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Abstract
The Production and Distributed Analysis (PanDA) system is a data-driven workload management system engineered to oper-
ate at the LHC data processing scale. The PanDA system provides a solution for scientific experiments to fully leverage their 
distributed heterogeneous resources, showcasing scalability, usability, flexibility, and robustness. The system has successfully 
proven itself through nearly two decades of steady operation in the ATLAS experiment, addressing the intricate requirements 
such as diverse resources distributed worldwide at about 200 sites, thousands of scientists analyzing the data remotely, the 
volume of processed data beyond the exabyte scale, dozens of scientific applications to support, and data processing over 
several billion hours of computing usage per year. PanDA’s flexibility and scalability make it suitable for the High Energy 
Physics community and wider science domains at the Exascale. Beyond High Energy Physics, PanDA’s relevance extends 
to other big data sciences, as evidenced by its adoption in the Vera C. Rubin Observatory and the sPHENIX experiment. As 
the significance of advanced workflows continues to grow, PanDA has transformed into a comprehensive ecosystem, effec-
tively tackling challenges associated with emerging workflows and evolving computing technologies. The paper discusses 
PanDA’s prominent role in the scientific landscape, detailing its architecture, functionality, deployment strategies, project 
management approaches, results, and evolution into an ecosystem.
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Introduction

The Production and Distributed Analysis (PanDA) system 
is a data-driven workload management system engineered 
to operate at the LHC [1] data processing scale. It has been 
developed to meet the intricate requirements for data (re)
processing, detector simulation, and physics analysis in the 
ATLAS experiment [2], where diverse resources are distrib-
uted at about 200 computing centers spanning more than 40 
countries, thousands of scientists analyze the data remotely, 
the volume of processed data is beyond the exabyte scale, 
dozens of scientific applications and emerging workflows 
are supported, and data processing requires several billion 

hours of computing usage per year. A design principle of 
PanDA was the tight integration of workload and data man-
agement, i.e., the tight integration with the distributed data 
management system Rucio [3], to allow ATLAS to manage 
and process close to 100 petabytes of data per year in an effi-
cient way. PanDA was also designed to have the flexibility 
to adapt to emerging computing technologies in processing, 
storage, networking, and distributed computing middleware. 
The system has seamlessly integrated a wide range of com-
puting resources, while the spectrum of computing options 
keeps increasing across the Worldwide LHC Computing 
Grid (WLCG) [4], volunteer computing, High-Performance 
Computing (HPC) operating independently of WLCG, 
Leadership Computing Facilities (LCFs) [5, 6], and com-
mercial clouds. The scalability and flexibility make PanDA 
well-suited for adoption by various exabyte-scale scientific 
communities. The interest in PanDA by other big data sci-
ences, such as the Vera C. Rubin Observatory [7] and the 
sPHENIX experiment [8], brought the primary motivation to 
generalize PanDA for the High Energy Physics community, 
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other data-intensive sciences, and wider Exascale scientific 
domains.

Many other experiments and scientific programs also have 
broad needs for large-volume data processing on diverse 
and geographically distributed resources. While some such 
experiments have adopted PanDA, many other systems have 
been developed as well over the years and are in use across 
the community. Prominent examples include JAliEn [9] for 
the ALICE experiment [10], GlideinWMS [11] for the CMS 
experiment [12], DIRAC [13] for the LHCb [14], Belle II 
[15], and CTA [16] experiments, and Pegasus WMS [17] 
for the LIGO experiment [18]. Signature features of PanDA 
within this range of systems include its extreme scalabil-
ity, grounded in its use of still-current technologies such as 
REST interfaces fronting horizontally scalable web services; 
tight integration with data management, in particular Rucio, 
enabling sophisticated choreography of data-intensive work-
flows; modular encapsulation of resource specifics; an inte-
gral workflow management system enabling highly complex 
workflows to be defined and executed; and comprehensive 
monitoring ranging from high-level system overviews to 
drill-down details serving analysis users, operations experts, 
and system developers and debuggers.

This paper is structured as follows: In Sect. "Con-
cepts" we outline the main concepts for the rest of this 
paper. Section "System Architecture" describes the system 
architecture of the PanDA system with implementation high-
lights. Functionality details of PanDA and its adaptability 
are discussed in Sect. "Functionality Details", followed by 
descriptions of typical PanDA deployment in Sect. "Infra-
structure and Installation" and project management strate-
gies in Sect. "Project Management". Section "Results and 
Experience" is dedicated to presenting results and sharing 
valuable experiences, while Sect. "The evolving PanDA 
Ecosystem" focuses on tracing the evolution of the PanDA 
ecosystem. Finally, in Sect. "Conclusions", we close the 
paper with a summary and an outlook on future challenges 
to expand PanDA for the next generation of big data science 
experiments.

Concepts

The main concepts of the PanDA system are Computing 
and storage resources, Worker node, PanDA queues, Virtual 
Organization, User, Workflow, Workload, Task, Job, Worker, 
Priority, and Global share.

Computing and Storage Resources and Worker Node

Computing resource providers offer computing resources 
with various processing capabilities, such as the grid, HPC 
centers, and commercial cloud services. A worker node 

represents various entities depending on the workload or 
resource configuration, such as a (virtual) host, a cluster of 
multiple hosts, or a slot on a host. It encompasses a combi-
nation of CPUs, GPUs/accelerators/co-processors, memory, 
and disk space.

Storage resource providers accommodate data storage 
needs. A storage resource is composed of a persistent data 
storage with disk or tape, and a storage management service 
running on top of it. The association between computing 
and storage resources can be arbitrary, but in most cases 
resources from the same provider are associated with each 
other. PanDA integrates diverse and geographically distrib-
uted computing and storage resources to provide a consistent 
interface to users.

PanDA Queues

A PanDA queue represents a group of worker nodes in a 
computing resource with a certain set of attributes describ-
ing their specifications and requirements, such as CPU 
type and power, memory, disk space, and walltime limit. 
For example, certain resource providers make computing 
resources available through batch queues in the underlying 
batch systems. In such cases, one PanDA queue is typically 
defined for each batch queue. It is also possible to define 
multiple PanDA queues for a single batch queue, allowing 
them to share worker nodes underneath. A PanDA queue is 
associated with one or more storage resources for automatic 
data motion, which is described in Sect. "Automatic Data 
Distribution and Aggregation".

Virtual Organization

A virtual organization (VO) refers to a dynamic set of indi-
viduals defined around a set of resource-sharing rules and 
conditions. Its members are geographically apart but work 
for a common objective, such as a scientific experiment, for 
example, the ATLAS collaboration, or research program. 
VOs are implemented in VOMS [19] or Indigo IAM [20], 
and can define groups with certain criteria, such as affili-
ation, role, and scientific objective, e.g. a working group 
describes a group of people who collaborate together to 
achieve a specific objective in the VO.

User

A user is a person interacting with PanDA and is uniquely 
identified by a username. PanDA authenticates and author-
izes users to allow or reject access to computing and storage 
resources based on their profile information. PanDA has an 
Identity and Access Management (IAM) scheme fully com-
pliant with OIDC/OAuth2.0 [21, 22], capable of identity 
federation among scientific and academic identity providers. 
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PanDA also supports legacy X.509 authentication. More 
details of the authentication and authorization mechanism 
can be found in Sect. "Authentication and Authorization".

Each user has the flexibility to belong to one or more 
VOs. Furthermore, a user can hold one or more roles within 
each VO, allowing them to have different responsibilities 
and privileges. There are six roles:

•	 Scientists run private workloads for their analysis on 
PanDA without any special privileges. The difference 
between private and managed workloads is described in 
Sect. "Workflow and Workload".

