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Abstract
We describe a high-throughput computing system for running jobs on public and private computing clouds using the HTCon-
dor job scheduler and the cloudscheduler VM provisioning service. The distributed cloud computing system is designed to 
simultaneously use dedicated and opportunistic cloud resources at local and remote locations. It has been used for large-scale 
production particle physics workloads for many years using thousands of cores on three continents. A decade after its initial 
design and implementation, cloudscheduler has been modernized to take advantage of new software designs, improved oper-
ating system capabilities and support packages. The updated cloudscheduler is more resilient and scalable, with expanded 
capabilities. We present an overview of the original design and then describe the new version of the distributed compute 
cloud system. We conclude with a review of the current status and future plans.

Keywords  Particle physics · Cloud computing

Introduction

In the field of particle physics, clouds are increasingly used 
to process and analyze data [1]. It is possible that commer-
cial clouds might satisfy the computational requirements of 
the next generation of global research projects; however, it 
is likely that dedicated storage facilities will be required to 
store and preserve the research data. One scenario may be a 
hybrid solution of dedicated and opportunistic, private and 
commercial compute resources, linked by high-speed net-
works to a distributed set of dedicated storage repositories.

This paper describes such a hybrid solution for running 
high-throughput computing workloads on compute clouds, 
irrespective of the underlying cloud software, location or its 
ownership. We call our design a distributed compute cloud 
where the resources are an aggregate of compute clouds hid-
den from the user. The distributed cloud can be integrated 
with existing storage systems or federations to provide full 

access to the research data. Although the focus of the dis-
tributed cloud is to deliver resources for particle physics 
application, it is also used for astronomy and can be used by 
researchers in other fields.

The distributed compute cloud uses cloudscheduler for 
VM provisioning and scheduling, and HTCondor for job 
scheduling. The two packages are designed for a dynamic 
environment where the resources on a cloud, or even the 
cloud itself, appear or disappear. Briefly, cloudscheduler 
reviews the HTCondor job queue and cloud resources to 
determine whether there are clouds that can start VMs 
that meet the job requirements. If a match is found, then 
cloudscheduler requests that the appropriate VM image be 
booted on the cloud. Once the VM is instantiated, it joins 
the HTCondor pool and the user job is sent to the running 
VM instance.

The original design of cloudscheduler was conceived in 
2009 [2] and is based on ideas discussed in a paper describ-
ing “sky computing” [3]. The distributed compute cloud has 
run many millions of jobs on three continents for the ATLAS 
experiment at the CERN Laboratory in Geneva, Switzerland 
[4] and the Belle II experiment at the KEK Laboratory in 
Tsukuba, Japan [5].

Many of the custom and external software components 
have undergone significant change since the first version 
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of cloudscheduler. Further, the years of production opera-
tion have provided insight on how to simplify and improve 
the system (see Sect. 2.3). In 2018, cloudscheduler was 
changed from a single Python code framework into a soft-
ware platform with expanded functionality using current 
software technologies and practises. The new design is 
more robust, error tolerant and scalable.

There are other strategies and software for utiliz-
ing clouds in particle physics. These include Vcycle, 
VMDIRAC and an extension of the HTCondor job sched-
uler. In Vcycle, the resource provider creates VMs for the 
experiments that draw jobs from the experiments’ central 
queue of tasks [6]. VMDIRAC is a module for the DIRAC 
workload management system [7] that can start VMs on 
clouds [8, 9]. HTCondor can also be used to start VMs on 
Openstack clouds [10]. The distributed cloud computing 
system using cloudscheduler provides an infrastructure 
that can run workloads for any field or research without the 
need for application experts at each site. It is not depend-
ent on project-specific workload management systems but 
can be integrated with them. Further, it can run workloads 
on all cloud types, while the users or experiments only 
need to know about the familiar batch system interface to 
which they submit jobs.

In this paper, we give an overview of the original design 
of the distributed cloud system using Cloudscheduler Ver-
sion 1 (CSV1) and motivation for a new version in Sect. 2. 
Section 3 describes Cloudscheduler Version 2 (CSV2). 
Throughout the paper, we highlight the external components 
used in both versions of the distributed compute cloud that 
are critical to the system.

