
Vol.:(0123456789)1 3

Computing and Software for Big Science (2020) 4:4
https://doi.org/10.1007/s41781-020-0036-1

ORIGINAL ARTICLE

High‑Throughput Cloud Computing with the Cloudscheduler VM
Provisioning Service

F. Berghaus1 · K. Casteels1 · C. Driemel1 · M. Ebert1 · F. F. Galindo2 · C. Leavett‑Brown1 · D. MacDonell1 · M. Paterson1 ·
R. Seuster1 · R. J. Sobie1 · S. Tolkamp1 · J. Weldon1

Received: 25 September 2019 / Accepted: 29 January 2020 / Published online: 13 February 2020
© The Author(s) 2020

Abstract
We describe a high-throughput computing system for running jobs on public and private computing clouds using the HTCon-
dor job scheduler and the cloudscheduler VM provisioning service. The distributed cloud computing system is designed to
simultaneously use dedicated and opportunistic cloud resources at local and remote locations. It has been used for large-scale
production particle physics workloads for many years using thousands of cores on three continents. A decade after its initial
design and implementation, cloudscheduler has been modernized to take advantage of new software designs, improved oper-
ating system capabilities and support packages. The updated cloudscheduler is more resilient and scalable, with expanded
capabilities. We present an overview of the original design and then describe the new version of the distributed compute
cloud system. We conclude with a review of the current status and future plans.

Keywords  Particle physics · Cloud computing

Introduction

In the field of particle physics, clouds are increasingly used
to process and analyze data [1]. It is possible that commer-
cial clouds might satisfy the computational requirements of
the next generation of global research projects; however, it
is likely that dedicated storage facilities will be required to
store and preserve the research data. One scenario may be a
hybrid solution of dedicated and opportunistic, private and
commercial compute resources, linked by high-speed net-
works to a distributed set of dedicated storage repositories.

This paper describes such a hybrid solution for running
high-throughput computing workloads on compute clouds,
irrespective of the underlying cloud software, location or its
ownership. We call our design a distributed compute cloud
where the resources are an aggregate of compute clouds hid-
den from the user. The distributed cloud can be integrated
with existing storage systems or federations to provide full

access to the research data. Although the focus of the dis-
tributed cloud is to deliver resources for particle physics
application, it is also used for astronomy and can be used by
researchers in other fields.

The distributed compute cloud uses cloudscheduler for
VM provisioning and scheduling, and HTCondor for job
scheduling. The two packages are designed for a dynamic
environment where the resources on a cloud, or even the
cloud itself, appear or disappear. Briefly, cloudscheduler
reviews the HTCondor job queue and cloud resources to
determine whether there are clouds that can start VMs
that meet the job requirements. If a match is found, then
cloudscheduler requests that the appropriate VM image be
booted on the cloud. Once the VM is instantiated, it joins
the HTCondor pool and the user job is sent to the running
VM instance.

The original design of cloudscheduler was conceived in
2009 [2] and is based on ideas discussed in a paper describ-
ing “sky computing” [3]. The distributed compute cloud has
run many millions of jobs on three continents for the ATLAS
experiment at the CERN Laboratory in Geneva, Switzerland
[4] and the Belle II experiment at the KEK Laboratory in
Tsukuba, Japan [5].

Many of the custom and external software components
have undergone significant change since the first version

 *	 R. J. Sobie
	 heprc@uvic.ca

1	 Department of Physics and Astronomy, University
of Victoria, Victoria, British Columbia, Canada

2	 TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-020-0036-1&domain=pdf

	 Computing and Software for Big Science (2020) 4:4

1 3

4  Page 2 of 10

of cloudscheduler. Further, the years of production opera-
tion have provided insight on how to simplify and improve
the system (see Sect. 2.3). In 2018, cloudscheduler was
changed from a single Python code framework into a soft-
ware platform with expanded functionality using current
software technologies and practises. The new design is
more robust, error tolerant and scalable.

There are other strategies and software for utiliz-
ing clouds in particle physics. These include Vcycle,
VMDIRAC and an extension of the HTCondor job sched-
uler. In Vcycle, the resource provider creates VMs for the
experiments that draw jobs from the experiments’ central
queue of tasks [6]. VMDIRAC is a module for the DIRAC
workload management system [7] that can start VMs on
clouds [8, 9]. HTCondor can also be used to start VMs on
Openstack clouds [10]. The distributed cloud computing
system using cloudscheduler provides an infrastructure
that can run workloads for any field or research without the
need for application experts at each site. It is not depend-
ent on project-specific workload management systems but
can be integrated with them. Further, it can run workloads
on all cloud types, while the users or experiments only
need to know about the familiar batch system interface to
which they submit jobs.

In this paper, we give an overview of the original design
of the distributed cloud system using Cloudscheduler Ver-
sion 1 (CSV1) and motivation for a new version in Sect. 2.
Section 3 describes Cloudscheduler Version 2 (CSV2).
Throughout the paper, we highlight the external components
used in both versions of the distributed compute cloud that
are critical to the system.

