to the computing resource.
This setup allows for efficient data transfers between the two
components using a local area network. However, it is pos-
sible to associate remote storage resources with computing
resources. In such cases, stage-in and stage-out operations
between the computing and storage resources are carried out
over a wide area network. The entire data are transferred to
computing resources, or alternatively, data can be streamed
over the network based on job requirements.

Task and Job Retry Strategies

It is possible to retry tasks if a part of the input data were not
successfully processed or new data were added to the input
data. The task state changes from finished or done back to
running, and output data are appended to the same output
data collection. Tasks cannot be retried if they end up with
a fatal state, such as broken and failed, since they are typi-
cally configured wrongly or run problematic jobs, and not
worth retrying.

On the other hand, the job state is irreversible, i.e. jobs
do not change their states once they go to a final state. JEDI
generates new jobs to re-process the input data portion,
which was not successfully processed by previous jobs.
The configuration of retried jobs can be optimized based
on experiences from previous jobs (e.g. increased memory
requirements). It is also possible to configure rules to avoid
the job retrial for fatal error codes or messages.

The Job Retry Module greatly simplifies operations by
taking actions based on error codes and messages. Sev-
eral actions are currently available, and new actions can be
implemented and registered in the database.

Customizing PanDA

Each experiment can configure PanDA components to utilize
only the necessary features according to its requirements
and available resources. Most PanDA components have
structures composed of the experiment-agnostic core and
plugins. Plugins are software add-ons to enable particular
functionalities dynamically loaded when PanDA compo-
nents are launched. Plugins inherit base API classes that
define standard abstract functions, to implement experi-
ment- and resource-specific actions. There are default
plugins implementing generalized actions. It is also possible
to create and install new plugins to enhance existing capa-
bilities. Each PanDA component hosts a small collection of
plugins, with each individual plugin consisting of several
hundred to thousands of lines of code. For example, if an

	 Computing and Software for Big Science (2024) 8:4 4   Page 16 of 21

experiment requires the execution of large-scale parallel
multi-node jobs, particularly those that require specialized
optimizations, tailored schemes could be implemented in
new plugins. The PanDA and Harvester documentation [56,
56] describe how to customize PanDA components in detail.

Although experiments have different requirements, they
can use the default plugins in many cases. For example, both
the Vera C. Rubin Observatory and the sPHENIX experi-
ment have deployed their own PanDA services with the
default plugins at SLAC [56] and BNL SDCC, respectively.
One of the main differences between their deployment is that
Harvester for Vera C. Rubin installs Kubernetes and HTCon-
dor plugins to utilize Google cloud resources in addition
to the facility resources available through ARC CEs, while
Harvester for sPHENIX installs only HTCondor plugins to
utilize BNL resources on a HTCondor batch system.

While tight integration with Rucio is a PanDA’s advan-
tage, it is configurable to operate without Rucio. Such a
configuration is particularly valuable for experiments that
do not necessitate advanced data management capabilities.

Infrastructure and Installation

Infrastructure Sizing

The largest PanDA deployment to date serves the ATLAS
experiment and is handled centrally at the CERN data center,
including the databases and servers. It is important to under-
stand that most of the ATLAS activities (except Event Gen-
eration and some Analysis) run multi-core jobs, for which
the ATLAS Software is capable of managing multiple pro-
cesses across typically eight cores. The fraction of single-
and multi-core jobs changes as the different activities and
campaigns are scheduled. So far in 2023, in average 85%
of the resources have been managed in multi-core mode.
While the main purpose of running multi-core jobs is to
optimize the memory consumption on the worker nodes,
another positive side-effect is that it reduces the load on the
PanDA infrastructure considerably. In practice, ATLAS runs
a few hundred thousand jobs concurrently and around one
million jobs per day. The JEDI and PanDA server clusters
consist of 9 virtual machines each, with individual specifica-
tions of the virtual machine comprising 8 cores and 16 GB
of RAM. The ATLAS PanDA server cluster needs to handle
typical request rates of 200 Hz, coming predominantly from
the pilots that are retrieving and updating jobs. On the first
half of November 2023, the mean time to handle requests
was 0.04 s and the 90th percentile was 0.07 s. JEDI, on
the other hand, needs to handle sufficient job generation to
keep the Grid fully utilized. The other critical component is
the PanDA database, which acts centrally to all the servers.
ATLAS’ central applications like PanDA and Rucio share

an Oracle cluster, where each application runs on a separate
node with 16 cores and 768 GB of RAM. The large memory
is important so that the active tables are kept in memory and
to avoid disk I/O. The database server has enough headroom
to handle spikes and future growth.