Cloudscheduler V1 Distributed Compute 
Cloud

Overview

We briefly describe CSV1 to give some context and motiva-
tion for the new version. The architecture of the distributed 
compute cloud using CSV1 has been described in a number 
of papers [11, 12] and is shown in Fig. 1. The key compo-
nents are the HTCondor job scheduler, the cloudscheduler 
VM provisioning service and the compute clouds. CSV1 
provides API support for Openstack, Open Nebula, Amazon 
EC2, Microsoft Azure and Google GCE clouds.

HTCondor was selected as the job scheduler as it was 
designed to be a cycle scavenger [13], making it an ideal 
fit for a dynamic cloud environment. The user or workload 

Fig. 1   Overview of the 
cloudscheduler Version 1 and 
HTCondor distributed compute 
cloud. A user or workload 
management system submits 
application jobs to the HTCon-
dor job scheduler. Cloudsched-
uler reviews the job queue and 
the resources on the compute 
clouds. If there is a cloud with 
resources that meet the require-
ments of the job, then cloud-
scheduler issues a command 
to boot the user-specified VM. 
The instantiated VM registers 
with HTCondor and the job is 
submitted to the VM
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management system submits a job to the HTCondor job 
scheduler, specifying the job requirements (e.g., number 
of cores, memory and disk space) in the Job Description 
Language (JDL) file. Multi-core VMs are booted on the 
clouds, whether a job requires one or all of the cores in the 
VM, as there are benefits such as shared disk caches, fewer 
VM instances and it helps to reduce the fragmentation of 
the resources on the clouds. The HTCondor client on the 
VM starts a partitionable slot during the contextualization 
process, which is subdivided depending on the resource 
requirements of the job.

CSV1 examines the list of pending jobs in the HTCon-
dor queue and searches for a cloud with free resources that 
meets the job requirements in the JDL file or as specified 
by the system-wide job defaults. If there is a cloud that 
meets those requirements, then CSV1 sends a request to 
the cloud to boot a VM. CSV1 only requests one VM boot 
per cycle every minute (both configurable parameters) on 
one cloud in the list; on the subsequent cycle, it would 
request a VM on the next cloud in the list. The VM image 
and VM flavor are specified in the JDL file or in a configu-
ration file. Once the VM is booted and contextualized, it 
joins the HTCondor pool and queued job(s) can start on 
this VM.

Decisions on VM provisioning are based on the infor-
mation about the jobs and clouds. CSV1 retains the state 
information in memory and can write it to disk using the 
Python pickle module. The pickle file makes it possible to 
restart CSV1 if there are minor issues or there is a simple 
code change. More significant changes or outages require 
the entire system to be shutdown.

CSV1 can request the start, retirement or immediate 
destruction of a VM. The start and destroy commands are 
directly issued via the cloud API. If there are no jobs in 
the HTCondor queue, then a running VM may be retired. 
A retire request is issued to the HTCondor client on the 
VM and the client deregisters from the HTCondor pool. The 
retire request issues the “condor_off” command to both the 
HTCondor startd and master daemons on the VM instance. 
The HTCondor slots on this machine are then listed as being 
in a “retired” state. The jobs running on the VM are allowed 
to finish and then the VM is destroyed.

HTCondor and CSV1 are managed via their respective 
command line interfaces (CLIs). The Linux root user can 
configure the system, add or remove clouds and edit the 
files used for the contextualization of a VM. The normal 
Linux users can query the status of jobs and VMs using the 
HTCondor and CSV1 CLIs, respectively. CSV1 does not 
have a GUI for managing the system, although there is a 
monitoring web page.

Performance and Status

The distributed compute cloud is integrated into the WLCG 
grid infrastructure [14] and has run production workloads 
for many years using clouds in North America, Europe and 
Australia. The majority of clouds use the Openstack soft-
ware, though Open Nebula, Amazon EC2, Google GCE and 
Microsoft Azure clouds have also been used.

We ran two instances of the CSV1 system in North Amer-
ica for ATLAS and Belle II, respectively, and another CSV1 
in Europe for ATLAS (each with a separate HTCondor 
instance). The HTCondor instances dedicated to the ATLAS 
experiment are linked to the PanDA workload management 
system [15]. ATLAS typically uses a few hundred thousand 
cores at a given moment, and the distributed compute cloud 
contributes approximately 1% of the resources, compara-
ble to the other Tier-2 compute centers operated in Canada. 
ATLAS (and Belle II) submit “pilot jobs” that sets up the 
software environment and contacts the central system for 
payload jobs. A pilot job can run more than one payload job 
depending on its configuration.