Cloudscheduler V1 Distributed Compute
Cloud

Overview

We briefly describe CSV1 to give some context and motiva-
tion for the new version. The architecture of the distributed
compute cloud using CSV1 has been described in a number
of papers [11, 12] and is shown in Fig. 1. The key compo-
nents are the HTCondor job scheduler, the cloudscheduler
VM provisioning service and the compute clouds. CSV1
provides API support for Openstack, Open Nebula, Amazon
EC2, Microsoft Azure and Google GCE clouds.

HTCondor was selected as the job scheduler as it was
designed to be a cycle scavenger [13], making it an ideal
fit for a dynamic cloud environment. The user or workload

Fig. 1   Overview of the
cloudscheduler Version 1 and
HTCondor distributed compute
cloud. A user or workload
management system submits
application jobs to the HTCon-
dor job scheduler. Cloudsched-
uler reviews the job queue and
the resources on the compute
clouds. If there is a cloud with
resources that meet the require-
ments of the job, then cloud-
scheduler issues a command
to boot the user-specified VM.
The instantiated VM registers
with HTCondor and the job is
submitted to the VM

Computing and Software for Big Science (2020) 4:4	

1 3

Page 3 of 10  4

management system submits a job to the HTCondor job
scheduler, specifying the job requirements (e.g., number
of cores, memory and disk space) in the Job Description
Language (JDL) file. Multi-core VMs are booted on the
clouds, whether a job requires one or all of the cores in the
VM, as there are benefits such as shared disk caches, fewer
VM instances and it helps to reduce the fragmentation of
the resources on the clouds. The HTCondor client on the
VM starts a partitionable slot during the contextualization
process, which is subdivided depending on the resource
requirements of the job.

CSV1 examines the list of pending jobs in the HTCon-
dor queue and searches for a cloud with free resources that
meets the job requirements in the JDL file or as specified
by the system-wide job defaults. If there is a cloud that
meets those requirements, then CSV1 sends a request to
the cloud to boot a VM. CSV1 only requests one VM boot
per cycle every minute (both configurable parameters) on
one cloud in the list; on the subsequent cycle, it would
request a VM on the next cloud in the list. The VM image
and VM flavor are specified in the JDL file or in a configu-
ration file. Once the VM is booted and contextualized, it
joins the HTCondor pool and queued job(s) can start on
this VM.

Decisions on VM provisioning are based on the infor-
mation about the jobs and clouds. CSV1 retains the state
information in memory and can write it to disk using the
Python pickle module. The pickle file makes it possible to
restart CSV1 if there are minor issues or there is a simple
code change. More significant changes or outages require
the entire system to be shutdown.

CSV1 can request the start, retirement or immediate
destruction of a VM. The start and destroy commands are
directly issued via the cloud API. If there are no jobs in
the HTCondor queue, then a running VM may be retired.
A retire request is issued to the HTCondor client on the
VM and the client deregisters from the HTCondor pool. The
retire request issues the “condor_off” command to both the
HTCondor startd and master daemons on the VM instance.
The HTCondor slots on this machine are then listed as being
in a “retired” state. The jobs running on the VM are allowed
to finish and then the VM is destroyed.

HTCondor and CSV1 are managed via their respective
command line interfaces (CLIs). The Linux root user can
configure the system, add or remove clouds and edit the
files used for the contextualization of a VM. The normal
Linux users can query the status of jobs and VMs using the
HTCondor and CSV1 CLIs, respectively. CSV1 does not
have a GUI for managing the system, although there is a
monitoring web page.

Performance and Status

The distributed compute cloud is integrated into the WLCG
grid infrastructure [14] and has run production workloads
for many years using clouds in North America, Europe and
Australia. The majority of clouds use the Openstack soft-
ware, though Open Nebula, Amazon EC2, Google GCE and
Microsoft Azure clouds have also been used.

We ran two instances of the CSV1 system in North Amer-
ica for ATLAS and Belle II, respectively, and another CSV1
in Europe for ATLAS (each with a separate HTCondor
instance). The HTCondor instances dedicated to the ATLAS
experiment are linked to the PanDA workload management
system [15]. ATLAS typically uses a few hundred thousand
cores at a given moment, and the distributed compute cloud
contributes approximately 1% of the resources, compara-
ble to the other Tier-2 compute centers operated in Canada.
ATLAS (and Belle II) submit “pilot jobs” that sets up the
software environment and contacts the central system for
payload jobs. A pilot job can run more than one payload job
depending on its configuration.

The Belle II experiment uses the DIRAC workload man-
agement system [7]. There are three DIRAC Site Directors
in Victoria that submit pilot jobs to the Belle II HTCondor
instance if there are jobs in the central DIRAC server at
KEK. The distributed compute cloud has provided 13% of
the total workload of the experiment since January 2018.
All of the Canadian resources for Belle II will continue to
be provided by the distributed compute cloud.

Motivation for cloudscheduler redevelopment

Cloudscheduler has evolved with the cloud technologies but
it has become difficult to maintain. The CSV1 code is writ-
ten in Python 2, which will no longer be supported after
January 2020. CSV1 contains redundant code written to
support operating system features and cloud software that
no longer exist. CSV1 was designed as a multi-user system;
however, it never functioned well as a mutli-user system as
it would rapidly start and stop VMs in attempt to balance
resources between competing projects.