•	 Production managers submit coordinated, large-scale 
managed workloads on behalf of the VO groups. For 
example, this could be campaigns for Monte Carlo simu-
lation, reprocessing and derivations, or testing and vali-
dating new releases of the experiment’s software.

•	 Coordinators define resource allocations among groups 
and activities in the VO. They are also responsible for 
providing regular reports to auditors and funding agen-
cies.

•	 Computing center administrators are administrators at 
computing centers providing computing resources.

•	 Experts are developers of the PanDA system.
•	 Shift team members supervise the system operation and 

execution of workloads on their duties for a period of 
time, taking first-level actions, e.g. contacting computing 
center administrators and developers, in case of failures 
or anomalies.

Workflow and Workload

Figure 1 represents the different concepts in the workflow 
hierarchy, which will be described in more detail in this 

section about workflows and workloads, and in the upcom-
ing Sects. "Task" and "Job and Worker" about tasks and 
jobs.

A workflow is a top-level work entity in the hierarchical 
organization of the processing. One workflow corresponds to 
a scientific objective defining intermediate steps for the user 
to accomplish. Illustrative examples of scientific objectives 
include the search for new particles, fine-tuning detectors in 
multi-dimensional parameter spaces, conducting sky surveys 
to identify astronomical objects, and executing bulk data 
processing for experiment collaborations.

A workload is a software program or application that uti-
lizes computing resources to achieve one of the intermedi-
ate steps in a workflow. A workflow comprises a group of 
constituent workloads and their topological relationship. The 
user runs all workloads or a subset of workloads in a work-
flow on PanDA. It is possible to run managed workloads that 
are organized and coordinated centrally at the VO level to 
utilize a substantial amount of computing resources within 
the VO. Individual users can also run workloads indepen-
dently, using their own allocations on behalf of VO groups 
with specific objectives, such as studying particular physics 
processes. A workflow may comprise both managed work-
loads and those initiated by individual users.

While the workflow in Fig. 1 is a simple linear sequence 
of steps, the dependencies and relations between steps can 
be more complex. For example, it is possible for each work-
load to take multiple output data from upstream workloads 
as input and feed its output data to multiple downstream 
workloads. The initiation of a downstream workload occurs 
either (1) when the upstream workload is completed, ensur-
ing that all input data are ready, or (2) while the upstream 
workload is still running and partial input data are avail-
able. The configuration for this behavior is flexible and can 
be tailored to specific workflow requirements. In scenario 

Fig. 1   Representation of a basic workflow example composed of a 
sequence of workloads that depend on the previous step. Each work-
load is divided into jobs, which process an input data subset (e.g. a 

set of input files) and generate an output data subset (e.g. one output 
file). The output data of one workload are fed as input into the next 
workload in the sequence
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(2), both the upstream and downstream workloads can run 
concurrently, minimizing delays associated with waiting for 
complete input data.

Task

A task is a PanDA object with distinct states mapping to a 
single workload. A task takes input data and produces output 
data. The purpose of the task is to process the input data 
entirely. Generally, the input and output data are collections 
of files, but there are also other formats, such as a group of 
sequence numbers, metadata, a collection of sub-file data, 
or notifications.

Job and Worker

A job is a PanDA object with distinct states that corresponds 
a sub-unit of a workload partitioned from a task. A single 
task consists of multiple jobs, and each job is executed by 
a worker, which is an abstraction of the execution point, 
such as a worker node and CPU cluster. A worker refers to a 
software program or a collection of software programs that 
assumes the responsibility of executing one or more jobs 
on computing resources. Each job is tailored based on the 
user’s preference (if any) and/or constraints of the computing 
resource. For example, if jobs are flexible in terms of dura-
tion and disk usage, they are generated to have a short execu-
tion time and produce small output files when processed on 
resources with limited time slots and local disk space. The 
task input is logically split into multiple subsets, and each 
job gets a subset to produce output. The collection of job 
outputs is the task output.

Global Share

Global shares define the allocation of computing resources 
among various VO groups and/or user activities. The aggre-
gation of available computing resources is dynamically par-
titioned into multiple global shares. Each task is mapped 
to a global share according to its VO group and activity 
type. Many PanDA system components internally work with 
global shares.

Priority

The priority of a task or job determines which task or job 
has precedence over other competing tasks or jobs in the 
same global share. Their priorities are relevant in each 
global share, i.e. high-priority tasks in a global share do 
not interfere with low-priority tasks in another global share. 
Generally, jobs inherit the priority of their task, but the first 
several jobs in each task have higher priorities to collect 
various metrics of the task as soon as possible. Task and job 

state transitions, as well as access to external systems like 
data transfers, are prioritized according to their priorities.

System Architecture

Figure 2 shows a schematic view of the PanDA system. 
There are five main components in the system:

•	 JEDI is a high-level engine to tailor jobs for opti-
mal usages of diverse and geographically distributed 
resources dynamically.

•	 PanDA server is the central job pool implemented as a 
stateless web service to allow asynchronous communica-
tion from users, pilot, and Harvester over HTTPS.

•	 Pilot is a transient agent to execute a job on a worker 
node, periodically reporting various metrics to the 
PanDA server throughout its lifetime.

•	 Harvester generates and submits pilots using the appro-
priate communication protocol for each resource provider 
and communicates with the PanDA server on behalf of 
the pilot as necessary.

•	 PanDA monitor is a web-based monitoring of tasks and 
jobs processed by PanDA, providing a common interface 
for end users, the central operations team, and remote site 
administrators.

JEDI and the PanDA server share the central database to 
manage tasks and jobs. PanDA monitor reads from the cen-
tral database to offer various views to users. Harvester has a 
more lightweight database, which can be either consolidated 
or distributed depending on the deployment model. Users 
interact with the PanDA system using client tools through 
the PanDA server. Details of PanDA components, database, 
authentication and authorization mechanism, and client tools 
are explained in the following sections.

JEDI

JEDI (Job Execution and Definition Interface) processes 
tasks and generates jobs for the PanDA server. The main 
functions are as follows:

•	 To receive and parse task specifications, which users sub-
mit through the PanDA server.

•	 To collect information about task input data.
•	 To decide the destination for each task output.
•	 To choose the computing resources based on the char-

acteristics and requirements of each task. The brokerage 
algorithm is described in Sect. "Brokerage".

•	 To tailor jobs as described in Sect. "Job Sizing" and 
assign jobs to computing resources by taking global 
shares into account.
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•	 To optimize task parameters for each task based on 
results of prior jobs in the same task, as described in 
Sect. "Dynamic Optimization of Task Parameters".

•	 To reassign jobs if workload distribution becomes unbal-
anced among computing resources.

•	 To take actions on tasks according to various timeout 
configurations or user commands.

•	 To finalize tasks once their input data are fully processed.

JEDI comprises a master process, stateless agents running on 
multiple threads/processes, and a fine-grained exclusive lock 
mechanism. Agents run independently and do not directly 
communicate with each other. They take work entities 
such as tasks and jobs from the database, perform actions 
on them, and update the database. Each agent is designed 
around a plugin structure with the experiment-agnostic core 
and plugins. Plugins are software add-ons to enhance JEDI’s 
capabilities to perform experiment-specific functions, such 
as interfacing with experiment-specific external services and 
performing actions required for the experiment-specific use-
cases. It is possible to configure JEDI instances to load new 
plugins and add new features.

The exclusive lock mechanism allows operations to be 
distributed across threads, processes, and instances, so that 

JEDI horizontally scales with multiple instances. For exam-
ple, while one agent process is working on a particular task, 
the task is locked, and other agent processes are prevented 
from updating the task. This is typically useful to avoid 
inconsistent modifications caused by concurrently running 
processes.