The Belle II experiment uses the DIRAC workload man-
agement system [7]. There are three DIRAC Site Directors 
in Victoria that submit pilot jobs to the Belle II HTCondor 
instance if there are jobs in the central DIRAC server at 
KEK. The distributed compute cloud has provided 13% of 
the total workload of the experiment since January 2018. 
All of the Canadian resources for Belle II will continue to 
be provided by the distributed compute cloud.

Motivation for cloudscheduler redevelopment

Cloudscheduler has evolved with the cloud technologies but 
it has become difficult to maintain. The CSV1 code is writ-
ten in Python 2, which will no longer be supported after 
January 2020. CSV1 contains redundant code written to 
support operating system features and cloud software that 
no longer exist. CSV1 was designed as a multi-user system; 
however, it never functioned well as a mutli-user system as 
it would rapidly start and stop VMs in attempt to balance 
resources between competing projects.

CSV1 runs on a single node and uses in-memory data 
structures for the state information; making it prone to single 
errors and failure. An unscheduled outage or system crash 
would result in a loss of all running VMs and require a man-
ual intervention on each cloud to remove the residual VMs 
(a time consuming and error prone task).

As mentioned in the previous section, there were separate 
instances of CSV1 for the experiments. While the separate 
CSV1 instances worked well, it meant one could not shift 
idle resources between projects. A single instance of cloud-
scheduler would also simplify the operations though it would 
need to be able to use one or more instance of HTCondor. 
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The ATLAS and Belle II experiments use different authenti-
cation in HTCondor, and some sites do not allow their VMs 
to connect to a remote HTCondor pool.

It became apparent that a new version was necessary to 
update the software, simplify the operations, extend the cur-
rent capabilities and add new functionality.

Cloudscheduler V2 Distributed Compute 
Cloud

Overview

CSV2 is a framework of component processes written in 
Python 3 and built around the MariaDB (SQL) relational 
database [16]. There are processes for control, data gather-
ing (pollers), user interfaces and for VM provisioning. The 
MariaDB ensures consistent state information, which is 
essential for the reliability of CSV2 (see Fig. 2).

The database allows data retrieval from multiple sources, 
and correlates information between different subsystems to 
obtain different views of the system data. The data are organ-
ized in tables, with rows representing objects and columns 
representing the attributes of an object. There are tables for 

the global and local configuration parameters. CSV2 also 
creates ephemeral data in tables for objects like jobs or vir-
tual machines. The database also adds authorization features 
that protects the integrity of the data, while allowing both 
local and remote access.

The database also ensures recoverability. In the event that 
the database is lost, it can be restored from the latest backup 
allowing CSV2 to restart and return to full operation. Within 
one cycle, the data pollers (described below) will retrieve 
information from all configured subsystems (clouds and 
HTCondor job schedulers), and once the ephemeral data are 
updated, the database will accurately reflect the current state.

CSV2 introduces a RESTful web User Interface (UI) 
for administration, control, and detailed monitoring of the 
clouds and jobs. In contrast to CSV1, the CSV2 UI can be 
accessed through either a graphical user interface (GUI) 
using web browsers or a command line interface (CLI) client 
(with extensive man pages); the GUI and CLI have nearly 
the same functional capabilities. In contrast to CSV1, the 
CLI can be used from any computer and the user of the CLI 
does not need to have ssh access to or a Linux account on 
the machine where CSV2 runs. For all clients, the connec-
tions are authenticated either by x509 proxy certificates or 

Fig. 2   Overview of the cloudscheduler Version 2 and HTCondor dis-
tributed compute cloud. The primary change is the introduction of the 
MariaDB for keeping track of the state of the system and “pollers” to 

gather information from the clouds and the job scheduler. The infor-
mation in the database is used for scheduling, management and moni-
toring
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by usernames and passwords. In Fig. 3, an example of the 
graphical status display is presented.

CSV2 has pollers that fill the MariaDB with information 
from the clouds and HTCondor. New entries are added to 
tables in the database for each new job and VM. The state 
information of existing entries are updated by the pollers, 
and obsolete information (for completed jobs/VMs) is 
removed.

