
Vol.:(0123456789)1 3

Computing and Software for Big Science (2023) 7:3
https://doi.org/10.1007/s41781-023-00095-9

ORIGINAL ARTICLE

Fast Columnar Physics Analyses of Terabyte‑Scale LHC Data
on a Cache‑Aware Dask Cluster

Niclas Eich1 · Martin Erdmann1 · Peter Fackeldey1 · Benjamin Fischer1 · Dennis Noll1 · Yannik Rath1

Received: 19 July 2022 / Accepted: 21 February 2023
© The Author(s) 2023

Abstract
The development of an LHC physics analysis involves numerous investigations that require the repeated processing of tera-
bytes of data. Thus, a rapid completion of each of these analysis cycles is central to mastering the science project. We present
a solution to efficiently handle and accelerate physics analyses on small-size institute clusters. Our solution uses three key
concepts: vectorized processing of collision events, the “MapReduce” paradigm for scaling out on computing clusters, and
efficiently utilized SSD caching to reduce latencies in IO operations. This work focuses on the latter key concept, its underly-
ing mechanism, and its implementation. Using simulations from a Higgs pair production physics analysis as an example, we
achieve an improvement factor of 6.3 in the runtime for reading all input data after one cycle and even an overall speedup
of a factor of 14.9 after 10 cycles, reducing the runtime from hours to minutes.

Keywords Data analysis · Scaling · Cache · High-throughput computing

Introduction

Obtaining new physics results from LHC collider data at
CERN ranks among the most challenging tasks in data anal-
yses. Although the raw data of the experiments are processed
centrally and quantities such as particle tracks are recon-
structed, numerous tasks remain for small analysis teams
to achieve a concrete scientific result. An example is the
cross-sectional measurement of the Higgs boson production.

When developing a physics analysis, many different stud-
ies need to be performed. Examples include data-driven
background estimations, efficiency measurements, training
and evaluation of multivariate methods, and determination
of systematic uncertainties. All of these studies typically
require multiple processing of at least a significant portion
of the data and simulations. In addition, analyses are sub-
jected to an experiment-internal peer review process, which
requires numerous further consolidation studies. Conse-
quently, every data analysis is inevitably subjected to a large
number of iterations.

Two challenges are of central importance: first, to per-
form the analysis in a reproducible manner, we rely on a
workflow management system for data analysis [1]. Second,
the turnaround time of each analysis cycle is critical to mak-
ing progress. In the best case, the runtime of the analysis
cycle harmonizes with the reflection phase, in which the
physicist decides on the next action.

The duration of an analysis cycle has considerably
increased due to the very successful LHC operation and the
associated growth of recorded data. Typical analyzed data
volumes are in the order of terabytes (TB). Without further
developments in analysis technology, the prospect of the
LHC upgrade for high luminosities will again significantly
prolong analysis cycles. Three key concepts are exploited
in this work to compensate this increase and improve the
runtime of an analysis cycle.

The first concept tackles the way of processing events.
While classically collision events are analyzed one after
another, vectorized array operations can process multiple
events simultaneously. The scientific Python ecosystem
NumPy [2] provides these vectorized array operations using
the processor-specific “single instruction multiple data”
(SIMD) instruction sets.

Second, the programming paradigm “MapReduce” [3] is
a key concept for this project. Operations, such as selec-
tion and reconstruction, are mapped to subsets of collision

 * Peter Fackeldey
 peter.fackeldey@rwth-aachen.de

1 Physics Institute 3A, RWTH Aachen University,
52056 Aachen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-023-00095-9&domain=pdf
http://orcid.org/0000-0003-4932-7162

 Computing and Software for Big Science (2023) 7:3

1 3

 3 Page 2 of 5

events. Their partial output is then accumulated (reduced) to
a single output. Software packages such as Dask [4] orches-
trate this paradigm on any computing cluster.

The third key concept is caching. Caching increases the
efficiency of repeated data access. Here, we present a cach-
ing mechanism that caches collision data on processor-near
solid-state disks (SSDs). Subsequent analysis cycles benefit
from this and show a substantial reduction in cycle time.

For the first two key concepts, there are already estab-
lished software solutions, e.g., NumPy and Dask, that aim
at accelerating computationally intensive operations by
means of parallelization. With this speedup we uncovered
a new limitation that is addressed by the third key concept:
we noticed that the time spent on IO operations, especially
transferring the collision data to the processors, accounts for
a non-negligible portion of the total runtime.