CSV1 runs on a single node and uses in-memory data
structures for the state information; making it prone to single
errors and failure. An unscheduled outage or system crash
would result in a loss of all running VMs and require a man-
ual intervention on each cloud to remove the residual VMs
(a time consuming and error prone task).

As mentioned in the previous section, there were separate
instances of CSV1 for the experiments. While the separate
CSV1 instances worked well, it meant one could not shift
idle resources between projects. A single instance of cloud-
scheduler would also simplify the operations though it would
need to be able to use one or more instance of HTCondor.

	 Computing and Software for Big Science (2020) 4:4

1 3

4  Page 4 of 10

The ATLAS and Belle II experiments use different authenti-
cation in HTCondor, and some sites do not allow their VMs
to connect to a remote HTCondor pool.

It became apparent that a new version was necessary to
update the software, simplify the operations, extend the cur-
rent capabilities and add new functionality.

Cloudscheduler V2 Distributed Compute
Cloud

Overview

CSV2 is a framework of component processes written in
Python 3 and built around the MariaDB (SQL) relational
database [16]. There are processes for control, data gather-
ing (pollers), user interfaces and for VM provisioning. The
MariaDB ensures consistent state information, which is
essential for the reliability of CSV2 (see Fig. 2).

The database allows data retrieval from multiple sources,
and correlates information between different subsystems to
obtain different views of the system data. The data are organ-
ized in tables, with rows representing objects and columns
representing the attributes of an object. There are tables for

the global and local configuration parameters. CSV2 also
creates ephemeral data in tables for objects like jobs or vir-
tual machines. The database also adds authorization features
that protects the integrity of the data, while allowing both
local and remote access.

The database also ensures recoverability. In the event that
the database is lost, it can be restored from the latest backup
allowing CSV2 to restart and return to full operation. Within
one cycle, the data pollers (described below) will retrieve
information from all configured subsystems (clouds and
HTCondor job schedulers), and once the ephemeral data are
updated, the database will accurately reflect the current state.

CSV2 introduces a RESTful web User Interface (UI)
for administration, control, and detailed monitoring of the
clouds and jobs. In contrast to CSV1, the CSV2 UI can be
accessed through either a graphical user interface (GUI)
using web browsers or a command line interface (CLI) client
(with extensive man pages); the GUI and CLI have nearly
the same functional capabilities. In contrast to CSV1, the
CLI can be used from any computer and the user of the CLI
does not need to have ssh access to or a Linux account on
the machine where CSV2 runs. For all clients, the connec-
tions are authenticated either by x509 proxy certificates or

Fig. 2   Overview of the cloudscheduler Version 2 and HTCondor dis-
tributed compute cloud. The primary change is the introduction of the
MariaDB for keeping track of the state of the system and “pollers” to

gather information from the clouds and the job scheduler. The infor-
mation in the database is used for scheduling, management and moni-
toring

Computing and Software for Big Science (2020) 4:4	

1 3

Page 5 of 10  4

by usernames and passwords. In Fig. 3, an example of the
graphical status display is presented.

CSV2 has pollers that fill the MariaDB with information
from the clouds and HTCondor. New entries are added to
tables in the database for each new job and VM. The state
information of existing entries are updated by the pollers,
and obsolete information (for completed jobs/VMs) is
removed.

Figure 2 shows a single cloud poller; however, there are
separate cloud pollers for each cloud-type1 (e.g., one poller
can support multiple Openstack clouds). Figure 2 also shows
pollers for HTCondor (labeled as HTC pollers). There is a

HTC machine poller that gathers information on the HTCon-
dor machines and a HTC job poller that gathers information
on the jobs in the HTCondor queue. The pollers consist of
multiple tasks that run at different frequencies. For exam-
ple, the cloud poller updates the MariaDB with information
on the VMs every 60 s; whereas, it updates the list of VM
images every 5 min. Typically, the dynamic information is
updated every minute and the relatively static information
on a longer timescale (between 5 min and 1 day).2

Although Fig. 2 shows only one HTCondor instance,
CSV2 can support multiple instances. For example, separate

Fig. 3   Snapshot of the CSV2 GUI showing the number of jobs for
the ATLAS and Belle II experiments in the upper table. The second
table shows the different clouds running for the two experiments and

the states of the VM instances. At the time of screenshot, the Belle II
experiment had few jobs running and the resources were mainly used
by ATLAS. Only part of the GUI is shown

Table 1   The possible states of
a VM in the CSV2 distributed
compute cloud system

VM state Description

starting VM is booting/contextualizing
unregistered VM is running and has not registered in HTCondor pool
idle VM is running, registered in HTCondor pool and not running jobs
running VM is running, registered in HTCondor pool and running jobs
retiring VM is running, retired in HTCondor pool and will complete running jobs
manual VM is flagged as being manually used and will be ignored by the VM Scheduler
error VM in error state according to the cloud information

1  Currently, there is API support for Openstack and Amazon EC2
clouds (support for other cloud APIs will be added on demand).

2  Note that the numbers given for cycle times, limits and thresholds
are configurable parameters. Further, when we state that a poller or
process is run every N seconds, this means that the process sleeps for
N seconds after the last cycle before restarting its tasks.

