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Abstract
The development of an LHC physics analysis involves numerous investigations that require the repeated processing of tera-
bytes of data. Thus, a rapid completion of each of these analysis cycles is central to mastering the science project. We present 
a solution to efficiently handle and accelerate physics analyses on small-size institute clusters. Our solution uses three key 
concepts: vectorized processing of collision events, the “MapReduce” paradigm for scaling out on computing clusters, and 
efficiently utilized SSD caching to reduce latencies in IO operations. This work focuses on the latter key concept, its underly-
ing mechanism, and its implementation. Using simulations from a Higgs pair production physics analysis as an example, we 
achieve an improvement factor of 6.3 in the runtime for reading all input data after one cycle and even an overall speedup 
of a factor of 14.9 after 10 cycles, reducing the runtime from hours to minutes.
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Introduction

Obtaining new physics results from LHC collider data at 
CERN ranks among the most challenging tasks in data anal-
yses. Although the raw data of the experiments are processed 
centrally and quantities such as particle tracks are recon-
structed, numerous tasks remain for small analysis teams 
to achieve a concrete scientific result. An example is the 
cross-sectional measurement of the Higgs boson production.

When developing a physics analysis, many different stud-
ies need to be performed. Examples include data-driven 
background estimations, efficiency measurements, training 
and evaluation of multivariate methods, and determination 
of systematic uncertainties. All of these studies typically 
require multiple processing of at least a significant portion 
of the data and simulations. In addition, analyses are sub-
jected to an experiment-internal peer review process, which 
requires numerous further consolidation studies. Conse-
quently, every data analysis is inevitably subjected to a large 
number of iterations.

Two challenges are of central importance: first, to per-
form the analysis in a reproducible manner, we rely on a 
workflow management system for data analysis [1]. Second, 
the turnaround time of each analysis cycle is critical to mak-
ing progress. In the best case, the runtime of the analysis 
cycle harmonizes with the reflection phase, in which the 
physicist decides on the next action.

The duration of an analysis cycle has considerably 
increased due to the very successful LHC operation and the 
associated growth of recorded data. Typical analyzed data 
volumes are in the order of terabytes (TB). Without further 
developments in analysis technology, the prospect of the 
LHC upgrade for high luminosities will again significantly 
prolong analysis cycles. Three key concepts are exploited 
in this work to compensate this increase and improve the 
runtime of an analysis cycle.

The first concept tackles the way of processing events. 
While classically collision events are analyzed one after 
another, vectorized array operations can process multiple 
events simultaneously. The scientific Python ecosystem 
NumPy [2] provides these vectorized array operations using 
the processor-specific “single instruction multiple data” 
(SIMD) instruction sets.

Second, the programming paradigm “MapReduce” [3] is 
a key concept for this project. Operations, such as selec-
tion and reconstruction, are mapped to subsets of collision 
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events. Their partial output is then accumulated (reduced) to 
a single output. Software packages such as Dask [4] orches-
trate this paradigm on any computing cluster.

The third key concept is caching. Caching increases the 
efficiency of repeated data access. Here, we present a cach-
ing mechanism that caches collision data on processor-near 
solid-state disks (SSDs). Subsequent analysis cycles benefit 
from this and show a substantial reduction in cycle time.

For the first two key concepts, there are already estab-
lished software solutions, e.g., NumPy and Dask, that aim 
at accelerating computationally intensive operations by 
means of parallelization. With this speedup we uncovered 
a new limitation that is addressed by the third key concept: 
we noticed that the time spent on IO operations, especially 
transferring the collision data to the processors, accounts for 
a non-negligible portion of the total runtime.