This paper presents an IO bound benchmark leveraging
the third key concept for speeding up analysis cycles. For
the first two concepts, we employ the coffea [5] and Dask
software packages, which are used for reading, decompress-
ing, and interpreting NanoAOD columns, and an affine job-
to-worker orchestration, respectively. As resources, we use
the computing cluster of the VISPA project, which provides
cloud services for scientific data analysis ([6] and refer-
ences therein). For the third concept, we have substantially
extended the computing cluster with solid-state storage
disks, and developed a worker–job affinity mechanism to
most efficiently utilize these disks. As an application exam-
ple, we present data reading benchmarks using simulated
collision events of a Higgs pair production analysis.

This work is structured as follows. We describe the
upgraded VISPA platform, quote the software components,
explain the caching, and conduct a quantitative survey on the
runtime reduction for multiple consecutive analysis cycles.

VISPA Hardware and Software Systems

Cluster Setup

The setup used in the presented analysis is a small-scale
computing cluster that is optimized for scientific data analy-
sis and deep learning applications (Fig. 1).

It features various service nodes as well as three different
sizes of worker nodes, which differ mostly in the processors
(CPUs), the RAM capabilities, the graphics processing units
(GPU), and their network connections. The service node
vispa-portal is used for interactive working and the manage-
ment of the batch system (see Sect. 2.2). It possesses a CPU
with 64 logical cores and 128GB RAM. The seven worker
nodes have a combined CPU capacity of 224 logical cores
and possess a total of 832GB RAM and 16 TB SSD stor-
age for caching purposes. The detailed configurations of the

individual machines can be found in Fig. 1. All used proces-
sors are capable of the AVX2 SIMD instruction set [7]. The
service node vispa-portal and each worker node addition-
ally possess a 4 TB SSD used for local storage and caching.
The caching strategy and its implementation is explained
in Sect. 2.3.

The switch (vispa-switch) is the central node of the local
network. It is connected to the internet and the storage ser-
vice node (vispa-nfs) with 10Gbit/s , to the large and medium
workers with 4Gbit/s , and to each small worker node and
the service node vispa-portal with 1Gbit/s. In addition, each
node has a fully isolated out-of-band management interface.

The service node vispa-nfs provides central storage
capacity for the cluster. It possesses a total of 2 TB SSD and
120 TB HDD storage. The storage can be accessed via three
different network-shared file systems implemented with
the Network File System (NFS) protocol (version 4.2) [8].
The file system home is used as the working directories of
the users. It is mirrored and backed up daily by the local
computing authority. In addition, two different file systems,
scratch and store, can be used for larger amounts of data.
The scratch file system, which totals to 24 TB , is mirrored
and used for experimental data and intermediate results,
such as pre-processed experimental data. The store file sys-
tem, which totals 96 TB , has the purpose to store reproduc-
ible data, such as local copies of raw experimental data or
software installations. Because it is striped across six dif-
ferent 16 TB HDDs, it features fast reading and writing. It

internet

vispa-switch

vispa-nfs
home 2TB SSD
scratch 24TB
store 6x 16TB

vispa-portal

CPU: 32C/64T
RAM: 128GB
GPU: 1x 4TF/4GB
Storage: 1TB SSD

1x worker-large

CPU: 2x 16C/32T
RAM: 384GB
GPU: 3x 16TF/24GB
Storage: 4TB SSD

2x worker-medium
CPU: 2x 16C/32T
RAM: 192GB
GPU: 3x 11TF/16GB
Storage: 4TB SSD

4x worker-small
CPU: 4C/8T
RAM: 64GB
GPU: 2x 9TF/8GB
Storage: 1TB SSD

Fig. 1 Hardware setup of the used cluster. A total of ten different
nodes are used of which three nodes are for service and seven nodes
are utilized as worker nodes. Central processing units (CPU) are
specified with their number of cores (C) and the number of threads
(T). The capabilities of the graphic processing units (GPU) are
expressed in their floating-point performance (FP32) and memory
(VRAM). Network connections are drawn by lines, whereas their
width corresponds to the provided bandwidth (1/4/1Gbit/s)

Computing and Software for Big Science (2023) 7:3

1 3

Page 3 of 5 3

is, therefore, suited for data, which is accessed frequently
or with a high total throughput. The total shared file system
bandwidth is limited by the vispa-nfs network bandwidth of
up to 10Gbit/s.