Service Deployment with Kubernetes and Helm
Charts

All PanDA components are containerized and can be
deployed using Helm [57] charts on Kubernetes clusters.
A single set of container images and Helm charts works
both for vanilla Kubernetes and OKD [58]. The difference
between these two services is that OKD forbids running con-
tainers as root and the usage of lower privileged ports. Every
time a new version of a PanDA component is released on
GitHub [59], a new container image is published automati-
cally in the GitHub registry. While all the container images
and the Helm charts are publicly available, the Helm secrets
are used to deploy sensitive information securely, such as
usernames and passwords for the databases, or client ID for
IAM. The secrets can be stored in a private repository or the
same repository but encrypted. They are typically deployed
only once and need to be updated only if there is a new
password or update.

When deploying PanDA on Kubernetes, it is possible
to deploy only a specific PanDA component based on the
requirements of each experiment using experiment-specific
description files and secrets. It is also possible to deploy
the PanDA system without the CRIC information system by
providing a couple of JSON files that define PanDA queues,
sites, storages, etc.

For the PanDA deployment at SLAC for the Vera C.
Rubin Observatory, we have the following Kubernetes con-
figuration with each pod having 4 CPU Cores and 16GB of
RAM: 2 pods for PanDA server, 2 pods for PanDA JEDI, 2
pods for iDDS, and 3 pods for Harvester.

The Kubernetes-based deployment significantly simpli-
fies the deployment of the PanDA components, and intro-
duces new possibilities, such as the automatic scaling of the
PanDA components based on the load and the continuous
integration and testing framework based on Kubernetes.

Database Schema Installation, Upgrade,
and Versioning

The PanDA database schema is available inside the schema
folder in the panda-database GitHub module. For a
new database installation, a user can execute the SQL state-
ments found in the schema folder for either Oracle or
PostgreSQL. When deploying PanDA on a new database,
the schema installation script creates a new versioning table
holding the schema version, e.g. 0.0.42.

Computing and Software for Big Science (2024) 8:4 	 Page 17 of 21  4

Whenever there is a new version of the PanDA database
schema, the version number increases to reflect the change.
Whenever there is a schema change that increases the ver-
sion number, a diff file is provided within the upgrade
folder for all the schema changes between the previous and
current versions. At the end of each diff file, there is an entry
to update the version number in the versioning table, e.g.
from 0.0.41 to 0.0.42.

When the PanDA server runs, it checks if the version in
the versioning table is the minimum required for the PanDA
server to work and fully function. If the database schema
version is lower than the one required, the PanDA server
will exit with a warning message.

Project Management

PanDA is an open-source project developed under the
Apache V2 license [61]. PanDA benefits from the contri-
butions of key developers from multiple experiments in
Europe, the United States, and Asia, who regularly report
their progress in the PanDA core team meetings and their
experiment technical meetings. Jira [61] keeps track of
roadmaps and milestones in the project, and GitHub hosts
the PanDA codebase for version control, allowing coherent
contributions from multiple developers. Each PanDA com-
ponent has its own GitHub repository.

The development workflow is based on branches or forks
in GitHub repositories. Developers make changes in their
own branches or forks without affecting the main branches.
Changes must be incremental to guarantee that they do not
break existing production PanDA instances. It is the respon-
sibility of each developer to check the changes on integra-
tion PanDA instances with the complete flow of tasks and

jobs. A test suite runs on the integration instances with the
Oracle database. In many cases, end-to-end tests with actual
tasks and jobs are required since it is hard to detect prob-
lems through unit tests due to the complexity of the PanDA
system and use-cases.

Once developers are comfortable with the changes, they
submit pull requests to ask the repository managers for
review. The whole review process is done through GitHub,
which retains the history of communication in the pull
request to help future contributors understand the changes.
Once a pull request is approved, the repository managers
merge it and tag a new release version in the repository,
depending on the criticality of the changes. There is no
time constraint between release versions. It is possible to
tag many release versions per day for a single repository
if necessary. Tagging of new versions automatically trig-
gers GitHub actions to publish new packages in PyPI [62]
and register new container images in the GitHub packages
registry.

New versions of packages are usually deployed on pro-
duction instances as soon as they are published. It is recom-
mended that production instances deploy the latest versions
of packages, although each experiment can follow its own
deployment policy, e.g. they could upgrade PanDA instances
only during idle periods.