This paper presents an IO bound benchmark leveraging 
the third key concept for speeding up analysis cycles. For 
the first two concepts, we employ the coffea [5] and Dask 
software packages, which are used for reading, decompress-
ing, and interpreting NanoAOD columns, and an affine job-
to-worker orchestration, respectively. As resources, we use 
the computing cluster of the VISPA project, which provides 
cloud services for scientific data analysis ([6] and refer-
ences therein). For the third concept, we have substantially 
extended the computing cluster with solid-state storage 
disks, and developed a worker–job affinity mechanism to 
most efficiently utilize these disks. As an application exam-
ple, we present data reading benchmarks using simulated 
collision events of a Higgs pair production analysis.

This work is structured as follows. We describe the 
upgraded VISPA platform, quote the software components, 
explain the caching, and conduct a quantitative survey on the 
runtime reduction for multiple consecutive analysis cycles.

VISPA Hardware and Software Systems

Cluster Setup

The setup used in the presented analysis is a small-scale 
computing cluster that is optimized for scientific data analy-
sis and deep learning applications (Fig. 1).

It features various service nodes as well as three different 
sizes of worker nodes, which differ mostly in the processors 
(CPUs), the RAM capabilities, the graphics processing units 
(GPU), and their network connections. The service node 
vispa-portal is used for interactive working and the manage-
ment of the batch system (see Sect. 2.2). It possesses a CPU 
with 64 logical cores and 128GB RAM. The seven worker 
nodes have a combined CPU capacity of 224 logical cores 
and possess a total of 832GB RAM and 16 TB SSD stor-
age for caching purposes. The detailed configurations of the 

individual machines can be found in Fig. 1. All used proces-
sors are capable of the AVX2 SIMD instruction set [7]. The 
service node vispa-portal and each worker node addition-
ally possess a 4 TB SSD used for local storage and caching. 
The caching strategy and its implementation is explained 
in Sect. 2.3.

The switch (vispa-switch) is the central node of the local 
network. It is connected to the internet and the storage ser-
vice node (vispa-nfs) with 10Gbit/s , to the large and medium 
workers with 4Gbit/s , and to each small worker node and 
the service node vispa-portal with 1Gbit/s.  In addition, each 
node has a fully isolated out-of-band management interface.

The service node vispa-nfs provides central storage 
capacity for the cluster. It possesses a total of 2 TB SSD and 
120 TB HDD storage. The storage can be accessed via three 
different network-shared file systems implemented with 
the Network File System (NFS) protocol (version 4.2) [8]. 
The file system home is used as the working directories of 
the users. It is mirrored and backed up daily by the local 
computing authority. In addition, two different file systems, 
scratch and store, can be used for larger amounts of data. 
The scratch file system, which totals to 24 TB , is mirrored 
and used for experimental data and intermediate results, 
such as pre-processed experimental data. The store file sys-
tem, which totals 96 TB , has the purpose to store reproduc-
ible data, such as local copies of raw experimental data or 
software installations. Because it is striped across six dif-
ferent 16 TB HDDs, it features fast reading and writing. It 

internet

vispa-switch

vispa-nfs
home 2TB SSD
scratch 24TB
store 6x 16TB

vispa-portal

CPU: 32C/64T
RAM: 128GB
GPU: 1x 4TF/4GB
Storage: 1TB SSD

1x worker-large

CPU: 2x 16C/32T
RAM: 384GB
GPU: 3x 16TF/24GB
Storage: 4TB SSD

2x worker-medium
CPU: 2x 16C/32T
RAM: 192GB
GPU: 3x 11TF/16GB
Storage: 4TB SSD

4x worker-small
CPU: 4C/8T
RAM: 64GB
GPU: 2x 9TF/8GB
Storage: 1TB SSD

Fig. 1  Hardware setup of the used cluster. A total of ten different 
nodes are used of which three nodes are for service and seven nodes 
are utilized as worker nodes. Central processing units (CPU) are 
specified with their number of cores (C) and the number of threads 
(T). The capabilities of the graphic processing units (GPU) are 
expressed in their floating-point performance (FP32) and memory 
(VRAM). Network connections are drawn by lines, whereas their 
width corresponds to the provided bandwidth (1/4/1Gbit/s)
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is, therefore, suited for data, which is accessed frequently 
or with a high total throughput. The total shared file system 
bandwidth is limited by the vispa-nfs network bandwidth of 
up to 10Gbit/s.