Operating systems are deployed on the different nodes
using the open-source configuration management tool
Ansible [9].

The provisioning of the user’s working environment is
done using the open-source package management system
conda [10]. It ensures the stability and maintainability of
each user’s working environment, even in a heterogeneous
and changing computing setup, and adapts to the multiple
different needs of a large user base.

Job Distribution with HTCondor

Scaling analyses to run on the entire cluster requires a solu-
tion for workload management. While small jobs can be run
interactively on the vispa-portal node, larger workflows are
distributed to the worker nodes using HTCondor [11].

The HTCondor setup in VISPA consists of three main
parts: a scheduler, a central manager, and workers. Users
submit their jobs to the HTCondor scheduler. Each of these
jobs defines requirements that specify the resources and it is
expected to consume. The central manager then performs the
matchmaking between these requirements and the available
resources of the workers.

For the analysis presented here, the workload is split
into chunks that can be distributed over the cluster using
Dask and Dask-Jobqueue [12, 13]. The user launches a Dask
scheduler on vispa-portal, and Dask workers are spawned on
the worker nodes via HTCondor jobs. The Dask scheduler
then distributes chunks of the total workload to these work-
ers. This distribution requires unrestricted communication
among the Dask scheduler and the VISPA worker nodes.

SSD Caching

Modern high-energy physics analyses need to analyze data
on the terabyte scale. Using vispa-nfs for reading these data
from scratch is strongly limited by the HDDs and network
connections. This limitation is alleviated using appropriate
caching mechanisms, as described in the following.

The caching is facilitated for each worker by the FSCache
available within the Linux kernel [14]. Once enabled for a
particular NFS mount-point, it operates transparently upon
all IO requests for files therein. In particular, data is cached
at a page-size granularity (4 kB) which enables selective
caching, i.e., of only the accessed branches of a .root file.
Since all IO operations (read and write) fill the cache, the
occurrence of cache-trashing is minimized by only caching
the store volume, which is predominantly used for write-
once read-often data. The cache is configured to store its

contents on the SSDs of the workers, thus profiting from
their superior data transfer rates.

Since each cache will only contain the contents of data
requested by its worker at some point prior, it is of utmost
importance to route such requests—or rather the jobs that
cause these particular requests—in a cache-hit maximizing
manner. This is done through a worker–job affinity mecha-
nism, where each worker and job is identified in a reproduc-
ible manner. The identifier consists of the hostname and a
salt for workers, and the input file UUID and the range of
event numbers for jobs. The salt for workers is a number
∈ [1..8] , such that each worker has eight identifiers. This is
required to get more homogeneous assignments and migra-
tion patterns, since the number of workers is rather small.

These identifiers are then uniformly mapped into a
64-dimensional bounded space. There, their coordinates are
inferred from their cryptographic hash value (i.e., SHA512)
by interpreting it as a vector of integers (i.e., [0..255]64). For
any pair of such values, a distance D can be calculated as
such: D(a, b) =

∑
i
d(��ai − b

i
��) where d(x) = min(x, 256 − x) .

Each job is then assigned to the closest worker, ensuring a
reasonably even distribution. This mechanism is sketched in
Fig. 2 for a two dimensional space.

The assignment is not strict, allowing idle workers to steal
jobs from busy workers. This concept is referred to as work-
stealing. It avoids trailing jobs due to heterogeneous job
runtimes, thus improving the overall runtime. Especially, in

min (D
)

Worker 1
Worker 2
Dask job
Assignment
Hash distance

Fig. 2 Two-dimensional sketch of the worker–job affinity mecha-
nism. The Dask job in the middle shows all possible assignments to
the available workers. The assignment mechanism selects the smallest
hash distance min(D) (black arrow), and rejects other possible (gray
arrows) assignments

 Computing and Software for Big Science (2023) 7:3

1 3

 3 Page 4 of 5

the case of the addition or removal of workers, the affected
jobs are redistributed homogeneously while avoiding the
reallocation of all other jobs. In addition, the allocation
ratio of jobs between workers can be changed smoothly by
including a worker-specific distance factor—which is used
to equalize the workload despite the varying processing
power of all the workers. Multiple users can participate and
profit from the data caching using the same files and affin-
ity mechanism. The presented mechanism is independent
of how the read data are further processed; it only relies on
the input data.