Figure 2 shows a single cloud poller; however, there are 
separate cloud pollers for each cloud-type1 (e.g., one poller 
can support multiple Openstack clouds). Figure 2 also shows 
pollers for HTCondor (labeled as HTC pollers). There is a 

HTC machine poller that gathers information on the HTCon-
dor machines and a HTC job poller that gathers information 
on the jobs in the HTCondor queue. The pollers consist of 
multiple tasks that run at different frequencies. For exam-
ple, the cloud poller updates the MariaDB with information 
on the VMs every 60 s; whereas, it updates the list of VM 
images every 5 min. Typically, the dynamic information is 
updated every minute and the relatively static information 
on a longer timescale (between 5 min and 1 day).2

Although Fig. 2 shows only one HTCondor instance, 
CSV2 can support multiple instances. For example, separate 

Fig. 3   Snapshot of the CSV2 GUI showing the number of jobs for 
the ATLAS and Belle II experiments in the upper table. The second 
table shows the different clouds running for the two experiments and 

the states of the VM instances. At the time of screenshot, the Belle II 
experiment had few jobs running and the resources were mainly used 
by ATLAS. Only part of the GUI is shown

Table 1   The possible states of 
a VM in the CSV2 distributed 
compute cloud system

VM state Description

starting VM is booting/contextualizing
unregistered VM is running and has not registered in HTCondor pool
idle VM is running, registered in HTCondor pool and not running jobs
running VM is running, registered in HTCondor pool and running jobs
retiring VM is running, retired in HTCondor pool and will complete running jobs
manual VM is flagged as being manually used and will be ignored by the VM Scheduler
error VM in error state according to the cloud information

1  Currently, there is API support for Openstack and Amazon EC2 
clouds (support for other cloud APIs will be added on demand).

2  Note that the numbers given for cycle times, limits and thresholds 
are configurable parameters. Further, when we state that a poller or 
process is run every N seconds, this means that the process sleeps for 
N seconds after the last cycle before restarting its tasks.



	 Computing and Software for Big Science (2020) 4:4

1 3

4  Page 6 of 10

HTCondor instances are used by ATLAS and Belle II 
experiments, in part, due to differing security requirements. 
All HTCondor instances are supported by a single set of 
HTCondor pollers. However, each instance of HTCondor 
requires a HTC Agent to provide the correct security context 
when issuing requests to the HTCondor client on the VM 
(e.g., requesting a VM to de-register from the HTCondor 
pool).

CSV2 requires inter-process communication and signal-
ing. For example, the User Interface (UI) signals the cloud 
poller when a cloud is added, so that cloud data are updated 
immediately. CSV2 uses AMQP, a reliable message delivery 
protocol, to signal processes to wake when there is impor-
tant information that will impact the outcome. For example, 
the cloud poller looks for new clouds or VM images every 
5 min. The AMQP message from the UI, signals the cloud 
poller to start a new cycle. This solution is better than rely-
ing on the pollers running on an overly frequent cycle. It is 
expected that AMQP will have an expanded role in further 
updates of the system.

Workflow

The VM Scheduler runs every 10 s and retrieves virtual 
tables (views) from the MariaDB to determine its actions. 
A view can retrieve and relate data from multiple tables, 
perform calculations, sort, group, select, concatenate, resort 
and regroup to derive the information required. For example, 
one of views determines the state of the VMs (see Table 1). 
The primary tables used by the scheduler are the job queue 
and the compute resources.

We briefly describe the steps to create the job queue view. 
Jobs are grouped according to their resource requirements 
such as cores, disk, and memory. For example, ATLAS has 
jobs requiring either 1 or 8 cores, and Belle II has jobs that 
require clouds with a local Belle II storage repository. Jobs 
of similar requirements are grouped and counted (called a 
“job group”).

Next, the view finds the VM flavors for each cloud that 
can satisfy the job requirements of the job group. For each 
cloud, the view assembles a list of (Cloud name:VM flavor) 
pairs with only one pair per cloud. The VM flavor is speci-
fied by the user or retrieved from the database. If the VM 
flavor is obtained from the database, then the one with the 
fewest cores and/or the least amount of memory is selected. 
If a cloud has no VM flavor that meets the requirements, 
then that cloud is not included in the list of VM flavors (and 
will not be selected to boot VMs for this job group).

The result of the view is the table shown below, listing 
the group name, the number of idle jobs, and a list of (Cloud 
name:VM flavor) for each unique job type (only a subset of 
the columns in the table is shown). Each row corresponds to 

a unique job type. The first row is for ATLAS 8-core jobs, 
the second row is for Belle II production (low I/O) jobs and 
the third row is for Belle II analysis (high I/O) jobs. The lat-
ter group requires a local Belle II storage element, which is 
set to run on different set of clouds.