Operating systems are deployed on the different nodes 
using the open-source configuration management tool 
Ansible [9].

The provisioning of the user’s working environment is 
done using the open-source package management system 
conda [10]. It ensures the stability and maintainability of 
each user’s working environment, even in a heterogeneous 
and changing computing setup, and adapts to the multiple 
different needs of a large user base.

Job Distribution with HTCondor

Scaling analyses to run on the entire cluster requires a solu-
tion for workload management. While small jobs can be run 
interactively on the vispa-portal node, larger workflows are 
distributed to the worker nodes using HTCondor [11].

The HTCondor setup in VISPA consists of three main 
parts: a scheduler, a central manager, and workers. Users 
submit their jobs to the HTCondor scheduler. Each of these 
jobs defines requirements that specify the resources and it is 
expected to consume. The central manager then performs the 
matchmaking between these requirements and the available 
resources of the workers.

For the analysis presented here, the workload is split 
into chunks that can be distributed over the cluster using 
Dask and Dask-Jobqueue [12, 13]. The user launches a Dask 
scheduler on vispa-portal, and Dask workers are spawned on 
the worker nodes via HTCondor jobs. The Dask scheduler 
then distributes chunks of the total workload to these work-
ers. This distribution requires unrestricted communication 
among the Dask scheduler and the VISPA worker nodes.

SSD Caching

Modern high-energy physics analyses need to analyze data 
on the terabyte scale. Using vispa-nfs for reading these data 
from scratch is strongly limited by the HDDs and network 
connections. This limitation is alleviated using appropriate 
caching mechanisms, as described in the following.

The caching is facilitated for each worker by the FSCache 
available within the Linux kernel [14]. Once enabled for a 
particular NFS mount-point, it operates transparently upon 
all IO requests for files therein. In particular, data is cached 
at a page-size granularity ( 4 kB ) which enables selective 
caching, i.e., of only the accessed branches of a .root file. 
Since all IO operations (read and write) fill the cache, the 
occurrence of cache-trashing is minimized by only caching 
the store volume, which is predominantly used for write-
once read-often data. The cache is configured to store its 

contents on the SSDs of the workers, thus profiting from 
their superior data transfer rates.

Since each cache will only contain the contents of data 
requested by its worker at some point prior, it is of utmost 
importance to route such requests—or rather the jobs that 
cause these particular requests—in a cache-hit maximizing 
manner. This is done through a worker–job affinity mecha-
nism, where each worker and job is identified in a reproduc-
ible manner. The identifier consists of the hostname and a 
salt for workers, and the input file UUID and the range of 
event numbers for jobs. The salt for workers is a number 
∈ [1..8] , such that each worker has eight identifiers. This is 
required to get more homogeneous assignments and migra-
tion patterns, since the number of workers is rather small.

These identifiers are then uniformly mapped into a 
64-dimensional bounded space. There, their coordinates are 
inferred from their cryptographic hash value (i.e., SHA512) 
by interpreting it as a vector of integers (i.e., [0..255]64 ). For 
any pair of such values, a distance D can be calculated as 
such: D(a, b) =

∑
i
d(��ai − b

i
��) where d(x) = min(x, 256 − x) . 

Each job is then assigned to the closest worker, ensuring a 
reasonably even distribution. This mechanism is sketched in 
Fig. 2 for a two dimensional space.