PanDA Server

The PanDA server is the central job pool. It consists of Web 
applications with a RESTful interface running on Apache 
HTTP servers [23] and time-based process schedulers. It 
takes care of jobs throughout their lifetime. The main func-
tions are as follows:

•	 To receive jobs from JEDI and other job sources that 
directly generate jobs mainly for testing purposes.

•	 To guarantee input data availability in the storage 
resources associated with the computing resources where 
jobs are scheduled to run.

•	 To dispatch jobs to worker nodes once the input data are 
transferred or when the input data are already available.

•	 To monitor jobs while they are running on worker nodes.

Fig. 2   A schematic view of the PanDA system with white boxes representing the main components. Dashed arrows show connections to data-
bases, while solid arrows describe interactions between components or from users
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•	 To dispatch metadata of sub-file data and keep track of 
the processing at the sub-file level, if the job is config-
ured to perform the fine-grained processing [24].

•	 To post-process output data once jobs are done on worker 
nodes.

•	 To take actions on jobs according to various timeout con-
figurations or user commands.

•	 To report job states to JEDI if those jobs were generated 
by JEDI.

The PanDA server scales horizontally by adding instances 
since Web servers are stateless and time-based processes 
are fine-grained.

Figure 3 below shows the architecture of a single PanDA 
server instance. PanDA Web applications are embedded in 
Web Server Gateway Interface (WSGI) [25] daemons run-
ning behind an Apache HTTP server. The parent Apache 
HTTP process spawns WSGI daemons via mod_wsgi [26] 
in addition to child HTTP processes. The number of WSGI 
daemons is static, while the number of child processes 
dynamically changes depending on the load to optimize 
resource usage of the instance. Child processes receive 
requests from actors such as users and pilots. The requests 
are passed to PanDA Web applications through an internal 
request queue and WSGI daemons. There are two types of 
requests:

•	 Synchronous requests: Actors are blocked for a while 
and receive responses when PanDA Web applications 
complete processing the requests.

•	 Asynchronous requests: Actors immediately receive a 
response and the requests are asynchronously processed. 
This is typically done when the requests invoke heavy 
procedures like access to external services. This mode 
prevents the HTTP server from being clogged.

The time-based process scheduler, the so-called PanDA dae-
mon, is a daemon in charge of launching various scripts peri-
odically. Its functionalities are very similar to the standard 
cron daemon, but it has the following advantages:

•	 No need to maintain an extra crontab configuration file.
•	 On each instance, the same script runs sequentially, i.e. 

only one process for each script, which is especially 
helpful when the script may run longer than the period 
configured. No new process will spawn until the exist-
ing one finishes, while the cron daemon blindly launches 
processes so that one has to fine-tune the frequency or 
let the script itself kill old processes to avoid duplicated 
execution.

•	 There is an exclusive control mechanism to prevent mul-
tiple instances from running the same script concurrently. 
It is also useful for sharing results between instances and 
avoiding repeating the same action multiple times. If 
this is enabled for a script, only one instance can run the 
script at a time, which is useful for long-running scripts 
that can run on any instance.

•	 Better system resource usages, e.g. limited total pro-
cesses n_proc to run scripts, reduction of the overhead 
to launch processes, and sharing of database connections 

Fig. 3   The architecture of a single PanDA server instance
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among scripts to avoid making a new database connec-
tion in every run.

Pilot

The pilot is a transient agent to execute and monitor grid 
jobs on a worker node. A grid job contains a payload that a 
user wants to execute. The payload has certain requirements, 
e.g. input and output files, that are staged by the pilot, and 
needs a working environment that is set up by the pilot. The 
payload may require running inside a container, which is 
also set up by the pilot, or in some cases by the wrapper 
script that launches the pilot. On the fine-grained processing, 
the pilot launches and feeds a payload with a metadata set of 
sub-file data downloaded from the PanDA server.

Pilot Highlights

The pilot runs on the worker nodes on local resources, grids, 
clouds, HPCs, and volunteer computers. It is downloaded 
and executed by wrapper scripts that are sent by Harvester 
3.5 to the worker nodes via batch systems. The wrapper 
selects the pilot version after checking with the CRIC infor-
mation system [27]. The pilot interacts with the PanDA 
server either directly, via the ARC Control Tower [28], or 
with the resource-facing Harvester service. Some of the pilot 
highlights are listed below:

•	 The pilot is responsible for running payloads created by 
users, while monitoring all steps and keeping the PanDA 
server updated.

–	 Any necessary input files, and produced output files 
will be transferred from/to the relevant storage ele-
ment.

–	 Input files may be accessed directly from storage by 
the payload, in which case the pilot will not transfer 
the file.

–	 The job may consist of a suite of pre-, co- and post-
processes as well as the main payload itself.

–	 The pilot can execute special utility processes, e.g. 
memory monitoring tools, running in parallel with 
the payload.

–	 All processes can be executed in their own contain-
ers, either predetermined or set by the users.

•	 All communications between pilot and external services 
(e.g. PanDA, Rucio, and others) are done with HTTPS.

•	 File transfers are handled by dedicated copy tools.

–	 Currently supported copy tools include Rucio (using 
the Rucio API), xrdcp, gfal, gs, s3, mv/cp/
ln, objectstore, lsm (locally defined site 
mover).

–	 For each file transfer (as well as for directly accessed 
files), the pilot can send a detailed report, such as 
access protocol, timestamps, and hostname, to the 
Rucio trace server.

•	 HPCs with no outbound network are supported by del-
egating communications to proxy services.

•	 Identification and reporting of 130+ unique errors, 
including detailed error diagnostics whenever available. 
It is possible to customize error handling and messages.

•	 Multiple options exist for debugging troublesome pay-
loads.

–	 Debug mode can be activated when the job or task is 
created, or after it has started.

–	 An individual job running in debug mode can be 
followed on the PanDA monitor via the tail of the 
latest modified file uploaded on each server update 
(every 5 minutes in debug mode) or live via near 
real-time logging of the payload with the help of 
Google Cloud Logging [29], Fluentd [30] and Log-
stash [31].

–	 The pilot can execute ls on a requested work direc-
tory and ps for a given process id, as well as report 
on disk usage, and make the output available on the 
PanDA monitor. It can also run the gdb debugger to 
generate core files and place them in the job log for 
later retrieval.

•	 The pilot may run in staging mode, in which it only per-
forms file staging.

•	 A single pilot can run multiple jobs sequentially until it 
runs out of time.
–	 It also has support for prompt processing, where the 

pilot immediately starts processing a payload if it 
receives job information from ActiveMQ [32]. When 
the current job has finished, the pilot resumes the 
listening mode, waiting for another payload.

•	 The pilot is user (“experiment”) independent with the 
user code stored in plugins.

–	 The plugins encapsulate all the code that is relevant 
for each pilot user.

–	 Plugins currently exist for the ATLAS, sPHENIX 
and Vera C. Rubin experiments.

–	 A joining VO can add their code specifics (e.g. how 
the payload and other tools should be executed, spe-
cial checks and algorithms) starting from a generic 
plugin

–	 Fully implemented pilot plugins range from 1,700 
to over 8,000 lines of code (the generic plugin has 
1,200 lines of code).

•	 The current pilot version is Python 3 compliant.
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–	 A pull request to the pilot GitHub repository triggers 
unit tests and runs Flake8 verification for Python 3.7, 
3.8 and 3.9 versions.

PanDA Monitor

The PanDA monitor (BigPanDAmon) is a web application 
that has been developed to serve the monitoring needs of all 
PanDA users according to their roles and behavioral charac-
teristics. It provides a set of aggregated reports, dashboards 
and graphical representations of the PanDA system objects 
such as jobs, tasks, sites, and users. The interface allows 
users to drill down into the reason for a job failure or observe 
the broad picture such as tracking the computing site per-
formance or the progress of a whole production campaign.