	 Computing and Software for Big Science (2020) 4:4

1 3

4  Page 6 of 10

HTCondor instances are used by ATLAS and Belle II
experiments, in part, due to differing security requirements.
All HTCondor instances are supported by a single set of
HTCondor pollers. However, each instance of HTCondor
requires a HTC Agent to provide the correct security context
when issuing requests to the HTCondor client on the VM
(e.g., requesting a VM to de-register from the HTCondor
pool).

CSV2 requires inter-process communication and signal-
ing. For example, the User Interface (UI) signals the cloud
poller when a cloud is added, so that cloud data are updated
immediately. CSV2 uses AMQP, a reliable message delivery
protocol, to signal processes to wake when there is impor-
tant information that will impact the outcome. For example,
the cloud poller looks for new clouds or VM images every
5 min. The AMQP message from the UI, signals the cloud
poller to start a new cycle. This solution is better than rely-
ing on the pollers running on an overly frequent cycle. It is
expected that AMQP will have an expanded role in further
updates of the system.

Workflow

The VM Scheduler runs every 10 s and retrieves virtual
tables (views) from the MariaDB to determine its actions.
A view can retrieve and relate data from multiple tables,
perform calculations, sort, group, select, concatenate, resort
and regroup to derive the information required. For example,
one of views determines the state of the VMs (see Table 1).
The primary tables used by the scheduler are the job queue
and the compute resources.

We briefly describe the steps to create the job queue view.
Jobs are grouped according to their resource requirements
such as cores, disk, and memory. For example, ATLAS has
jobs requiring either 1 or 8 cores, and Belle II has jobs that
require clouds with a local Belle II storage repository. Jobs
of similar requirements are grouped and counted (called a
“job group”).

Next, the view finds the VM flavors for each cloud that
can satisfy the job requirements of the job group. For each
cloud, the view assembles a list of (Cloud name:VM flavor)
pairs with only one pair per cloud. The VM flavor is speci-
fied by the user or retrieved from the database. If the VM
flavor is obtained from the database, then the one with the
fewest cores and/or the least amount of memory is selected.
If a cloud has no VM flavor that meets the requirements,
then that cloud is not included in the list of VM flavors (and
will not be selected to boot VMs for this job group).

The result of the view is the table shown below, listing
the group name, the number of idle jobs, and a list of (Cloud
name:VM flavor) for each unique job type (only a subset of
the columns in the table is shown). Each row corresponds to

a unique job type. The first row is for ATLAS 8-core jobs,
the second row is for Belle II production (low I/O) jobs and
the third row is for Belle II analysis (high I/O) jobs. The lat-
ter group requires a local Belle II storage element, which is
set to run on different set of clouds.

Group Idle jobs Cloud name : VM flavor

atlas 86 arbutus-nf:c16-60gb-392, arbutus:c8-30gb-186,
cc-east:c8-30gb-430, chameleon:m1.xxlarge,
otter:b8

belle 1 arbutus:c8-30gb-186, cc-east:c4-15gb-205,
desy:m1.xlarge, ecdf-b:m1.xlarge, otter:b8

belle 91 arbutus:c8-30gb-186, otter:b8

The list of (Cloud name:VM flavor) pairs in the above
table is ordered by the priority of the cloud (called the cloud
priority). The cloud priority can, for example, give lower
priority to commercial clouds. Clouds that have the same
priority are ordered alphabetically based on their cloud
name.

Prior to reviewing whether the clouds in the job group
have free resources to boot new VMs, the system is checked
for VMs in a starting or unregistered states (see Table 1),
or if there are running VMs that are not fully utilized (e.g.,
empty or idle job slots). This indicates there is capacity in
the system for the idle jobs and no new VMs will be booted.

The compute resources view is used to determine how
many VMs with a specific flavor can be started on one cloud.
The following table shows an example of a view that returns
the group name, the (Cloud name:VM flavor) pair, and the
number of Available VM slots that can be started on this
cloud. In this example, the arbutus cloud has the capacity to
start 109 VMs with the c8-30gb-186 flavor for ATLAS and
184 VMs with the same flavor for Belle II. The table was
selected to show only the results of a query for a VM flavor
of arbutus:c8-30gb-186, which is the optimal VM flavor for
both projects (an unrestricted query returns over 100 rows).

Group Cloud name : VM flavor Available
VM slots

atlas arbutus:c8-30gb-186 109
belle arbutus:c8-30gb-186 184

CSV2 makes it possible for one experiment to opportun-
istically utilize the resources of another experiment whose
resources are idle. The number of available VM slots for
each cloud and VM flavor (as shown in the above table)
takes into account the opportunistic resources. In the sim-
plest configuration, the primary group (experiment) has the
priority use of a cloud, and the opportunistic group can also
use that cloud if there are idle resources. The primary group
has a quota of compute cores equal to the full allocation on
the cloud, and the opportunistic group has an opportunistic

Computing and Software for Big Science (2020) 4:4	

1 3

Page 7 of 10  4

quota of compute cores that is less than the full alloca-
tion. If the primary group does not use any resources, the
opportunistic group can boot VMs up to their opportunistic
quota. If the primary group begins submitting jobs, then
the VMs of the opportunistic group will be retired and their
jobs allowed to complete. Eventually, there will be no jobs
from the opportunistic group. The quotas of the primary and
opportunistic groups are used when determining the com-
pute resources view. This strategy has significantly improved
the utilization of the clouds.