Performance Benchmark

The performance of the VISPA computing cluster with on-
worker SSD caching is measured for a subset of simulated
data sets in the NanoAOD data format [15]. In total, the
read data amounts to 1439GB , which corresponds to the
event information of 1.05 × 109 events in 120 columns of
the NanoAOD file, including information from leptons,
jets, generator particles, and various event-level quanti-
ties; no further processing, such as performing selections
or reconstructions, is done with these events. Our bench-
mark is designed to be limited by the time spent in IO
operations but at the same time as close as possible to the
data reading of a realistic Higgs pair production analysis.
All data sets are compressed with the level ten Zstandard
compression algorithm [16], which has been changed from
NanoAOD’s default compression to reduce the decompres-
sion time. Our benchmark consists of multiple consecutive
cycles. Throughout each cycle, 221 Dask workers carry out
the processing with one thread and 1.5GB RAM each. The
Dask worker requirements are the same for each worker
node. Figure 3 shows the performance benchmark for ten
cycles.

The key message is that the runtime decreases sub-
stantially for the first few cycles. In total the improvement
amounts to a factor of 14.9. The amount of data that is still
read from the vispa-nfs is vastly reduced as more data is
read from the on-worker SSD caches. This effect converges
for later cycles until almost all data are cached directly in
the on-worker SSDs. The close overlay of runtime and the
amount of data, which is still read from the vispa-nfs, show
a strong correlation between runtime reduction and caching.
The cache usage gradually converges to a maximum since a
work-stealing mechanism minimizes each cycle’s runtime at
the cost of slight degraded deterministic cache usage. Once
the cache utilization maximizes, the CPU usage is practi-
cally 100% of which most is spent on decompression. In
these scenarios, cache-independent overhead times from job

scheduling (≈ 1 min) and trailing jobs (≈ 3 min) become a
non-negligible portion of the total runtime.

Conclusion

Modern LHC physics analyses need to deal with a large
amount of recorded data, while analysts and collaborations
require many analysis cycles for various studies in the shortest
time possible. Even physics analyses using vectorized process-
ing of events and the MapReduce paradigm can significantly
benefit from a dedicated on-worker SSD caching strategy. On
the VISPA system, a small scale computing cluster, we show
that a consequent caching strategy significantly reduces the
time spent in IO operations. In the scope of a real-world Higgs
pair production analysis, our benchmark shows a speedup of a
factor of 14.9 for the 10th analysis cycle, moving from a few
hours to approximately ten minutes. This allows numerous
more analysis cycles and diminishes the IO limitation of large-
scale analysis projects.

The caching strategy described in this paper allows for
overcoming IO bottlenecks of modern LHC physics analyses,
enabling small-scale computing clusters to become a com-
petitive choice for interactive, flexible, and high-performance
physics analyses.

Acknowledgements This work is supported by the Ministry of Innova-
tion, Science, and Research of the State of North Rhine-Westphalia,
and by the Federal Ministry of Education and Research (BMBF) in
Germany. N.E. gratefully acknowledges the support of the Deutsche
Forschungsgemeinschaft.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data availability The simulated data used to demonstrate the new
method serve only as an example of a general large data set, which is

1 2 3 4 5 6 7 8 9 10
Cycle #

0

200

400

600

800

1000

1200

GB min

Read from NFS [GB]
Runtime [min]

0

25

50

75

100

125

150

×6.3 speedup

×2.4 speedup

Fig. 3 Performance benchmark results for ten consecutive cycles

Computing and Software for Big Science (2023) 7:3

1 3

Page 5 of 5 3

subject to analysis. The exact data used in this study is therefore not
publicly available.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Marcel R et al (2017) Design and execution of make-like, distrib-
uted Analyses based on Spotify’s Pipelining Package Luigi. arXiv:
1706. 00955 [physics.data-an]

 2. Harris Charles R et al (2020) Array programming with NumPy.
Nature. https:// doi. org/ 10. 1038/ s41586- 020- 2649-2

 3. Jeffrey D, Sanjay G (2004) “MapReduce: Simplified Data Pro-
cessing on Large Clusters”. In: OSDI’04: Sixth Symposium on
Operating System Design and Implementation. San Francisco,
CA, pp. 137–150