PanDA Monitor Architecture

The BigPanDAmon system is a Django-based [33] web 
application consisting of a set of core views and separate 
modules which can be plugged in. It collects data from dif-
ferent sources in particular the PanDA database, the CRIC 
information system, Rucio providing payload logs of jobs, 
the Elasticsearch [34] cluster where PanDA/JEDI application 
logs are exported, and the MONIT Grafana [35] instance 
where accounting data are available for the ATLAS instance.

Due to the Django object-relational mapping layer, the 
system supports Oracle and PostgreSQL databases. The 
BigPanDAmon uses the OAuth2 protocol for the authoriza-
tion of users and supports the following third-party single 
sign-on services: CERN, GitHub and Google. To improve 
response time, the system has advanced caching mechanisms 
and scheduled preprocessing tasks, which are shown in the 

data-flow diagram (Fig. 4). The database-level caching is 
used to store the prepared-to-render data and not rendered 
pages themselves. This allows one to treat the general and 
user-specific data separately. Also, a common CephFS stor-
age is mounted on all application nodes for data like job logs 
or rendered plots from Grafana.

The front-end of the application is implemented using the 
Django built-in server-side rendering of static content and 
AngularJS for interactive features. For visualizations, several 
libraries are used, in particular D3.js [36] as the default one, 
and Chart.js [37], based on HTML5 features for plots with a 
large number of objects, for example, a profile of a task with 
a few thousand jobs.

PanDA Monitor Views

In total, there are 70 different views, all of which can return 
information in the form of an interactive web page or as 
JSON output. In addition, there are 54 APIs for delivering 
complementary information on demand. The core views pro-
vide essential information about the principal objects of the 
PanDA system listed in Sect. "Concepts". Therefore, they 
cover various monitoring needs of users according to their 
roles.

Core Views

This group of views consists of three types: summary, info, 
and regional summary. The summary view aggregates attrib-
utes of objects by counting the number of occurrences for 
each property value and represents it in a table where the 
number of occurrences is a link to the same view filtered 
by it (Fig. 5). This way, a user can obtain a detailed view 

Fig. 4   BigPanDAmon data flow diagram
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of certain objects of interest or observe the broader picture. 
This type of view exists for jobs, tasks, PanDA queues, and 
computing resources.

The info view collects information related to a particu-
lar object. For example, in a task info view, there is a list 
of all task parameters, a summary of its job states, a list 
of associated datasets, processing progress in the number 
of files, and staging progress from the tape storage if it 
is applicable for the task. There are info views for jobs, 
tasks, datasets, files, PanDA queues, computing resources, 
and users.

The regional summary view represents the number of 
job states for each PanDA queue, computing resource, and 
a group of computing resources. This is an essential view 
for system administrators of computing sites and operators.

Modules

It is possible to customize a BigPanDAmon instance with 
various modules. Each module provides optimal views to 
diagnose issues on a specific workflow, system components/
objects (e.g. Harvester and global shares), or campaigns, 
with a helpful interface to track them down. The experi-
ment-specific modules compose the information of PanDA 
objects and other systems used in experiments. For example, 
the ATLAS instance installs the ATLAS release tester [38] 
module to monitor nightly tests running as PanDA jobs that 
verify newly added merge requests on the main repository of 
the ATLAS offline software framework, Athena [39].

Harvester

Harvester is a resource-facing service between the PanDA 
server and a collection of pilots for resource provisioning 
and workload shaping. It is a lightweight stateless service 

Fig. 5   Example of jobs summary view
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running on virtual machines for the virtual organization or 
edge nodes of HPC centers, to provide a uniform view for 
various resources, with a modular design to support different 
resource types and workflows.

Harvester Workload Mapping

There are various types of computing resources, including 
but not limited to:

•	 Grid resources are dedicated to the experiment, hence 
available 24/7 with stable throughput. Grid sites are 
rather homogeneous, i.e. they have similar architecture, 
policies, and behavior.

•	 HPC and opportunistic resources usually provide a huge 
amount of slots but at irregular intervals, which yield 
bursty and intermittent throughput. Each HPC center can 
have different edge services and operational policies.

•	 Cloud resources, including industrial clouds in research 
infrastructures and various commercial clouds, have 
gained importance in scientific research. Different 
clouds have different policies and require different APIs 
to access.

Thus, the Harvester needs to face diverse resources with 
common machinery for pilot provisioning and to have the 
capability of dynamically optimizing resource allocation 
among PanDA queues (for example, single-core, multi-core, 
and high-memory). To achieve this, the Server-Harvester-
Pilot model has been adopted. The concept of job-worker 
mapping is introduced in Harvester, where Job and Worker 
are described in Sect. "Job and Worker". A worker is a rep-
resentative of a collection of pilots that run on a designated 
computing resource such as a worker node and CPU cluster. 
A worker corresponds to a pilot in most Grid usecases.

Harvester supports various types of Worker provi-
sioning schemes with push/pull modes and different job-
worker mapping. Here are the types of Worker provisioning 
schemes.

Pull

Figure 6 shows the worker provisioning scheme in simple 
pull mode. Harvester submits workers without jobs. Once 
acquiring a computing resource, each worker pulls a job 
directly from the PanDA server. Harvester decides the quan-
tity of workers to submit for a PanDA queue according to 
Harvester’s configuration.

Pull Unified-Pilot-Streaming (Pull UPS)

In simple pull mode, the worker submission is typi-
cally made independently from the job generation. The 

disadvantage of this mode is that the blind submission of 
workers is inefficient and can waste worker node resources 
when there are no jobs available for a worker. The Unified 
Pilot Streaming (UPS) mode intelligently submits workers to 
solve the above issue. Figure 7 shows the worker provision-
ing scheme in pull UPS mode. It works as follows: 

1.	 PanDA calculates how many workers of each type are 
needed based on the queued and running jobs at a com-
puting resource, and the overall Global Share prefer-
ences. The types are generic (i.e. not job-specific) cat-
egories: single-core, multi-core, and high-memory.

2.	 PanDA sends commands based on this information to 
Harvester.

3.	 Harvester submits the workers with the proper require-
ments to the site.

Fig. 6   Worker provisioning with simple pull mode

Fig. 7   Worker provisioning with pull UPS mode
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4.	 When a worker starts, it will ask for a job matching the 
requirements.

5.	 PanDA dispatches again the job according to the Global 
Shares.

PanDA decides how many workers of each type are sub-
mitted, and the decision is not randomly left to Harvester. 
This mode is used for most Grid resources.

1-to-1 Push

Figure 8 shows the worker provisioning scheme with 1-to-1 
push mode. Jobs are prefetched and bound to workers before 
Harvester submits them. Each worker has one job. This 
workflow is used for some Grid and HPC resources.

1-to-1 Push and Job Late-Binding

Jobs are prefetched while workers are submitted to schedul-
ing systems asynchronously. Harvester assigns one job to 
each worker once the worker gets a computing resource. This 
workflow is used for HPCs with long-waiting batch queues.

1-to-Many Push (Multi-worker)

Jobs are prefetched, and multiple workers are submitted for 
each single job. Harvester collects and combines informa-
tion from all associated workers for each job. Typically this 
mode is used for HPCs to fill unused slots using special 
jobs. The job must have the capability of allowing multiple 
workers to collaboratively process a part of the workload in 
the job while being aware of what others are doing through 
an external mechanism, such as a parameter serve and an 
exclusive file lock.

Harvester Architecture

Figure 9 shows a schematic view of the Harvester architec-
ture. Harvester comprises a database, agents, and plugins.