The compute resources view provides the VM scheduler
with the information it requires to boot new VMs. Prior to
issuing VM boot requests, a number of conditions are tested
to avoid starting too many VMs. For example, if there are
five or more VMs in a starting or unregistered state on a
cloud, then no VMs will be started on that cloud for any
group. In addition, if there are more that ten idle VMs within
the clouds associated with a unique job type, then no VMs
are started for that job-type group.

If the above criteria are satisfied and the list of (Cloud
name:VM flavor) pairs in the compute-view table shows
available VM slots (see above table), then the VM sched-
uler will issue up to five VM boot requests on each cloud
in the group.

At the end of the boot process, the VMs are contextual-
ized with the configuration required by CSV2 (e.g., HTCon-
dor), the particle physics software (e.g., CVMFS file sys-
tem) and the experiment software. We discuss this in further
detail in Sect. 3.4.

Once the VM has completed its contextualization, it
is registered as a HTCondor machine. The HTC machine
poller periodically retrieves the ClassAds of all the HTCon-
dor machines via the HTCondor Python API and stores its
ClassAd in the MariaDB. If there is no ClassAd for the VM,
then a query of the MariaDB would show the VM to be in
an unregistered state. The registration of the VM with the
HTCondor pool happens during the start of the HTCondor
clients on the VM after it is fully contextualized. A VM
that is in an unregistered state that exceeds a “come alive”
time (currently 2400 s) or fails to start any job within a “job
alive” time (currently 300 s) is usually problematic and is
terminated.

If a VM remains idle for an extended period of time after
completing one or more jobs, then either the job queue is
empty, there are no more queued jobs that can run in the
VM, or the VM developed problems communicating with
the HTCondor server. In this situation, the VM scheduler
sets the retire flag in the database entry of the VM. We have
observed that keeping idle VMs alive for 30–60 min is opti-
mal (defined by a “keep alive” time) due to the sporadic
nature of the workload management systems of the experi-
ments. Both the ATLAS and Belle II workload management

systems keep track of the idle or queued and running jobs,
and use those numbers to submit additional jobs.

If the retire flag of the VM in the MariaDB is set, then
the HTC machine poller sends retire messages via AMQP
to the HTC Agent. On receiving a retire message, the HTC
Agent issues a “condor_off” command to both the HTCondor
startd and master daemons on the VM instance, causing all
the partitions to be marked “retiring” and preventing them
from accepting new jobs. However, jobs currently running
on the VM are allowed to complete.”

When a VM is in a retiring state and it is not running
any jobs, then the HTC machine poller sends a request (via
the cloud API) to the cloud to shut down that VM instance.

A VM can also be retired if there is a change in the quota
of a cloud (e.g., cores, RAM) and the current usage now
exceeds the new quota. Depending on the type of change in
the quota, then either the user interface or the cloud poller
will set the retire flag on a collection of VMs (based on
information such as the age of the VM) needed to rebalance
the system.

Configuration

CSV2 introduces users and groups to the distributed com-
pute cloud (stored in the MariaDB). Users can be assigned
different access privileges and can be members of multiple
groups. Groups are defined, in our case, to be particle phys-
ics experiments or a development and testing area.3 Each
CSV2 group adds the compute clouds to its configuration,
and users in the group have the ability to add and manage
the clouds.

The VM images and SSH keys4 can be uploaded by
logging in directly to the cloud (e.g., via the Openstack or
Amazon dashboards) or via the CSV2 GUI. One can define
a default VM image and default SSH keys that will be auto-
matically distributed to all Openstack clouds. CSV2 keeps
track of the VM images in the MariaDB. As the list of VM
images can change, the cloud poller periodically queries the
clouds for the list of available VM images as well as VM
flavors and cloud quotas to keep the MariaDB up to date.

The GUI is accessed through a web browser and can
also generate time series plots for each variable (stored in
an InfluxDB). An example of a time series plot is shown
in Fig. 4, where the number of running jobs for ATLAS
and Belle II is plotted for the month of July 2019. For most
of 2019, ATLAS provided a sustained workload of longer
running production jobs (typically 6–12 h) while Belle II

3  Openstack has projects and users. Previously, Openstack used ten-
ants before changing to projects. As CSV2 uses other types of clouds,
it was decided to identify ensembles of users as groups to distinguish
it from Openstack projects.
4  The SSH keys allow the user to log into a VM instance for debug-
ging purposes.

	 Computing and Software for Big Science (2020) 4:4

1 3

4  Page 8 of 10

has periodic bursts of very short running analysis jobs
(5–10 min). The time series plot highlights the difference
in workload between the two projects for June–July 2019.
Belle II is still at an early stage of its project lifetime and
just starting to record particle collision data; it is expected
that the number of Belle II jobs will increase in the future.