 4. Dask Development Team (2016) Dask: Library for dynamic task
scheduling. https:// dask. org. Accessed 26 May 2022

 5. Lindsey G et al (2021) CoffeaTeam/coffea: Release v0.7.11. Ver-
sion v0.7.11. https:// doi. org/ 10. 5281/ zenodo. 57624 06

 6. Martin E et al (2019) “Evolution of the VISPA-project”. In: Forti
A et al (eds) EPJ Web Conf. 214. p. 05021. https:// doi. org/ 10.
1051/ epjco nf/ 20192 14050 21

 7. Intel. Advanced Vector Extensions (2022) https:// www. intel. de/
conte nt/ www/ de/ de/ archi tectu re- and- techn ology/ avx- 512- overv
iew. html. Accessed 26 May 2022

 8. Haynes Thomas (2016) Network File System (NFS) Version 4
Minor Version 2 Protocol. RFC 7862. https:// doi. org/ 10. 17487/
RFC78 62.https:// www. rfc- editor. org/ info/ rfc78 62

 9. Red Hat (2022) Ansible. https:// www. ansib le. com. Accessed 26
May 2022

 10. Anaconda Software Distribution. Version 2.4.0. (2020) https://
docs. anaco nda. com/. Accessed 26 May 2022

 11. HTCondor Team. HTCondor. Version 9.4.0. (Dec. 2021) https://
doi. org/ 10. 5281/ zenodo. 57506 73

 12. dask-jobqueue source code. https:// github. com/ dask/ dask- jobqu
eue. Accessed 26 May 2022

 13. dask-jobqueue blog entry. https:// blog. dask. org/ 2018/ 10/ 08/ Dask-
Jobqu eue. Accessed 26 May 2022

 14. Kernel Linux (2022) General Filesystem Caching. https://
www. kernel. org/ doc/ html/ latest/ files ystems/ cachi ng/ fscac he.
html. Accessed 26 May 2022

 15. Karl Ehatäht (2020) “NANOAOD: a new compact event data for-
mat in CMS”. In: EPJ Web Conf. 245, p. 06002. https:// doi. org/
10. 1051/ epjco nf/ 20202 45060 02

 16. Yann C, Murray K (2021) Zstandard Compression and the ’appli-
cation/zstd’ Media Type. RFC 8878. https:// doi. org/ 10. 17487/
RFC88 78.https:// www. rfced itor. org/ info/ rfc88 78

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1706.00955
http://arxiv.org/abs/1706.00955
https://doi.org/10.1038/s41586-020-2649-2
https://dask.org
https://doi.org/10.5281/zenodo.5762406
https://doi.org/10.1051/epjconf/201921405021
https://doi.org/10.1051/epjconf/201921405021
https://www.intel.de/content/www/de/de/architecture-and-technology/avx-512-overview.html
https://www.intel.de/content/www/de/de/architecture-and-technology/avx-512-overview.html
https://www.intel.de/content/www/de/de/architecture-and-technology/avx-512-overview.html
https://doi.org/10.17487/RFC7862
https://doi.org/10.17487/RFC7862
https://www.rfc-editor.org/info/rfc7862
https://www.ansible.com
https://docs.anaconda.com/
https://docs.anaconda.com/
https://doi.org/10.5281/zenodo.5750673
https://doi.org/10.5281/zenodo.5750673
https://github.com/dask/dask-jobqueue
https://github.com/dask/dask-jobqueue
https://blog.dask.org/2018/10/08/Dask-Jobqueue
https://blog.dask.org/2018/10/08/Dask-Jobqueue
https://www.kernel.org/doc/html/latest/filesystems/caching/fscache.html
https://www.kernel.org/doc/html/latest/filesystems/caching/fscache.html
https://www.kernel.org/doc/html/latest/filesystems/caching/fscache.html
https://doi.org/10.1051/epjconf/202024506002
https://doi.org/10.1051/epjconf/202024506002
https://doi.org/10.17487/RFC8878
https://doi.org/10.17487/RFC8878
https://www.rfceditor.org/info/rfc8878

	Fast Columnar Physics Analyses of Terabyte-Scale LHC Data on a Cache-Aware Dask Cluster
	Abstract
	Introduction
	VISPA Hardware and Software Systems
	Cluster Setup
	Job Distribution with HTCondor
	SSD Caching

	Performance Benchmark
	Conclusion
	Acknowledgements
	References