Harvester Database

Harvester stores the states of jobs and workers, and other 
cached information from external sources into its database. 
The engine of the Harvester database can be MySQL, Mari-
aDB, and SQLite.

Harvester Agents

Harvester has several stateless and multi-threaded agents, 
one for each action (e.g. worker submission, job fetching, 
pre-staging, and credential renewal). Harvester takes action 
based on the state transition of jobs and workers. The infor-
mation which the agents require is stored and updated in the 
database. There is no direct messaging between agents. The 
functions of agents are explained below.

•	 Submitter periodically looks up queues to fill, creates 
entries of new workers in the database, and submits 
workers for the queues to the computing resources via 
submitter plugins.

•	 Monitor checks and updates the state of workers by com-
municating with the resources via monitor plugins.

•	 Sweeper kills the workers at the resource via sweeper 
plugins, and cleans up entries of terminated workers in 
the database.

•	 Credential Manager calls credential manager plugins to 
check and renew credentials, e.g. VOMS proxy certificate 
and JSON web tokens (JWTs) [40], to be used for authen-
tication and authorization with computing resources.

•	 Propagator periodically reports information on jobs and 
workers in Harvester to the PanDA server.

•	 Job Fetcher prefetches the jobs from the PanDA server 
and stored them in the Harvester database. The jobs are 
later bound to workers and submitted.

•	 Command Manager fetches commands from the PanDA 
server and stores them in the Harvester database. Other 
agents take action according to the commands.

•	 Cacher periodically downloads information from exter-
nal data sources, such as PanDA queue configurations 
from the CRIC information system, and caches them into 
the database.

Harvester Plugins

Harvester plugins are developed to communicate with 
diverse resources. Functions in the plugin are called by their 
corresponding Harvester agent. For example, the Submitter Fig. 8   Worker provisioning with 1-to-1 push mode
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agent calls HTCondor [41] submitter plugin to submit pilots 
to a HTCondor batch system, HTCondor CE [42], or ARC 
CE [43]. The plugins to be used for each PanDA queue are 
specified in the Harvester configuration. Experts of each 
resource develop their dedicated plugins and submit the 
code to the Harvester GitHub repository. Currently, there 
are plugins available for HTCondor, ARC Control Tower, 
Kubernetes [44], SLURM [45], PBS [46], and Lancium [47].

PanDA Database

Operations are check-pointed and persisted on a transac-
tional database shared by all the PanDA and JEDI servers. 
The database contains the state for all the jobs and tasks, 
related metadata for files and datasets, as well as informa-
tion for other entities like users and sites. PanDA supports 
Oracle and PostgreSQL as database backends. The database 
interface module contains SQL code written and optimized 
for Oracle, since it has historically been the main database 
technology. When using a PostgreSQL database, queries are 
translated to the PostgreSQL dialect through an in-house 
layer.

The database usage has been highly optimized to keep 
up with the transaction rate required by big science experi-
ments. In addition to the usage of targeted indexes, Oracle 
partitioning is also used to optimize data access. Depending 
on the size and relevance of the tables, older entries can be 
deleted through a sliding window procedure. However, for 

many tables the information is kept over extended periods 
of time in order to be able to browse the data in the monitor-
ing. This leads to very large tables with many million rows.

In the case of ATLAS, all task and job definitions are kept 
since 2006. The current policy is to keep the current and 
the last two years on the main database. Completed jobs are 
moved to an archive table, in order to control the size of the 
active jobs table. Once per year, the archived jobs older than 
2 years are manually moved to a separate archival database 
with less performant storage and CPUs.

PanDA frequently requires to calculate aggregations of 
jobs (sums, averages) to gather share, site or user statistics. 
It is very costly to run independent aggregations of the tables 
within seconds. For this reason, background procedures pre-
compute and store aggregations on auxiliary tables every 
couple of minutes. This reduces the load on the database 
significantly.

In addition, central tables are replicated to Elasticsearch 
to off-load analytics and accounting procedures to external 
infrastructure.

Authentication and Authorization

PanDA has an Identity and Access Management (IAM) 
scheme fully compliant with OIDC/OAuth2.0, capable of 
identity federation among scientific and academic identity 
providers.

Fig. 9   Harvester architecture diagram
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PanDA IAM consists of Indigo IAM, CILogon [48], 
and identity providers. Indigo IAM is an account and 
group membership management service to define VOs and 
groups, to add/remove users to/from VOs and groups, and 
issue ID tokens once users are authenticated. CILogon is 
a federated ID broker to delegate authentication to ID pro-
viders such as CERN [49], BNL SDCC [50], and Google 
Identity Platform [51].

Figure 10 shows the procedure of user authentication 
and authorization, where the device code flow is used to 
allow users to run command-line tools. First, the user 
invokes a command-line tool that checks if a valid ID 
token is locally available. If not, the command-line tool 
sends an authentication request to Indigo IAM on behalf 
of the user and retrieves a verification URL. Then, the 
user opens a web browser to go to the verification URL 
and is eventually redirected to their ID provider through 
CILogon. Once the user successfully logs on, a couple of 
tokens are exchanged between CILogon and Indigo IAM, 
and an ID token is issued. The command-line tool gets the 
ID token and places it in the HTTP request header when 
accessing the PanDA server. The PanDA server decodes 
the token and authorizes the user based on OIDC claims 
such as name, username, and groups.

Legacy X.509-based user authentication is also supported 
and is performed via the GridSite library [52] that is loaded 
inside the Apache HTTP processes of the PanDA server.

Resource Authentication and Authorization

The pilot is authenticated and authorized via JWTs or 
X.509 certificates. If a computing resource provider accepts 
JWTs, Harvester fetches access tokens from the token issuer 
deployed by each experiment, and submits the worker with 
the access tokens to the gateway services of the comput-
ing resources. Access tokens have a very short lifetime 
and specify the gateway services in the audience claim, to 
avoid being abused for access to other resources. On the 
other hand, if a computing resource provider works only 
with X.509 certificates, Harvester obtains proxy certificates 
with X.509 certificates from VOMS servers, which add the 
authorization attributes, such as VO groups and roles, as 
extensions, submitting the pilot with proxy certificates.

Client Modules and Tools

There are two Python modules and client tools for users to 
send commands to the PanDA server through its RESTful 
interface using standard HTTP methods. One Python module 

Fig. 10   The procedure of user authentication and authorization
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provides a set of limited client APIs for non-administrative 
users to submit and manage tasks and jobs, go through the 
authentication procedure, and retrieve system information. 
The other Python module allows the execution of adminis-
trative commands, such as eliminating problematic users, or 
changing system configuration. Client tools are a variety of 
command-line applications built on top of client APIs for the 
execution of specific workloads, bookkeeping, and workflow 
management. Ordinary users typically use client tools to run 
their analysis on PanDA. The non-administrative Python 
module and client tools are part of a Python package, while 
the other module is included in a separate Python package.

Functionality Details

Brokerage

Brokerage is one of the most crucial functions in the system 
to distribute workload among computing resources. It has 
the following goals:

•	 To distribute jobs among all available computing 
resources.

•	 To minimize the waiting time for each job to produce 
output data.

•	 To execute jobs in such a way that the jobs respect their 
priorities and resource allocations.

•	 To choose computing resources for each job based on the 
characteristics of the job and constraints of the comput-
ing resources.

It is not straightforward to satisfy these goals for all kinds 
of jobs since some of them are logically contradictory. The 
brokerage has a plugin structure so that each VO can provide 
an algorithm according to its own needs and use cases, based 
on task and job priorities, global shares and allocations, data 

localities, costs for data transfers, data placement policies, 
matching between resource specifications and data process-
ing requirements, constraints and downtime of computing 
resources, transfer backlog over the network, and so on. For 
example, when certain resource providers enforce stringent 
policies that restrict the execution of arbitrary jobs due to 
security concerns, the brokerage assigns only centrally man-
aged jobs by the VO experts to the computing resources that 
are generated from managed workloads.