The assignment is not strict, allowing idle workers to steal 
jobs from busy workers. This concept is referred to as work-
stealing. It avoids trailing jobs due to heterogeneous job 
runtimes, thus improving the overall runtime. Especially, in 

min (D
)

Worker 1
Worker 2
Dask job
Assignment
Hash distance

Fig. 2  Two-dimensional sketch of the worker–job affinity mecha-
nism. The Dask job in the middle shows all possible assignments to 
the available workers. The assignment mechanism selects the smallest 
hash distance min(D) (black arrow), and rejects other possible (gray 
arrows) assignments
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the case of the addition or removal of workers, the affected 
jobs are redistributed homogeneously while avoiding the 
reallocation of all other jobs. In addition, the allocation 
ratio of jobs between workers can be changed smoothly by 
including a worker-specific distance factor—which is used 
to equalize the workload despite the varying processing 
power of all the workers. Multiple users can participate and 
profit from the data caching using the same files and affin-
ity mechanism. The presented mechanism is independent 
of how the read data are further processed; it only relies on 
the input data.

Performance Benchmark

The performance of the VISPA computing cluster with on-
worker SSD caching is measured for a subset of simulated 
data sets in the NanoAOD data format [15]. In total, the 
read data amounts to 1439GB , which corresponds to the 
event information of 1.05 × 109 events in 120 columns of 
the NanoAOD file, including information from leptons, 
jets, generator particles, and various event-level quanti-
ties; no further processing, such as performing selections 
or reconstructions, is done with these events. Our bench-
mark is designed to be limited by the time spent in IO 
operations but at the same time as close as possible to the 
data reading of a realistic Higgs pair production analysis. 
All data sets are compressed with the level ten Zstandard 
compression algorithm [16], which has been changed from 
NanoAOD’s default compression to reduce the decompres-
sion time. Our benchmark consists of multiple consecutive 
cycles. Throughout each cycle, 221 Dask workers carry out 
the processing with one thread and 1.5GB RAM each. The 
Dask worker requirements are the same for each worker 
node. Figure 3 shows the performance benchmark for ten 
cycles.

The key message is that the runtime decreases sub-
stantially for the first few cycles. In total the improvement 
amounts to a factor of 14.9. The amount of data that is still 
read from the vispa-nfs is vastly reduced as more data is 
read from the on-worker SSD caches. This effect converges 
for later cycles until almost all data are cached directly in 
the on-worker SSDs. The close overlay of runtime and the 
amount of data, which is still read from the vispa-nfs, show 
a strong correlation between runtime reduction and caching. 
The cache usage gradually converges to a maximum since a 
work-stealing mechanism minimizes each cycle’s runtime at 
the cost of slight degraded deterministic cache usage. Once 
the cache utilization maximizes, the CPU usage is practi-
cally 100% of which most is spent on decompression. In 
these scenarios, cache-independent overhead times from job 

scheduling ( ≈ 1 min) and trailing jobs ( ≈ 3 min) become a 
non-negligible portion of the total runtime.

Conclusion

Modern LHC physics analyses need to deal with a large 
amount of recorded data, while analysts and collaborations 
require many analysis cycles for various studies in the shortest 
time possible. Even physics analyses using vectorized process-
ing of events and the MapReduce paradigm can significantly 
benefit from a dedicated on-worker SSD caching strategy. On 
the VISPA system, a small scale computing cluster, we show 
that a consequent caching strategy significantly reduces the 
time spent in IO operations. In the scope of a real-world Higgs 
pair production analysis, our benchmark shows a speedup of a 
factor of 14.9 for the 10th analysis cycle, moving from a few 
hours to approximately ten minutes. This allows numerous 
more analysis cycles and diminishes the IO limitation of large-
scale analysis projects.

The caching strategy described in this paper allows for 
overcoming IO bottlenecks of modern LHC physics analyses, 
enabling small-scale computing clusters to become a com-
petitive choice for interactive, flexible, and high-performance 
physics analyses.
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Fig. 3  Performance benchmark results for ten consecutive cycles
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subject to analysis. The exact data used in this study is therefore not 
publicly available.
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included in the article's Creative Commons licence, unless indicated 
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