Results and Experience

Figure 11 illustrates PanDA’s scalability and flexibility,
which shows the evolution in the number of CPU cores
over the last decade for ATLAS. During this period, the
managed resources became more diverse. In the early
years, PanDA managed exclusively WLCG resources,

Fig. 11   Monthly average CPU cores managed by PanDA for ATLAS by resource types between 2011 and 2023. The accounting did not track the
resource type until 2014, since the usage of non-Grid resources was negligible (labeled “UNKNOWN”)

	 Computing and Software for Big Science (2024) 8:4 4   Page 18 of 21

while in the last years, the amount of HPC and Cloud
resources has been increasing steadily. Each type of
resource can have a different interface and behavior, some-
times requiring customized worker submission through
Harvester. Several major HPCs, such as Titan [63], Theta
[64], Cori [65], Perlmutter [66], MareNostrum 4 [67], and
Vega [68], have been successfully integrated with PanDA.
Some grid-like HPCs (labeled "hpc") have provided exter-
nal network connectivity and operational policies to allow
the execution of standard ATLAS jobs through the central
ATLAS software repository. Other HPCs (labeled "hpc_
special") have required local ATLAS software installation
and typically executed only specific types of ATLAS jobs.
PanDA has also been integrated and used at scale with the
most common commercial Cloud service providers, such
as Amazon and Google [69]. Some cloud service providers
(labeled "cloud") have used the central ATLAS software
repository, while other Cloud service providers (labeled
"cloud_special") have used local ATLAS software due to
technical difficulties to access the repository. The differ-
ent resources are distributed worldwide around more than
40 countries and 150 data centers hosted at universities
and laboratories. These sites come in very different sizes,
nowadays ranging anywhere between a few hundred cores
to a few hundred thousand cores. PanDA is able to tailor
jobs to any size and keep all resources full. Some types of
resources also are limited to certain types of jobs (typically
Monte Carlo simulation) due to I/O restrictions. These
imbalances are handled at the worldwide level by applying
the Global Shares described in Sect. "Global Share", and
prioritizing less-favored activities at other sites.

Since 2022, Vera C. Rubin has been using PanDA for
Data Release Production (DRP) campaigns. During Phase
2 of the Rubin Observatory’s Data Preview 0 (DP0.2) in
2021, PanDA demonstrated the capability to run 16 million
jobs at the Google-based Interim Data Facility (IDF). Most
jobs were processed on a cluster with approximately 4,000
cores, up to 14GB/core RAM with a total CPU usage of
2.5M core-hours. Eight million jobs were also processed for
the Hyper Suprime Cam (HSC) reprocessing at the US Data
Facility (USDF) at SLAC. Figure 12 shows the accumulation

of the number of Vera C. Rubin jobs managed by PanDA
since May 2021.

The successful processing of DP0.2 drove the decision
to endorse PanDA for the DRP campaigns. The 2023 DRP
campaigns are estimated to have around 36 million jobs for
the HSC Public Data Release 2 (HSC-PDR2) and around
8 M for the HSC reprocessing. The entire PanDA infra-
structure has been deployed [70] on a Kubernetes cluster
at SLAC, integrating data facilities in the UK and France in
addition to USDF and Google IDF.

The sPHENIX experiment at BNL’s Relativistic Heavy
Ion Collider (RHIC) [71] also decided in 2021 to adopt
PanDA for offline production and took advantage of the
Kubernetes-based approach to the PanDA infrastructure
deployment. The PanDA service has been running on an
OKD cluster at BNL SDCC, stress tests were conducted in
the Summer of 2023, and the entire system has been pre-
pared for data-taking in the Spring of 2024.

The Evolving PanDA Ecosystem

Needs for emerging workflows and computing technologies
have driven the steady growth of PanDA’s scope beyond
“a layer over distributed batch queues". The integration
with the intelligent Data Delivery Service (iDDS) [72] has
prompted the evolution of PanDA into an ecosystem to
address challenging issues that were not foreseen in tradi-
tional workflows. iDDS is an open-source software designed
to integrate with various workload management systems,
including PanDA. It provides essential functionalities for
efficiently managing workflows at different granularities.
The following examples demonstrate the expansion of the
PanDA ecosystem. PanDA capabilities and flexibilities to
manage diverse resources and dynamically tailor jobs for
optimal workload processing have played a key role in
accomplishing the goals in these examples, while leverag-
ing iDDS for high-level workflow scheduling.

The High Luminosity upgrade to the LHC is expected to
start operation in early 2029 [73] and will deliver an unprec-
edented volume of scientific data at the multi-exabyte scale.

Fig. 12   Accumulated number of Vera C. Rubin jobs managed by PanDA since May 2021

Computing and Software for Big Science (2024) 8:4 	 Page 19 of 21  4

The present LHC computing and data management model
will not be viable to ensure fast and reliable data delivery
for processing by scientific groups distributed all over the
world. Therefore, more efficient and dynamic data access
strategies need to be developed. The ATLAS experiment
launched the Data Carousel R &D project [74] in 2018 to
study the feasibility of getting input data from tape directly
for various ATLAS workflows. PanDA and iDDS have ena-
bled a bulk production campaign, with input data resident
on tape, to be executed by staging and promptly processing
a sliding window of input data onto disk buffer, which helps
to decrease the amount of disk storage usage at any one time.