Dynamic Optimization of Task Parameters

JEDI automatically optimizes task parameters for compute/
storage resource requirements and strategies to partition 
workload while running those tasks. In the early stage of 
task execution, JEDI generates several jobs for each task 
using only a small portion of input data, collects various 
metrics such as data processing rate and memory footprints, 
and adjusts the following task parameters. Those first jobs 
are called scout jobs. The automatic optimization is trig-
gered twice for each task; when half of the scout jobs are 
finished, and when the first 100 jobs are finished while gen-
erating the remaining jobs after completion of the scout jobs.

Job Sizing

JEDI generates jobs based on the requirements of comput-
ing resources in terms of CPU core, disk space, RAM, and 
walltime, using the task parameters shown in Table 1.

If one of the first three parameters in Table 1 (n*PerJob) 
is specified, jobs are generated accordingly to respect the 
parameter. If some computing resources cannot accept those 
jobs due to resource limitations, such as small disk spaces 
and short walltime, the brokerage avoids those resources.

If they are not specified, jobs are generated to meet the 
requirements of each computing resource. The number of 

Table 1   Task parameters for 
JEDI to size jobs

Name Description

nFilesPerJob The number of input files per job
nGBPerJob The total size of input/output files and working directory
nEventsPerJob The number of events per job
cpuTime CPU time per event
cpuEfficiency CPU efficiency (0.9 by default)
baseTime The part of the job execution time not scaling with CPU 

power, such as periods for payload initialization and 
finalization

outDiskCount The expect output size per event
workDiskCount The working directory size
coreCount The number of CPU cores
ramCount Resident set size per CPU core
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events nEvents in each job must satisfy the following two 
formulae:

where S, W, C, and P are the disk space size, the walltime 
limit, the number of CPU cores, and the averaged benchmark 
score measuring CPU performance [53] at the computing 
resource, respectively. inputDiskCount is the total size of 
the job input files, a discrete function of nEvents. Note that 
inputDiskCount is zero if the computing resource is con-
figured to read input files directly from the local storage 
resource.

Automatic Data Distribution and Aggregation

Data stage-in and stage-out can cause significant bottlenecks 
in data-intensive processing. Dynamic and asynchronous 
data placement is crucial for efficient usage of computing 
and storage resources. PanDA relies on Rucio for distributed 
data management. PanDA interacts with Rucio using the cli-
ent API for name and location lookup, requesting transfers, 
retrieving attributes and metadata, organizing and deleting 
data, etc. Rucio sends notifications via STOMP-compatible 
message-queuing services, e.g. ActiveMQ, when asynchro-
nous operations are fulfilled, and PanDA consumes the noti-
fications to take subsequent actions.

Temporary input data replicas are dynamically created for 
jobs when all the following conditions are met:

•	 I/O intensities to process those jobs are not significant, 
since I/O-intensive jobs usually require more data trans-
fers than CPU-intensive jobs to fill computing resources 
over the same period. Replicating data for the latter is 
more optimal in terms of network usage.

•	 Computing resources, associated with the storage 
resource where the original data are available, are busy.

•	 Other computing resources are idle.
•	 The input data are unavailable at the storage resources 

associated with the idle resources.

PanDA makes transfer requests to Rucio, Rucio notifies 
PanDA once the transfers are done, and then PanDA dis-
patches the jobs to the idle computing resources, so that they 
do not have to wait on the computing resources while input 
data are being staged. Jobs release the CPUs as soon as they 
upload the output data to the storage resource associated 
with the computing resource where the jobs are running. 

S ≥ inputDiskCount

+max(0.5GB, outDiskCount × nEvents)

+ workDiskCount

W ≥
cpuTime × nEvents

C × P × cpuEfficiency
+ baseTime

Then, PanDA requests Rucio to transfer the output data to 
the final destination.

In most cases, computing and storage resources are 
located within the same provider, meaning that the storage 
resource is locally connected to the computing resource. 
This setup allows for efficient data transfers between the two 
components using a local area network. However, it is pos-
sible to associate remote storage resources with computing 
resources. In such cases, stage-in and stage-out operations 
between the computing and storage resources are carried out 
over a wide area network. The entire data are transferred to 
computing resources, or alternatively, data can be streamed 
over the network based on job requirements.

Task and Job Retry Strategies

It is possible to retry tasks if a part of the input data were not 
successfully processed or new data were added to the input 
data. The task state changes from finished or done back to 
running, and output data are appended to the same output 
data collection. Tasks cannot be retried if they end up with 
a fatal state, such as broken and failed, since they are typi-
cally configured wrongly or run problematic jobs, and not 
worth retrying.

On the other hand, the job state is irreversible, i.e. jobs 
do not change their states once they go to a final state. JEDI 
generates new jobs to re-process the input data portion, 
which was not successfully processed by previous jobs. 
The configuration of retried jobs can be optimized based 
on experiences from previous jobs (e.g. increased memory 
requirements). It is also possible to configure rules to avoid 
the job retrial for fatal error codes or messages.

The Job Retry Module greatly simplifies operations by 
taking actions based on error codes and messages. Sev-
eral actions are currently available, and new actions can be 
implemented and registered in the database.

Customizing PanDA

Each experiment can configure PanDA components to utilize 
only the necessary features according to its requirements 
and available resources. Most PanDA components have 
structures composed of the experiment-agnostic core and 
plugins. Plugins are software add-ons to enable particular 
functionalities dynamically loaded when PanDA compo-
nents are launched. Plugins inherit base API classes that 
define standard abstract functions, to implement experi-
ment- and resource-specific actions. There are default 
plugins implementing generalized actions. It is also possible 
to create and install new plugins to enhance existing capa-
bilities. Each PanDA component hosts a small collection of 
plugins, with each individual plugin consisting of several 
hundred to thousands of lines of code. For example, if an 
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experiment requires the execution of large-scale parallel 
multi-node jobs, particularly those that require specialized 
optimizations, tailored schemes could be implemented in 
new plugins. The PanDA and Harvester documentation [56, 
56] describe how to customize PanDA components in detail.

Although experiments have different requirements, they 
can use the default plugins in many cases. For example, both 
the Vera C. Rubin Observatory and the sPHENIX experi-
ment have deployed their own PanDA services with the 
default plugins at SLAC [56] and BNL SDCC, respectively. 
One of the main differences between their deployment is that 
Harvester for Vera C. Rubin installs Kubernetes and HTCon-
dor plugins to utilize Google cloud resources in addition 
to the facility resources available through ARC CEs, while 
Harvester for sPHENIX installs only HTCondor plugins to 
utilize BNL resources on a HTCondor batch system.

While tight integration with Rucio is a PanDA’s advan-
tage, it is configurable to operate without Rucio. Such a 
configuration is particularly valuable for experiments that 
do not necessitate advanced data management capabilities.