Group Idle jobs Cloud name : VM flavor

atlas 86 arbutus-nf:c16-60gb-392, arbutus:c8-30gb-186, 
cc-east:c8-30gb-430, chameleon:m1.xxlarge, 
otter:b8

belle 1 arbutus:c8-30gb-186, cc-east:c4-15gb-205, 
desy:m1.xlarge, ecdf-b:m1.xlarge, otter:b8

belle 91 arbutus:c8-30gb-186, otter:b8

The list of (Cloud name:VM flavor) pairs in the above 
table is ordered by the priority of the cloud (called the cloud 
priority). The cloud priority can, for example, give lower 
priority to commercial clouds. Clouds that have the same 
priority are ordered alphabetically based on their cloud 
name.

Prior to reviewing whether the clouds in the job group 
have free resources to boot new VMs, the system is checked 
for VMs in a starting or unregistered states (see Table 1), 
or if there are running VMs that are not fully utilized (e.g., 
empty or idle job slots). This indicates there is capacity in 
the system for the idle jobs and no new VMs will be booted.

The compute resources view is used to determine how 
many VMs with a specific flavor can be started on one cloud. 
The following table shows an example of a view that returns 
the group name, the (Cloud name:VM flavor) pair, and the 
number of Available VM slots that can be started on this 
cloud. In this example, the arbutus cloud has the capacity to 
start 109 VMs with the c8-30gb-186 flavor for ATLAS and 
184 VMs with the same flavor for Belle II. The table was 
selected to show only the results of a query for a VM flavor 
of arbutus:c8-30gb-186, which is the optimal VM flavor for 
both projects (an unrestricted query returns over 100 rows). 

Group Cloud name : VM flavor Available 
VM slots

atlas arbutus:c8-30gb-186 109
belle arbutus:c8-30gb-186 184

CSV2 makes it possible for one experiment to opportun-
istically utilize the resources of another experiment whose 
resources are idle. The number of available VM slots for 
each cloud and VM flavor (as shown in the above table) 
takes into account the opportunistic resources. In the sim-
plest configuration, the primary group (experiment) has the 
priority use of a cloud, and the opportunistic group can also 
use that cloud if there are idle resources. The primary group 
has a quota of compute cores equal to the full allocation on 
the cloud, and the opportunistic group has an opportunistic 
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quota of compute cores that is less than the full alloca-
tion. If the primary group does not use any resources, the 
opportunistic group can boot VMs up to their opportunistic 
quota. If the primary group begins submitting jobs, then 
the VMs of the opportunistic group will be retired and their 
jobs allowed to complete. Eventually, there will be no jobs 
from the opportunistic group. The quotas of the primary and 
opportunistic groups are used when determining the com-
pute resources view. This strategy has significantly improved 
the utilization of the clouds.

The compute resources view provides the VM scheduler 
with the information it requires to boot new VMs. Prior to 
issuing VM boot requests, a number of conditions are tested 
to avoid starting too many VMs. For example, if there are 
five or more VMs in a starting or unregistered state on a 
cloud, then no VMs will be started on that cloud for any 
group. In addition, if there are more that ten idle VMs within 
the clouds associated with a unique job type, then no VMs 
are started for that job-type group.

If the above criteria are satisfied and the list of (Cloud 
name:VM flavor) pairs in the compute-view table shows 
available VM slots (see above table), then the VM sched-
uler will issue up to five VM boot requests on each cloud 
in the group.

At the end of the boot process, the VMs are contextual-
ized with the configuration required by CSV2 (e.g., HTCon-
dor), the particle physics software (e.g., CVMFS file sys-
tem) and the experiment software. We discuss this in further 
detail in Sect. 3.4.

Once the VM has completed its contextualization, it 
is registered as a HTCondor machine. The HTC machine 
poller periodically retrieves the ClassAds of all the HTCon-
dor machines via the HTCondor Python API and stores its 
ClassAd in the MariaDB. If there is no ClassAd for the VM, 
then a query of the MariaDB would show the VM to be in 
an unregistered state. The registration of the VM with the 
HTCondor pool happens during the start of the HTCondor 
clients on the VM after it is fully contextualized. A VM 
that is in an unregistered state that exceeds a “come alive” 
time (currently 2400 s) or fails to start any job within a “job 
alive” time (currently 300 s) is usually problematic and is 
terminated.