Machine learning is becoming an important tool for
data analysis in science experiments. A hyperparameter
is a parameter to control the training process in machine
learning. Hyperparameter Optimization (HPO) is a resource-
intensive procedure to choose a set of optimal hyperparam-
eters for a machine learning algorithm. A fully automated
platform has been built with PanDA and iDDS on top of
geographically distributed GPU resources provided by the
Grid, HPCs, and clouds, such that a huge computing power
can be applied to large-scale HPO sessions. This platform
incorporates iterative approaches to search hyperparameters,
such as Bayesian Optimization through Nevergrad [75] or
Scikit-learn [76]. Those approaches require a master appli-
cation to collect results and trigger successive rounds of
hyperparameter generation and evaluation based on previ-
ous results.

Active learning is a technique to guide the sampling of
the multi-dimensional phase space to find the exclusion
contours in an iterative process: the sampled theory phase
space points are selected such that the vicinity of the exclu-
sion region is prioritized, reducing the sampling density
in the less-interesting areas. It allows searching in a larger
space at the same precision while reducing resource usage
under the same search space. Users can process, through the
PanDA ecosystem, analysis workflows composed of inte-
grated pipelines and active learning to achieve comprehen-
sive exclusion.

HPCs and LCFs are large resources, and future genera-
tions of these facilities are expected to have artificial intelli-
gence and machine learning as principal application targets.
Considerable effort has been devoted to bringing HPCs and
LCFs into PanDA, leading to the development of the fine-
grained work scheduling capability in the PanDA ecosystem
to enable the high-efficient utilization of these resources.
Harvester has played a key role in dealing with various HPC/
LCF-specific requirements and operational constraints. The
rapidly growing Function-as-a-Service (FaaS) area has been
identified as a possible solution to leverage HPCs and LCFs
effectively. A high-performance FaaS system, funcX [77],
orchestrates scientific workloads across diverse resources,
operating as a persistent gateway service in front of an HPC/

LCF to route workloads to the resource. New Harvester
plugins are under development to integrate funcX with the
PanDA ecosystem, such that funcX provides a secure and
capable access path for PanDA workloads to reach HPC/
LCF resources and be executed by a trusted and locally resi-
dent service.

As illustrated by the previous examples, advanced and
complex workflows have gained increasing importance in
scientific experiments. Support for these workflows allows
users to exploit remote computing resources and service
providers distributed worldwide, overcoming limitations on
local resources and services. The computing options keep
increasing across traditional resource providers as well as
emerging service levels like FaaS, Platform-as-a-Service
(PaaS), and Container-as-a-Service (CaaS), each one pro-
viding new advantages and constraints. Users can signifi-
cantly benefit from these providers, but at the same time, it is
cumbersome to deal with multiple providers even in a single
analysis workflow with fine-grained requirements coming
from their applications’ nature and characteristics. There
are quite a lot of issues to address, such as the isolation
of users from the complexities of distributed heterogeneous
providers, resource provisioning for CPU and GPU hybrid
applications, integration of FaaS, PaaS, and CaaS providers,
smart workload routing, knowledge-based automatic data
placement, seamless execution of complex workflows, inter-
operability between pledged and user resources, interactivity
for users on top of asynchronous resources, and on-demand
data production. The PanDA ecosystem has been ready to
cope with these issues and develop solutions for present and
future data-intensive experiments.

Conclusions

It is an extremely difficult challenge to manage data-inten-
sive workloads in terms of effective resource usage, proac-
tive placement of large volumes of data, and quick delivery
of analysis results. PanDA provides a solution for scientific
experiments to fully exploit their distributed heterogeneous
resources fully with demonstrated scalability, usability, flex-
ibility, and robustness. The modular and horizontally scal-
able architecture of PanDA has been successfully proven
over nearly two decades of steady operation in ATLAS,
allowing incremental system evolution to adapt to emerging
computing technologies in processing, storage, networking,
and distributed computing middleware.

The PanDA system has performed very well for ATLAS
including the LHC Run 1 and Run 2 data-taking periods
while expanding the scope to two big data experiments, the
Vera C. Rubin Observatory and the sPHENIX experiment.

Advanced and complex workflows have gained increas-
ing importance in science experiments, driving the steady

	 Computing and Software for Big Science (2024) 8:4 4   Page 20 of 21

growth of PanDA evolving into an ecosystem. There are a
great number of issues to support emerging workflows and
computing technologies, and new developments and chal-
lenges are still coming. The PanDA ecosystem is ready to
cope with those issues and develop solutions for present and
future data-intensive experiments.

Acknowledgements  This work was done as part of the distributed
computing research and development program within the ATLAS
Collaboration. We thank our ATLAS colleagues for their support. In
particular, we wish to acknowledge the contributions of the ATLAS
Distributed Computing (ADC) team. Copyright 2023 CERN for the
benefit of the ATLAS Collaboration. Reproduction of this article or
parts of it is allowed as specified in the CC-BY−4.0 license. This
manuscript has been authored by employees of Brookhaven Science
Associates, LLC under Contract No. DE-SC0012704 with the U.S.
Department of Energy. The publisher by accepting the manuscript for
publication acknowledges that the United States Government retains
a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes.