Infrastructure and Installation

Infrastructure Sizing

The largest PanDA deployment to date serves the ATLAS 
experiment and is handled centrally at the CERN data center, 
including the databases and servers. It is important to under-
stand that most of the ATLAS activities (except Event Gen-
eration and some Analysis) run multi-core jobs, for which 
the ATLAS Software is capable of managing multiple pro-
cesses across typically eight cores. The fraction of single- 
and multi-core jobs changes as the different activities and 
campaigns are scheduled. So far in 2023, in average 85% 
of the resources have been managed in multi-core mode. 
While the main purpose of running multi-core jobs is to 
optimize the memory consumption on the worker nodes, 
another positive side-effect is that it reduces the load on the 
PanDA infrastructure considerably. In practice, ATLAS runs 
a few hundred thousand jobs concurrently and around one 
million jobs per day. The JEDI and PanDA server clusters 
consist of 9 virtual machines each, with individual specifica-
tions of the virtual machine comprising 8 cores and 16 GB 
of RAM. The ATLAS PanDA server cluster needs to handle 
typical request rates of 200 Hz, coming predominantly from 
the pilots that are retrieving and updating jobs. On the first 
half of November 2023, the mean time to handle requests 
was 0.04 s and the 90th percentile was 0.07 s. JEDI, on 
the other hand, needs to handle sufficient job generation to 
keep the Grid fully utilized. The other critical component is 
the PanDA database, which acts centrally to all the servers. 
ATLAS’ central applications like PanDA and Rucio share 

an Oracle cluster, where each application runs on a separate 
node with 16 cores and 768 GB of RAM. The large memory 
is important so that the active tables are kept in memory and 
to avoid disk I/O. The database server has enough headroom 
to handle spikes and future growth.

Service Deployment with Kubernetes and Helm 
Charts

All PanDA components are containerized and can be 
deployed using Helm [57] charts on Kubernetes clusters. 
A single set of container images and Helm charts works 
both for vanilla Kubernetes and OKD [58]. The difference 
between these two services is that OKD forbids running con-
tainers as root and the usage of lower privileged ports. Every 
time a new version of a PanDA component is released on 
GitHub [59], a new container image is published automati-
cally in the GitHub registry. While all the container images 
and the Helm charts are publicly available, the Helm secrets 
are used to deploy sensitive information securely, such as 
usernames and passwords for the databases, or client ID for 
IAM. The secrets can be stored in a private repository or the 
same repository but encrypted. They are typically deployed 
only once and need to be updated only if there is a new 
password or update.

When deploying PanDA on Kubernetes, it is possible 
to deploy only a specific PanDA component based on the 
requirements of each experiment using experiment-specific 
description files and secrets. It is also possible to deploy 
the PanDA system without the CRIC information system by 
providing a couple of JSON files that define PanDA queues, 
sites, storages, etc.

For the PanDA deployment at SLAC for the Vera C. 
Rubin Observatory, we have the following Kubernetes con-
figuration with each pod having 4 CPU Cores and 16GB of 
RAM: 2 pods for PanDA server, 2 pods for PanDA JEDI, 2 
pods for iDDS, and 3 pods for Harvester.

The Kubernetes-based deployment significantly simpli-
fies the deployment of the PanDA components, and intro-
duces new possibilities, such as the automatic scaling of the 
PanDA components based on the load and the continuous 
integration and testing framework based on Kubernetes.

Database Schema Installation, Upgrade, 
and Versioning

The PanDA database schema is available inside the schema 
folder in the panda-database GitHub module. For a 
new database installation, a user can execute the SQL state-
ments found in the schema folder for either Oracle or 
PostgreSQL. When deploying PanDA on a new database, 
the schema installation script creates a new versioning table 
holding the schema version, e.g. 0.0.42.
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Whenever there is a new version of the PanDA database 
schema, the version number increases to reflect the change. 
Whenever there is a schema change that increases the ver-
sion number, a diff file is provided within the upgrade 
folder for all the schema changes between the previous and 
current versions. At the end of each diff file, there is an entry 
to update the version number in the versioning table, e.g. 
from 0.0.41 to 0.0.42.

When the PanDA server runs, it checks if the version in 
the versioning table is the minimum required for the PanDA 
server to work and fully function. If the database schema 
version is lower than the one required, the PanDA server 
will exit with a warning message.

Project Management

PanDA is an open-source project developed under the 
Apache V2 license [61]. PanDA benefits from the contri-
butions of key developers from multiple experiments in 
Europe, the United States, and Asia, who regularly report 
their progress in the PanDA core team meetings and their 
experiment technical meetings. Jira [61] keeps track of 
roadmaps and milestones in the project, and GitHub hosts 
the PanDA codebase for version control, allowing coherent 
contributions from multiple developers. Each PanDA com-
ponent has its own GitHub repository.

The development workflow is based on branches or forks 
in GitHub repositories. Developers make changes in their 
own branches or forks without affecting the main branches. 
Changes must be incremental to guarantee that they do not 
break existing production PanDA instances. It is the respon-
sibility of each developer to check the changes on integra-
tion PanDA instances with the complete flow of tasks and 

jobs. A test suite runs on the integration instances with the 
Oracle database. In many cases, end-to-end tests with actual 
tasks and jobs are required since it is hard to detect prob-
lems through unit tests due to the complexity of the PanDA 
system and use-cases.

Once developers are comfortable with the changes, they 
submit pull requests to ask the repository managers for 
review. The whole review process is done through GitHub, 
which retains the history of communication in the pull 
request to help future contributors understand the changes. 
Once a pull request is approved, the repository managers 
merge it and tag a new release version in the repository, 
depending on the criticality of the changes. There is no 
time constraint between release versions. It is possible to 
tag many release versions per day for a single repository 
if necessary. Tagging of new versions automatically trig-
gers GitHub actions to publish new packages in PyPI [62] 
and register new container images in the GitHub packages 
registry.

New versions of packages are usually deployed on pro-
duction instances as soon as they are published. It is recom-
mended that production instances deploy the latest versions 
of packages, although each experiment can follow its own 
deployment policy, e.g. they could upgrade PanDA instances 
only during idle periods.

Results and Experience

Figure 11 illustrates PanDA’s scalability and flexibility, 
which shows the evolution in the number of CPU cores 
over the last decade for ATLAS. During this period, the 
managed resources became more diverse. In the early 
years, PanDA managed exclusively WLCG resources, 

Fig. 11   Monthly average CPU cores managed by PanDA for ATLAS by resource types between 2011 and 2023. The accounting did not track the 
resource type until 2014, since the usage of non-Grid resources was negligible (labeled “UNKNOWN”)
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while in the last years, the amount of HPC and Cloud 
resources has been increasing steadily. Each type of 
resource can have a different interface and behavior, some-
times requiring customized worker submission through 
Harvester. Several major HPCs, such as Titan [63], Theta 
[64], Cori [65], Perlmutter [66], MareNostrum 4 [67], and 
Vega [68], have been successfully integrated with PanDA. 
Some grid-like HPCs (labeled "hpc") have provided exter-
nal network connectivity and operational policies to allow 
the execution of standard ATLAS jobs through the central 
ATLAS software repository. Other HPCs (labeled "hpc_
special") have required local ATLAS software installation 
and typically executed only specific types of ATLAS jobs. 
PanDA has also been integrated and used at scale with the 
most common commercial Cloud service providers, such 
as Amazon and Google [69]. Some cloud service providers 
(labeled "cloud") have used the central ATLAS software 
repository, while other Cloud service providers (labeled 
"cloud_special") have used local ATLAS software due to 
technical difficulties to access the repository. The differ-
ent resources are distributed worldwide around more than 
40 countries and 150 data centers hosted at universities 
and laboratories. These sites come in very different sizes, 
nowadays ranging anywhere between a few hundred cores 
to a few hundred thousand cores. PanDA is able to tailor 
jobs to any size and keep all resources full. Some types of 
resources also are limited to certain types of jobs (typically 
Monte Carlo simulation) due to I/O restrictions. These 
imbalances are handled at the worldwide level by applying 
the Global Shares described in Sect. "Global Share", and 
prioritizing less-favored activities at other sites.