If a VM remains idle for an extended period of time after 
completing one or more jobs, then either the job queue is 
empty, there are no more queued jobs that can run in the 
VM, or the VM developed problems communicating with 
the HTCondor server. In this situation, the VM scheduler 
sets the retire flag in the database entry of the VM. We have 
observed that keeping idle VMs alive for 30–60 min is opti-
mal (defined by a “keep alive” time) due to the sporadic 
nature of the workload management systems of the experi-
ments. Both the ATLAS and Belle II workload management 

systems keep track of the idle or queued and running jobs, 
and use those numbers to submit additional jobs.

If the retire flag of the VM in the MariaDB is set, then 
the HTC machine poller sends retire messages via AMQP 
to the HTC Agent. On receiving a retire message, the HTC 
Agent issues a “condor_off” command to both the HTCondor 
startd and master daemons on the VM instance, causing all 
the partitions to be marked “retiring” and preventing them 
from accepting new jobs. However, jobs currently running 
on the VM are allowed to complete.”

When a VM is in a retiring state and it is not running 
any jobs, then the HTC machine poller sends a request (via 
the cloud API) to the cloud to shut down that VM instance.

A VM can also be retired if there is a change in the quota 
of a cloud (e.g., cores, RAM) and the current usage now 
exceeds the new quota. Depending on the type of change in 
the quota, then either the user interface or the cloud poller 
will set the retire flag on a collection of VMs (based on 
information such as the age of the VM) needed to rebalance 
the system.

Configuration

CSV2 introduces users and groups to the distributed com-
pute cloud (stored in the MariaDB). Users can be assigned 
different access privileges and can be members of multiple 
groups. Groups are defined, in our case, to be particle phys-
ics experiments or a development and testing area.3 Each 
CSV2 group adds the compute clouds to its configuration, 
and users in the group have the ability to add and manage 
the clouds.

The VM images and SSH keys4 can be uploaded by 
logging in directly to the cloud (e.g., via the Openstack or 
Amazon dashboards) or via the CSV2 GUI. One can define 
a default VM image and default SSH keys that will be auto-
matically distributed to all Openstack clouds. CSV2 keeps 
track of the VM images in the MariaDB. As the list of VM 
images can change, the cloud poller periodically queries the 
clouds for the list of available VM images as well as VM 
flavors and cloud quotas to keep the MariaDB up to date.

The GUI is accessed through a web browser and can 
also generate time series plots for each variable (stored in 
an InfluxDB). An example of a time series plot is shown 
in Fig. 4, where the number of running jobs for ATLAS 
and Belle II is plotted for the month of July 2019. For most 
of 2019, ATLAS provided a sustained workload of longer 
running production jobs (typically 6–12 h) while Belle II 

3  Openstack has projects and users. Previously, Openstack used ten-
ants before changing to projects. As CSV2 uses other types of clouds, 
it was decided to identify ensembles of users as groups to distinguish 
it from Openstack projects.
4  The SSH keys allow the user to log into a VM instance for debug-
ging purposes.
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has periodic bursts of very short running analysis jobs 
(5–10 min). The time series plot highlights the difference 
in workload between the two projects for June–July 2019. 
Belle II is still at an early stage of its project lifetime and 
just starting to record particle collision data; it is expected 
that the number of Belle II jobs will increase in the future.

There are other configuration settings for the manage-
ment of VMs with default parameters (for example, the cycle 
times of the pollers and VM scheduling algorithm param-
eters). We refer the reader to the documentation located at 
cloudscheduler.readthedocs.io.5

VM Contextualization for Particle Physics 
Applications

At the end of the boot process, the VMs are contextualized 
with the required software and the VM is configured for 
the application software [17]. The contextualization is con-
trolled by metadata that is passed to the “cloud-init” process 
[18].

The contextualization of the VM instances for the ATLAS 
and Belle II experiments is very similar. Both use the micro-
CernVM virtual machine image [19], the CernVM File Sys-
tem (CVMFS) [20], and optionally, Shoal, a dynamic web 
cache locator service [21].