Author Contributions  TM wrote the main manuscript text and other
authors contributed relevant sections. All authors reviewed the
manuscript.

Data availability  The authors confirm that the data supporting the find-
ings of this study are available within the article.

Declarations 

Conflict of Interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Evans, L, Bryant, P (eds.) (2008) LHC Machine. J Inst 3: 08001.
https://​doi.​org/​10.​1088/​1748-​0221/3/​08/​S08001

	 2.	 ATLAS Collaboration (2008) The ATLAS Experiment at the
CERN Large Hadron Collider. J Inst 3:08003. https://​doi.​org/​10.​
1088/​1748-​0221/3/​08/​S08003

	 3.	 Barisits M et al (2019) Rucio: scientific data management. Comput
Softw Big Sci 3:11. https://​doi.​org/​10.​1007/​s41781-​019-​0026-3

	 4.	 Worldwide LHC Computing Grid (WLCG). https://​wlcg.​web.​
cern.​ch/. Accessed 13 Nov 2023

	 5.	 Argonne Leadership Computing Facility. https://​www.​alcf.​anl.​
gov/. Accessed 13 Nov 2023

	 6.	 Oak Ridge Leadership Computing Facility. https://​www.​olcf.​ornl.​
gov/. Accessed 13 Nov 2023

	 7.	 Ivezic Z et al (2019) LSST: from science drivers to reference
design and anticipated data products. Astrophys J 873(2):111.
https://​doi.​org/​10.​3847/​1538-​4357/​ab042c

	 8.	 Adare A, et al An upgrade proposal from the PHENIX Collabora-
tion arXiv:​1501.​06197

	 9.	 Grigoras AG et al (2014) JAliEn—a new interface between
the AliEn jobs and the central services. J Phys Conf Ser
523(1):012010. https://​doi.​org/​10.​1088/​1742-​6596/​523/1/​012010

	10.	 ALICE Collaboration (2008) The ALICE experiment at the CERN
LHC. A large ion collider experiment. JINST 3: 08002. https://​
doi.​org/​10.​1088/​1748-​0221/3/​08/​S08002

	11.	 Sfiligoi I (2008) glideinWMS-a generic pilot-based workload
management system. J Phys Conf Ser 119(6):062044. https://​doi.​
org/​10.​1088/​1742-​6596/​119/6/​062044

	12.	 Collaboration CMS (2008) The CMS experiment at the CERN
LHC. JINST 3:08004. https://​doi.​org/​10.​1088/​1748-​0221/3/​08/​
S08004

	13.	 Stagni F et al (2020) The DIRAC interware: current, upcom-
ing and planned capabilities and technologies. EPJ Web Conf.
245:03035. https://​doi.​org/​10.​1051/​epjco​nf/​20202​45030​35

	14.	 LHCb Collaboration (2008) The LHCb detector at the LHC.
JINST 3: 08005. https://​doi.​org/​10.​1088/​1748-​0221/3/​08/​S08005

	15.	 Kou E, et al The Belle II Physics Book arXiv:​1808.​10567
	16.	 The CTA Consortium (2011) Design concepts for the Cherenkov

Telescope Array CTA: An advanced facility for ground-based
high-energy gamma-ray astronomy. Exp Astron 32:193. https://​
doi.​org/​10.​1007/​s10686-​011-​9247-0

	17.	 Deelman E et al (2019) The evolution of the Pegasus Workflow
Management Software. Comput Sci Eng 21(4):22–36. https://​doi.​
org/​10.​1109/​MCSE.​2019.​29196​90

	18.	 LIGO–Virgo–KAGRA Collaboration (2020) Prospects for observ-
ing and localizing gravitational-wave transients with advanced
LIGO, advanced Virgo and KAGRA. Living Rev Relat 23: 3.
https://​doi.​org/​10.​1007/​s41114-​020-​00026-9

	19.	 VOMS—Virtual Organization Membership Service in Grid com-
puting. https://​itali​angrid.​github.​io/​voms/. Accessed 13 Nov 2023

	20.	 Ceccanti E et al (2017) The INDIGO-Datacloud authentication
and authorization infrastructure. J Phys Conf Ser 898(10): 10201.
https://​doi.​org/​10.​1088/​1742-​6596/​898/​10/​102016

	21.	 OpenID Connect (OIDC). https://​openid.​net/​conne​ct/. Accessed
13 Nov 2023

	22.	 OAuth 2.0. https://​oauth.​net/2/. Accessed 13 Nov 2023
	23.	 Apache HTTP Server—an open-source HTTP server for modern

operating systems. https://​httpd.​apache.​org/. Accessed 13 Nov
2023

	24.	 Fullana Torregrosa E et al (2019) Grid production with the
ATLAS Event Service. EPJ Web Conf. 214:04016. https://​doi.​
org/​10.​1051/​epjco​nf/​20192​14040​16