There are other configuration settings for the manage-
ment of VMs with default parameters (for example, the cycle
times of the pollers and VM scheduling algorithm param-
eters). We refer the reader to the documentation located at
cloudscheduler.readthedocs.io.5

VM Contextualization for Particle Physics
Applications

At the end of the boot process, the VMs are contextualized
with the required software and the VM is configured for
the application software [17]. The contextualization is con-
trolled by metadata that is passed to the “cloud-init” process
[18].

The contextualization of the VM instances for the ATLAS
and Belle II experiments is very similar. Both use the micro-
CernVM virtual machine image [19], the CernVM File Sys-
tem (CVMFS) [20], and optionally, Shoal, a dynamic web
cache locator service [21].

The small micro-CernVM image (approximately 20 MB)
saves storage space and can be started instantaneously. The
image contains a read-only Linux kernel and a CernVM File
System (CVMFS) client. An array of squid proxy caches
around the world are used to host files from CVMFS [22].
The CVMFS client is configured to use a specific squid
cache; however, the CVMFS client can be configured to use
the nearest squid cache to the VM by querying Shoal.

The contextualization process then sets up the HTCon-
dor client, and the environment for the experiment. The
accounting and monitoring processes are activated, and the
CPU benchmark suite is run on the VM (see the next sec-
tion). Both the HTCondor client and the CPU benchmark
are retrieved from CVMFS. The necessary host certificates
and SSH keys are added to the VM. All the VMs share the
same host certificate; we currently use certificates from
GridCanada.

It is important to keep track of the resources delivered by
a cloud to an experiment. We configure the VMs to write
out their status every 15 min to Elasticsearch. The status
includes configuration information, the fast benchmark and
the timing information (obtained from /proc/stat). We are
currently working on reporting our accounting numbers
back into APEL for ATLAS (the accounting information
for Belle II will be added once the reporting system is

Fig. 4   Shows the number of running ATLAS jobs (blue) and Belle II jobs (orange). ATLAS was running production jobs requiring 4 or 8 cores;
whereas, Belle II was periodically running very short analysis jobs during the 30-day period in 2019

ki
lo

 C
P

U
-h

ou
rs

0

20

40

60

80

100

120

Ja
n1

9

Fe
b1

9

M
ar
19

A
pr
19

M
ay
19

Ju
n1

9

Ju
l1
9

A
ug

19

Se
p1

9

O
ct
19

N
ov

19

csv2.heprc
bellecs.heprc
aiatlas.cern

Fig. 5   The fast-benchmark hours ( × 1000) per month in 2019. The
(processor) hours are extracted from the kernel activity in /proc/
stat and is typically 80–90% of the wall clock time. The blue histo-
gram (aiatlas.cern) is the ATLAS HTCondor instance cloud hosted
at CERN. The white histogram (csv2.heprc) and the green histogram
(bellecs.heprc) are the ATLAS and Belle II HTCondor instances
hosted in Victoria, Canada

5  The documentation is work in progress.

Computing and Software for Big Science (2020) 4:4	

1 3

Page 9 of 10  4

operational) [23]. The fast benchmark is discussed in the
following section.

Operations and status

The CSV2 distributed compute cloud started produc-
tion use in early 2019. The ATLAS production using the
clouds in North America was shifted to CSV2, and tested
extensively for many months. The Belle II production
system was transitioned to CSV2 in June 2019. ATLAS
and Belle II are now supported by a single instance of
CSV2 but continue to use separate instances of HTCondor
that are linked to their respective workload management
systems.

In Fig. 5, we plot a histogram of the CPU hours weighted
by a benchmark that is an estimate of the HEP-SPEC06 [24]
benchmark. A center usually runs the HEP-SPEC06 bench-
mark when their resources are being commissioned. As we
are generally unaware of the underlying hardware, we can
not use a static benchmark value. It is also impractical to
run the HEP-SPEC06 on every VM, as it takes 2–3 h (and
there are also licensing issues). Instead, a fast-benchmark
code (DB16) [25] is executed at the end of the contextualiza-
tion of the VM instance to measure the performance of the
dynamically provided resources.

Figure 6 shows a histogram (normalized to unit area) of
the fast benchmark measured for every VM booted in 2019.
The fast benchmark gives a reproducible result if the VM is
the only activity on the underlying node; however, the value
is often underestimated if the node is busy or hyperthread-
ing is used. The fast benchmark is not ideal and there are
ongoing efforts to find a more reliable estimate of the experi-
ments’ workload (see the recent presentation of the HEPiX
Benchmark Working Group [26]).

In addition, we remark that the distributed compute cloud
is using the Dynafed data federation service, developed by
CERN IT, for locating input data [27, 28]. Dynafed federates
existing storage systems and provides a link to the closest

copy of the data on the basis of GeoIP information. Dynafed
is used to federate existing storage of the ATLAS and Belle
II experiments [29–31].

Summary

We have presented the design of a distributed cloud com-
puting system based on the cloudscheduler VM provi-
sioning platform. It remains a novel system for utilizing
high-throughput workloads on multiple dedicated and
opportunistic clouds located at remote locations and owned
by other organizations. The system has provided signifi-
cant resources to the ATLAS and Belle II particle physics
experiments. The cloudscheduler VM provisioning system
has been updated to current software standards to make it
more scalable and reliable, as well as adding new function-
ality. It is currently planned to use cloudscheduler for the
computing part of the proposed Belle II Canadian Raw Data
Center. Other plans include further integration and use of
the Dynafed data federator to expand the running of data-
intensive applications.