Since 2022, Vera C. Rubin has been using PanDA for 
Data Release Production (DRP) campaigns. During Phase 
2 of the Rubin Observatory’s Data Preview 0 (DP0.2) in 
2021, PanDA demonstrated the capability to run 16 million 
jobs at the Google-based Interim Data Facility (IDF). Most 
jobs were processed on a cluster with approximately 4,000 
cores, up to 14GB/core RAM with a total CPU usage of 
2.5M core-hours. Eight million jobs were also processed for 
the Hyper Suprime Cam (HSC) reprocessing at the US Data 
Facility (USDF) at SLAC. Figure 12 shows the accumulation 

of the number of Vera C. Rubin jobs managed by PanDA 
since May 2021.

The successful processing of DP0.2 drove the decision 
to endorse PanDA for the DRP campaigns. The 2023 DRP 
campaigns are estimated to have around 36 million jobs for 
the HSC Public Data Release 2 (HSC-PDR2) and around 
8 M for the HSC reprocessing. The entire PanDA infra-
structure has been deployed [70] on a Kubernetes cluster 
at SLAC, integrating data facilities in the UK and France in 
addition to USDF and Google IDF.

The sPHENIX experiment at BNL’s Relativistic Heavy 
Ion Collider (RHIC) [71] also decided in 2021 to adopt 
PanDA for offline production and took advantage of the 
Kubernetes-based approach to the PanDA infrastructure 
deployment. The PanDA service has been running on an 
OKD cluster at BNL SDCC, stress tests were conducted in 
the Summer of 2023, and the entire system has been pre-
pared for data-taking in the Spring of 2024.

The Evolving PanDA Ecosystem

Needs for emerging workflows and computing technologies 
have driven the steady growth of PanDA’s scope beyond 
“a layer over distributed batch queues". The integration 
with the intelligent Data Delivery Service (iDDS) [72] has 
prompted the evolution of PanDA into an ecosystem to 
address challenging issues that were not foreseen in tradi-
tional workflows. iDDS is an open-source software designed 
to integrate with various workload management systems, 
including PanDA. It provides essential functionalities for 
efficiently managing workflows at different granularities. 
The following examples demonstrate the expansion of the 
PanDA ecosystem. PanDA capabilities and flexibilities to 
manage diverse resources and dynamically tailor jobs for 
optimal workload processing have played a key role in 
accomplishing the goals in these examples, while leverag-
ing iDDS for high-level workflow scheduling.

The High Luminosity upgrade to the LHC is expected to 
start operation in early 2029 [73] and will deliver an unprec-
edented volume of scientific data at the multi-exabyte scale. 

Fig. 12   Accumulated number of Vera C. Rubin jobs managed by PanDA since May 2021
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The present LHC computing and data management model 
will not be viable to ensure fast and reliable data delivery 
for processing by scientific groups distributed all over the 
world. Therefore, more efficient and dynamic data access 
strategies need to be developed. The ATLAS experiment 
launched the Data Carousel R &D project [74] in 2018 to 
study the feasibility of getting input data from tape directly 
for various ATLAS workflows. PanDA and iDDS have ena-
bled a bulk production campaign, with input data resident 
on tape, to be executed by staging and promptly processing 
a sliding window of input data onto disk buffer, which helps 
to decrease the amount of disk storage usage at any one time.

Machine learning is becoming an important tool for 
data analysis in science experiments. A hyperparameter 
is a parameter to control the training process in machine 
learning. Hyperparameter Optimization (HPO) is a resource-
intensive procedure to choose a set of optimal hyperparam-
eters for a machine learning algorithm. A fully automated 
platform has been built with PanDA and iDDS on top of 
geographically distributed GPU resources provided by the 
Grid, HPCs, and clouds, such that a huge computing power 
can be applied to large-scale HPO sessions. This platform 
incorporates iterative approaches to search hyperparameters, 
such as Bayesian Optimization through Nevergrad [75] or 
Scikit-learn [76]. Those approaches require a master appli-
cation to collect results and trigger successive rounds of 
hyperparameter generation and evaluation based on previ-
ous results.

Active learning is a technique to guide the sampling of 
the multi-dimensional phase space to find the exclusion 
contours in an iterative process: the sampled theory phase 
space points are selected such that the vicinity of the exclu-
sion region is prioritized, reducing the sampling density 
in the less-interesting areas. It allows searching in a larger 
space at the same precision while reducing resource usage 
under the same search space. Users can process, through the 
PanDA ecosystem, analysis workflows composed of inte-
grated pipelines and active learning to achieve comprehen-
sive exclusion.

HPCs and LCFs are large resources, and future genera-
tions of these facilities are expected to have artificial intelli-
gence and machine learning as principal application targets. 
Considerable effort has been devoted to bringing HPCs and 
LCFs into PanDA, leading to the development of the fine-
grained work scheduling capability in the PanDA ecosystem 
to enable the high-efficient utilization of these resources. 
Harvester has played a key role in dealing with various HPC/
LCF-specific requirements and operational constraints. The 
rapidly growing Function-as-a-Service (FaaS) area has been 
identified as a possible solution to leverage HPCs and LCFs 
effectively. A high-performance FaaS system, funcX [77], 
orchestrates scientific workloads across diverse resources, 
operating as a persistent gateway service in front of an HPC/

LCF to route workloads to the resource. New Harvester 
plugins are under development to integrate funcX with the 
PanDA ecosystem, such that funcX provides a secure and 
capable access path for PanDA workloads to reach HPC/
LCF resources and be executed by a trusted and locally resi-
dent service.

As illustrated by the previous examples, advanced and 
complex workflows have gained increasing importance in 
scientific experiments. Support for these workflows allows 
users to exploit remote computing resources and service 
providers distributed worldwide, overcoming limitations on 
local resources and services. The computing options keep 
increasing across traditional resource providers as well as 
emerging service levels like FaaS, Platform-as-a-Service 
(PaaS), and Container-as-a-Service (CaaS), each one pro-
viding new advantages and constraints. Users can signifi-
cantly benefit from these providers, but at the same time, it is 
cumbersome to deal with multiple providers even in a single 
analysis workflow with fine-grained requirements coming 
from their applications’ nature and characteristics. There 
are quite a lot of issues to address, such as the isolation 
of users from the complexities of distributed heterogeneous 
providers, resource provisioning for CPU and GPU hybrid 
applications, integration of FaaS, PaaS, and CaaS providers, 
smart workload routing, knowledge-based automatic data 
placement, seamless execution of complex workflows, inter-
operability between pledged and user resources, interactivity 
for users on top of asynchronous resources, and on-demand 
data production. The PanDA ecosystem has been ready to 
cope with these issues and develop solutions for present and 
future data-intensive experiments.

Conclusions

It is an extremely difficult challenge to manage data-inten-
sive workloads in terms of effective resource usage, proac-
tive placement of large volumes of data, and quick delivery 
of analysis results. PanDA provides a solution for scientific 
experiments to fully exploit their distributed heterogeneous 
resources fully with demonstrated scalability, usability, flex-
ibility, and robustness. The modular and horizontally scal-
able architecture of PanDA has been successfully proven 
over nearly two decades of steady operation in ATLAS, 
allowing incremental system evolution to adapt to emerging 
computing technologies in processing, storage, networking, 
and distributed computing middleware.

The PanDA system has performed very well for ATLAS 
including the LHC Run 1 and Run 2 data-taking periods 
while expanding the scope to two big data experiments, the 
Vera C. Rubin Observatory and the sPHENIX experiment.

Advanced and complex workflows have gained increas-
ing importance in science experiments, driving the steady 
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growth of PanDA evolving into an ecosystem. There are a 
great number of issues to support emerging workflows and 
computing technologies, and new developments and chal-
lenges are still coming. The PanDA ecosystem is ready to 
cope with those issues and develop solutions for present and 
future data-intensive experiments.
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