	25.	 Python Web Server Gateway Interface (WSGI). https://​peps.​
python.​org/​pep-​3333/. Accessed 13 Nov 2023

	26.	 Apache module supporting the Python WSGI specification.
https://​modws​gi.​readt​hedocs.​io/​en/​master/. Accessed 13 Nov
2023

	27.	 Anisenkov A et al (2020) CRIC: computing resource information
catalogue as a unified topology system for a large scale, hetero-
geneous and dynamic computing infrastructure. EPJ Web Conf.
245:03032. https://​doi.​org/​10.​1051/​epjco​nf/​20202​45030​32

	28.	 Nilsen JK et al (2015) ARC control tower: a flexible generic
distributed job management framework. J Phys Conf Ser
664:03032. https://doi.org/10.1088/1742-6596/664/6/062042

	29.	 Google Cloud Logging. https://​cloud.​google.​com/​loggi​ng/.
Accessed 13 Nov 2023

	30.	 Fluentd—an open source data collector for unified logging layer.
https://​www.​fluen​td.​org. Accessed 13 Nov 2023

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1007/s41781-019-0026-3
https://wlcg.web.cern.ch/
https://wlcg.web.cern.ch/
https://www.alcf.anl.gov/
https://www.alcf.anl.gov/
https://www.olcf.ornl.gov/
https://www.olcf.ornl.gov/
https://doi.org/10.3847/1538-4357/ab042c
http://arxiv.org/abs/1501.06197
https://doi.org/10.1088/1742-6596/523/1/012010
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1088/1742-6596/119/6/062044
https://doi.org/10.1088/1742-6596/119/6/062044
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1051/epjconf/202024503035
https://doi.org/10.1088/1748-0221/3/08/S08005
http://arxiv.org/abs/1808.10567
https://doi.org/10.1007/s10686-011-9247-0
https://doi.org/10.1007/s10686-011-9247-0
https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.1007/s41114-020-00026-9
https://italiangrid.github.io/voms/
https://doi.org/10.1088/1742-6596/898/10/102016
https://openid.net/connect/
https://oauth.net/2/
https://httpd.apache.org/
https://doi.org/10.1051/epjconf/201921404016
https://doi.org/10.1051/epjconf/201921404016
https://peps.python.org/pep-3333/
https://peps.python.org/pep-3333/
https://modwsgi.readthedocs.io/en/master/
https://doi.org/10.1051/epjconf/202024503032
https://cloud.google.com/logging/
https://www.fluentd.org

Computing and Software for Big Science (2024) 8:4 	 Page 21 of 21  4

	31.	 Logstash—a server-side data processing pipeline. https://​www.​
elast​ic.​co/​logst​ash/. Accessed 13 Nov 2023

	32.	 Apache ActiveMQ—flexible and powerful open source multi-
protocol messaging. https://​activ​emq.​apache.​org/. Accessed 13
Nov 2023

	33.	 Django Framework. https://​www.​djang​oproj​ect.​com. Accessed 13
Nov 2023

	34.	 ElasticSearch—an open search and analytics solution. https://​
www.​elast​ic.​co/. Accessed 13 Nov 2023

	35.	 Karavakis E et al (2017) Unified monitoring architecture for IT
and grid services. J Phys Conf Ser 898:092033. https://​doi.​org/​10.​
1088/​1742-​6596/​898/9/​092033

	36.	 Data-Driven Documents. https://​d3js.​org. Accessed 13 Nov 2023
	37.	 Chart.js —Open source HTML5 Charts. https://​www.​chart​js.​org.

Accessed 13 Nov 2023
	38.	 Cuhadar Donszelmann T et al (2020) ART—ATLAS Release

Tester using the Grid. EPJ Web Conf. 245:05015. https://​doi.​org/​
10.​1051/​epjco​nf/​20202​45050​15

	39.	 The ATLAS Experiment’s main offline software repository.
https://​gitlab.​cern.​ch/​atlas/​athena. Accessed 13 Nov 2023

	40.	 JSON Web Token (JWT)—A compact URL-safe means of repre-
senting claims to be transferred between two parties. https://​jwt.​
io/. Accessed 13 Nov 2023

	41.	 HTCondor—a software system that creates a high-throughput
computing environment. https://​htcon​dor.​org/. Accessed 13 Nov
2023

	42.	 Bockelman B et al (2021) Principles, technologies, and time: the
translational journey of the HTCondor-CE. J Comput Sci 52:
101213. https://doi.org/10.1016/j.jocs.2020.101213