The CSV2 code repository is hosted at GitHub (https://
github.com/hep-gc/cloudscheduler) and documentation is
found at cloudscheduler.readthedocs.io.

Acknowledgements  We would like to thank the support of the Natural
Sciences and Engineering Research Council of Canada and the Cana-
dian Foundation of Innovation. In addition, the resources and gener-
ous support provided by Compute Canada, the Chameleon Project, the
Edinburgh Compute and Data Facility (ECDF), Amazon and Microsoft
are acknowledged.

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

Fast Benchmark
0 5 10 15 20 25 30 350

0.04

0.08

0.12

0.16

0.2

Fig. 6   Histogram of the fast benchmark measured by the VMs. Note
that the histogram is normalized to unit area. The fast benchmark is
an estimate of the HEP-SPEC06 benchmark. There are entries from
multiple clouds. The types of processors in each cloud are unknown.
When running on whole real CPUs, the benchmark values show a

narrow peak; while when using hyperthreaded CPUs, the peaks are
wider and shifted to lower values. The continuum entries between the
peaks represent measured benchmark entries when other (unknown)
processes are running on the same hypervisor

	 Computing and Software for Big Science (2020) 4:4

1 3

4  Page 10 of 10

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Elsen E The end of computing’s steam age. http://cds.cern.ch/
recor​d/22122​98

	 2.	 Armstrong P et al (2010) Cloud Scheduler: a resource manager
for distributed compute clouds. arXiv preprint arXiv​:1007.0050

	 3.	 Keahey K, Tsugawa M, Matsunaga A, Fortes J (2009) Sky
computing. Internet Comput IEEE 13(5):43–51. https​://doi.
org/10.1109/MIC.2009.94

	 4.	 Taylor RP et al (2017) Consolidation of cloud comput-
ing in ATLAS. J Phys Conf Ser 898:052008. https​://doi.
org/10.1088/1742-6596/898/5/05200​8

	 5.	 Sobie RJ et al (2015) Utilizing clouds for Belle II. J Phys Conf Ser
664:022037. https​://doi.org/10.1088/1742-6596/664/2/02203​7

	 6.	 McNab A et al (2015) Managing virtual machines with
Vac and Vcycle. J Phys Conf Ser 664:022031. https​://doi.
org/10.1088/1742-6596/664/2/02203​1

	 7.	 Tsaregorodtsev A et al (2014) DIRAC distributed computing ser-
vices. J Phys Conf Ser 513:032096. https​://doi.org/10.1088/1742-
6596/513/3/03209​6

	 8.	 Grzymkowski R et al (2015) Belle II public and private cloud
management in VMDIRAC. J Phys Conf Ser 664:022021. https​
://doi.org/10.1088/1742-6596/664/2/02202​1

	 9.	 Amoroso A et al (2017) A modular (almost) automatic set-up for
elastic multi-tenants cloud (micro)infrastructures. J Phys Conf Ser
898:082031. https​://doi.org/10.1088/1742-6596/898/8/08203​1

	10.	 Bockelman B et al (2017) Interfacing HTCondor-CE with Open-
Stack. J Phys Conf Ser 898:092021. https​://doi.org/10.1088/1742-
6596/898/9/09202​1

	11.	 Fransham K et al (2010) Research computing in a distributed
cloud environment. J Phys Conf Ser 256:012003. https​://doi.
org/10.1088/1742-6596/256/1/01200​3

	12.	 Gable I et al (2011) A batch system for HEP applications in a
distributed IaaS cloud. J Phys Conf Ser 331:062110. https​://doi.
org/10.1088/1742-6596/331/6/06201​0

	13.	 Thain D, Tannenbaum T, Livny M (2005) Distributed computing
in practice: the Condor experience. Concurr Comput Pract Exp
17:323. https​://doi.org/10.1002/cpe.938

	14.	 The Worldwide LHC Computing Grid. http://wlcg.web.cern.ch
	15.	 Barreiro Megino FH et al (2017) PanDA for ATLAS distributed

computing in the next decade. J Phys Conf Ser 898:052002. https​
://doi.org/10.1088/1742-6596/898/5/05200​2

	16.	 MariaDB open-source relational database. https​://maria​db.org
	17.	 Keahey K, Freeman T (2009) Contextualization: providing one-

click virtual Clusters. IEEE Xplore. https​://doi.org/10.1109/eScie​
nce.2008.82

	18.	 Cloud_init: the standard for customizing cloud instances. https​://
cloud​-init.io

	19.	 Blomer J et al (2014) Micro-CernVM: slashing the cost of build-
ing and deploying virtual machines. J Phys Conf Ser 513:032009.
https​://doi.org/10.1088/1742-6596/513/3/03200​9

	20.	 Blomer J et al (2017) New directions in the CernVM file sys-
tem. J Phys Conf Ser 898:062031. https​://doi.org/10.1088/1742-
6596/898/6/06203​1