The small micro-CernVM image (approximately 20 MB) 
saves storage space and can be started instantaneously. The 
image contains a read-only Linux kernel and a CernVM File 
System (CVMFS) client. An array of squid proxy caches 
around the world are used to host files from CVMFS [22]. 
The CVMFS client is configured to use a specific squid 
cache; however, the CVMFS client can be configured to use 
the nearest squid cache to the VM by querying Shoal.

The contextualization process then sets up the HTCon-
dor client, and the environment for the experiment. The 
accounting and monitoring processes are activated, and the 
CPU benchmark suite is run on the VM (see the next sec-
tion). Both the HTCondor client and the CPU benchmark 
are retrieved from CVMFS. The necessary host certificates 
and SSH keys are added to the VM. All the VMs share the 
same host certificate; we currently use certificates from 
GridCanada.

It is important to keep track of the resources delivered by 
a cloud to an experiment. We configure the VMs to write 
out their status every 15 min to Elasticsearch. The status 
includes configuration information, the fast benchmark and 
the timing information (obtained from /proc/stat). We are 
currently working on reporting our accounting numbers 
back into APEL for ATLAS (the accounting information 
for Belle  II will be added once the reporting system is 

Fig. 4   Shows the number of running ATLAS jobs (blue) and Belle II jobs (orange). ATLAS was running production jobs requiring 4 or 8 cores; 
whereas, Belle II was periodically running very short analysis jobs during the 30-day period in 2019
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Fig. 5   The fast-benchmark hours ( × 1000) per month in 2019. The 
(processor) hours are extracted from the kernel activity in /proc/
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(bellecs.heprc) are the ATLAS and Belle  II HTCondor instances 
hosted in Victoria, Canada

5  The documentation is work in progress.
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operational) [23]. The fast benchmark is discussed in the 
following section.

Operations and status

The CSV2 distributed compute cloud started produc-
tion use in early 2019. The ATLAS production using the 
clouds in North America was shifted to CSV2, and tested 
extensively for many months. The Belle  II production 
system was transitioned to CSV2 in June 2019. ATLAS 
and Belle II are now supported by a single instance of 
CSV2 but continue to use separate instances of HTCondor 
that are linked to their respective workload management 
systems.

In Fig. 5, we plot a histogram of the CPU hours weighted 
by a benchmark that is an estimate of the HEP-SPEC06 [24] 
benchmark. A center usually runs the HEP-SPEC06 bench-
mark when their resources are being commissioned. As we 
are generally unaware of the underlying hardware, we can 
not use a static benchmark value. It is also impractical to 
run the HEP-SPEC06 on every VM, as it takes 2–3 h (and 
there are also licensing issues). Instead, a fast-benchmark 
code (DB16) [25] is executed at the end of the contextualiza-
tion of the VM instance to measure the performance of the 
dynamically provided resources.

Figure 6 shows a histogram (normalized to unit area) of 
the fast benchmark measured for every VM booted in 2019. 
The fast benchmark gives a reproducible result if the VM is 
the only activity on the underlying node; however, the value 
is often underestimated if the node is busy or hyperthread-
ing is used. The fast benchmark is not ideal and there are 
ongoing efforts to find a more reliable estimate of the experi-
ments’ workload (see the recent presentation of the HEPiX 
Benchmark Working Group [26]).

In addition, we remark that the distributed compute cloud 
is using the Dynafed data federation service, developed by 
CERN IT, for locating input data [27, 28]. Dynafed federates 
existing storage systems and provides a link to the closest 

copy of the data on the basis of GeoIP information. Dynafed 
is used to federate existing storage of the ATLAS and Belle 
II experiments [29–31].

Summary

We have presented the design of a distributed cloud com-
puting system based on the cloudscheduler VM provi-
sioning platform. It remains a novel system for utilizing 
high-throughput workloads on multiple dedicated and 
opportunistic clouds located at remote locations and owned 
by other organizations. The system has provided signifi-
cant resources to the ATLAS and Belle II particle physics 
experiments. The cloudscheduler VM provisioning system 
has been updated to current software standards to make it 
more scalable and reliable, as well as adding new function-
ality. It is currently planned to use cloudscheduler for the 
computing part of the proposed Belle II Canadian Raw Data 
Center. Other plans include further integration and use of 
the Dynafed data federator to expand the running of data-
intensive applications.

The CSV2 code repository is hosted at GitHub (https://
github.com/hep-gc/cloudscheduler) and documentation is 
found at cloudscheduler.readthedocs.io.
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