	43.	 Ellert M et al (2007) Advanced Resource Connector middleware
for lightweight computational Grids. Future Gener Comput Syst
23(2):219–240. https://​doi.​org/​10.​1016/j.​future.​2006.​05.​008

	44.	 Kubernetes—Production-Grade Container Orchestration. https://​
kuber​netes.​io/. Accessed 13 Nov 2023

	45.	 Jette M, et al (2003) SLURM: Simple linux utility for resource
management. https://​doi.​org/​10.​1007/​10968​987_3

	46.	 Portable Batch System (PBS). http://​www.​pbspro.​org/. Accessed
13 Nov 2023

	47.	 Lancium—Power Orchestration for Energy-Intensive Industries.
https://​lanci​um.​com/. Accessed 13 Nov 2023

	48.	 CILogon—An Integrated Identity and Access Management Plat-
form for Science. https://​www.​cilog​on.​org/. Accessed 13 Nov
2023

	49.	 European Organization for Nuclear Research (CERN). https://​
www.​home.​cern/. Accessed 13 Nov 2023

	50.	 The Scientific Data and Computing Center (SDCC) at Brookhaven
National Laboratory (BNL). https://​www.​sdcc.​bnl.​gov/. Accessed
13 Nov 2023

	51.	 Google Identity Platform. https://​cloud.​google.​com/​ident​ity-​platf​
orm. Accessed 13 Nov 2023

	52.	 McNab A (2010) The GridSite Web/Grid security system. J Phys
Conf Ser 219:062058. https://​doi.​org/​10.​1088/​1742-​6596/​219/6/​
062058

	53.	 HEP-SPEC06 (HS06) benchmarking. http://​w3.​hepix.​org/​bench​
marki​ng. Accessed 13 Nov 2023

	54.	 PanDA documentation. https://​panda-​wms.​readt​hedocs.​io/​en/​lat-
est/​index.​html. Accessed 13 Nov 2023

	55.	 Harvester documentation. https://​github.​com/​HSF/​harve​ster/​wiki.
Accessed 13 Nov 2023

	56.	 Stanford Linear Accelerator Center (SLAC). https://​www6.​slac.​
stanf​ord.​edu/. Accessed 13 Nov 2023

	57.	 Helm—the package manager for Kubernetes. https://​helm.​sh/.
Accessed 13 Nov 2023

	58.	 OKD—The Community Distribution of Kubernetes that powers
Red Hat OpenShift. https://​www.​okd.​io/. Accessed 13 Nov 2023

	59.	 GitHub—a code hosting platform for version control and collabo-
ration. https://​github.​com/. Accessed 13 Nov 2023

	60.	 Apache License, Version 2.0. https://​www.​apache.​org/​licen​ses/​
LICEN​SE-2.0. Accessed 13 Nov 2023

	61.	 Jira—Issue & Project Tracking Software. https://​www.​atlas​sian.​
com/​softw​are/​jira. Accessed 13 Nov 2023

	62.	 The Python Package Index (PyPI). https://​pypi.​org/. Accessed 13
Nov 2023

	63.	 Titan at Oak Ridge National Laboratory. https://​www.​olcf.​ornl.​
gov/​olcf-​resou​rces/​compu​te-​syste​ms/​titan/. Accessed 13 Nov
2023

	64.	 Theta at Argonne Leadership Computing Facility. https://​www.​
alcf.​anl.​gov/​alcf-​resou​rces/​theta. Accessed 13 Nov 2023

	65.	 Cori at National Energy Research Scientific Computing Center
(NERSC). https://​docs.​nersc.​gov/​syste​ms/​cori/. Accessed 13 Nov
2023

	66.	 Perlmutter at NERSC. https://​docs.​nersc.​gov/​syste​ms/​perlm​utter/.
Accessed 13 Nov 2023

	67.	 MareNostrum 4 Supercomputer at the Barcelona Supercomputing
Center. https://​www.​bsc.​es/​maren​ostrum. Accessed 13 Nov 2023

	68.	 Vega at the Institute of Information Science. https://​www.​izum.​
si/​en/​vega-​en/. Accessed 13 Nov 2023

	69.	 Barreiro Megino FH et al (2021) Seamless Integration of Com-
mercial Clouds with ATLAS Distributed Computing. EPJ Web
Conf. 251:02005. https://​doi.​org/​10.​1051/​epjco​nf/​20212​51020​05

	70.	 Karavakis E, et al (2023) Integrating the PanDA Workload Man-
agement System with the Vera C. Rubin Observatory. Proceedings
of 26th International Conference on Computing in High Energy
and Nuclear Physics (CHEP) (to appear)

	71.	 Harrison M, Ludlam T, Ozaki S (2003) RHIC project overview.
Nucl Instrum Meth A 499:235–244. https://​doi.​org/​10.​1016/​
S0168-​9002(02)​01937-X