	21.	 Gable I et al (2014) Dynamic web cache publishing for IaaS
clouds using Shoal. J Phys Conf Ser 513:032035. https​://doi.
org/10.1088/1742-6596/513/3/03203​5

	22.	 Squid is a caching proxy for the Web. http://www.squid​-cache​.org
	23.	 APEL is an accounting tool that collects accounting data from

sites participating in the EGI and WLCG infrastructures. https​://
wiki.egi.eu/wiki/APEL

	24.	 Michelotto M et al (2010) A Comparison of HEP code with
SPEC1 benchmarks on multi-core worker nodes. J Phys Conf Ser
219:052009. https​://doi.org/10.1088/1742-6596/219/5/05200​9

	25.	 Charpentier P (2017) Benchmarking worker nodes using LHCb
productions and comparing with HEPSpec06. J Phys Conf Ser
898:082011. https​://doi.org/10.1088/1742-6596/898/8/08201​1

	26.	 Valassi A et al (2019) Benchmarking WLCG resources using HEP
experiment workloads. In: The proceedings of the computing in
high energy physics conference, Adelaide (to be published)

	27.	 Dynafed-The Dynamic Federation project. http://lcgdm​.web.cern.
ch/dynaf​ed-dynam​ic-feder​ation​-proje​ct

	28.	 Furano F, Keeble O, Field L (2016) Dynamic federation of
grid and cloud storage. Phys Part Nucl Lett 13:629. https​://doi.
org/10.1134/S1547​47711​60501​86

	29.	 Berghaus F et al (2018) Federating distributed storage for
clouds in ATLAS. J Phys Conf Ser 1085:032027. https​://doi.
org/10.1088/1742-6596/1085/3/03202​7

	30.	 Ebert M et al (2019) Using a dynamic data federation for running
Belle-II simulation applications in a distributed cloud environ-
ment. EPJ Web Conf 214:04026. https​://doi.org/10.1051/epjco​
nf/20192​14040​26

	31.	 Berghaus F et al (2019) The Dynafed data federator as grid site
storage element. In: The Proceedings of the Computing in High
Energy Physics Conference, Adelaide (to be published)

http://creativecommons.org/licenses/by/4.0/
http://cds.cern.ch/record/2212298
http://cds.cern.ch/record/2212298
http://arxiv.org/abs/1007.0050
https://doi.org/10.1109/MIC.2009.94
https://doi.org/10.1109/MIC.2009.94
https://doi.org/10.1088/1742-6596/898/5/052008
https://doi.org/10.1088/1742-6596/898/5/052008
https://doi.org/10.1088/1742-6596/664/2/022037
https://doi.org/10.1088/1742-6596/664/2/022031
https://doi.org/10.1088/1742-6596/664/2/022031
https://doi.org/10.1088/1742-6596/513/3/032096
https://doi.org/10.1088/1742-6596/513/3/032096
https://doi.org/10.1088/1742-6596/664/2/022021
https://doi.org/10.1088/1742-6596/664/2/022021
https://doi.org/10.1088/1742-6596/898/8/082031
https://doi.org/10.1088/1742-6596/898/9/092021
https://doi.org/10.1088/1742-6596/898/9/092021
https://doi.org/10.1088/1742-6596/256/1/012003
https://doi.org/10.1088/1742-6596/256/1/012003
https://doi.org/10.1088/1742-6596/331/6/062010
https://doi.org/10.1088/1742-6596/331/6/062010
https://doi.org/10.1002/cpe.938
http://wlcg.web.cern.ch
https://doi.org/10.1088/1742-6596/898/5/052002
https://doi.org/10.1088/1742-6596/898/5/052002
https://mariadb.org
https://doi.org/10.1109/eScience.2008.82
https://doi.org/10.1109/eScience.2008.82
https://cloud-init.io
https://cloud-init.io
https://doi.org/10.1088/1742-6596/513/3/032009
https://doi.org/10.1088/1742-6596/898/6/062031
https://doi.org/10.1088/1742-6596/898/6/062031
https://doi.org/10.1088/1742-6596/513/3/032035
https://doi.org/10.1088/1742-6596/513/3/032035
http://www.squid-cache.org
https://wiki.egi.eu/wiki/APEL
https://wiki.egi.eu/wiki/APEL
https://doi.org/10.1088/1742-6596/219/5/052009
https://doi.org/10.1088/1742-6596/898/8/082011
http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project
http://lcgdm.web.cern.ch/dynafed-dynamic-federation-project
https://doi.org/10.1134/S1547477116050186
https://doi.org/10.1134/S1547477116050186
https://doi.org/10.1088/1742-6596/1085/3/032027
https://doi.org/10.1088/1742-6596/1085/3/032027
https://doi.org/10.1051/epjconf/201921404026
https://doi.org/10.1051/epjconf/201921404026

	High-Throughput Cloud Computing with the Cloudscheduler VM Provisioning Service
	Abstract
	Introduction
	Cloudscheduler V1 Distributed Compute Cloud
	Overview
	Performance and Status
	Motivation for cloudscheduler redevelopment

	Cloudscheduler V2 Distributed Compute Cloud
	Overview
	Workflow
	Configuration
	VM Contextualization for Particle Physics Applications
	Operations and status

	Summary
	Acknowledgements
	References