	72.	 Guan W et al (2021) An intelligent Data Delivery Service for
and beyond the ATLAS experiment. EPJ Web Conf. 251:02007.
https://​doi.​org/​10.​1051/​epjco​nf/​20212​51020​07

	73.	 LHC long shutdown schedule change. https://​hilum​ilhc.​web.​cern.​
ch/​artic​le/​ls3-​sched​ule-​change. Accessed 13 Nov 2023

	74.	 Borodin M et al (2021) The ATLAS Data Carousel Project Status.
EPJ Web Conf. 251:02006. https://​doi.​org/​10.​1051/​epjco​nf/​20212​
51020​06

	75.	 Bennet P et al (2021) Nevergrad: black-box optimization plat-
form. ACM SIGEVOlution 14:8. https://​doi.​org/​10.​1145/​34603​
10.​34603​12

	76.	 Pedregosa F et al (2011) Scikit-learn: machine learning in Python.
J Mach Learn Res 12:2825–2830

	77.	 Chard R, et al (2020) funcX: a federated function serving fabric
for science. Proceedings of 29th international symposium on high-
performance parallel and distributed computing, 65. https://doi.
org/10.1145/3369583.3392683

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.elastic.co/logstash/
https://www.elastic.co/logstash/
https://activemq.apache.org/
https://www.djangoproject.com
https://www.elastic.co/
https://www.elastic.co/
https://doi.org/10.1088/1742-6596/898/9/092033
https://doi.org/10.1088/1742-6596/898/9/092033
https://d3js.org
https://www.chartjs.org
https://doi.org/10.1051/epjconf/202024505015
https://doi.org/10.1051/epjconf/202024505015
https://gitlab.cern.ch/atlas/athena
https://jwt.io/
https://jwt.io/
https://htcondor.org/
https://doi.org/10.1016/j.future.2006.05.008
https://kubernetes.io/
https://kubernetes.io/
https://doi.org/10.1007/10968987_3
http://www.pbspro.org/
https://lancium.com/
https://www.cilogon.org/
https://www.home.cern/
https://www.home.cern/
https://www.sdcc.bnl.gov/
https://cloud.google.com/identity-platform
https://cloud.google.com/identity-platform
https://doi.org/10.1088/1742-6596/219/6/062058
https://doi.org/10.1088/1742-6596/219/6/062058
http://w3.hepix.org/benchmarking
http://w3.hepix.org/benchmarking
https://panda-wms.readthedocs.io/en/latest/index.html
https://panda-wms.readthedocs.io/en/latest/index.html
https://github.com/HSF/harvester/wiki
https://www6.slac.stanford.edu/
https://www6.slac.stanford.edu/
https://helm.sh/
https://www.okd.io/
https://github.com/
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://pypi.org/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.alcf.anl.gov/alcf-resources/theta
https://www.alcf.anl.gov/alcf-resources/theta
https://docs.nersc.gov/systems/cori/
https://docs.nersc.gov/systems/perlmutter/
https://www.bsc.es/marenostrum
https://www.izum.si/en/vega-en/
https://www.izum.si/en/vega-en/
https://doi.org/10.1051/epjconf/202125102005
https://doi.org/10.1016/S0168-9002(02)01937-X
https://doi.org/10.1016/S0168-9002(02)01937-X
https://doi.org/10.1051/epjconf/202125102007
https://hilumilhc.web.cern.ch/article/ls3-schedule-change
https://hilumilhc.web.cern.ch/article/ls3-schedule-change
https://doi.org/10.1051/epjconf/202125102006
https://doi.org/10.1051/epjconf/202125102006
https://doi.org/10.1145/3460310.3460312
https://doi.org/10.1145/3460310.3460312

	PanDA: Production and Distributed Analysis System
	Abstract
	Introduction
	Concepts
	Computing and Storage Resources and Worker Node
	PanDA Queues
	Virtual Organization
	User
	Workflow and Workload
	Task
	Job and Worker
	Global Share
	Priority

	System Architecture
	JEDI
	PanDA Server
	Pilot
	Pilot Highlights

	PanDA Monitor
	PanDA Monitor Architecture
	PanDA Monitor Views

	Harvester
	Harvester Workload Mapping
	Harvester Architecture

	PanDA Database
	Authentication and Authorization
	Resource Authentication and Authorization

	Client Modules and Tools

	Functionality Details
	Brokerage
	Dynamic Optimization of Task Parameters
	Job Sizing
	Automatic Data Distribution and Aggregation
	Task and Job Retry Strategies
	Customizing PanDA

	Infrastructure and Installation
	Infrastructure Sizing
	Service Deployment with Kubernetes and Helm Charts
	Database Schema Installation, Upgrade, and Versioning

	Project Management
	Results and Experience
	The Evolving PanDA Ecosystem
	Conclusions
	Acknowledgements
	References

