
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:5
https://doi.org/10.1007/s41781-020-00051-x

ORIGINAL ARTICLE

The CMS monitoring infrastructure and applications

Christian Ariza‑Porras1 · Valentin Kuznetsov2 · Federica Legger3

Received: 13 July 2020 / Accepted: 23 December 2020 / Published online: 24 January 2021
© The Author(s) 2021

Abstract
The globally distributed computing infrastructure required to cope with the multi-petabyte datasets produced by the Com-
pact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) at CERN comprises several subsystems, such
as workload management, data management, data transfers, and submission of users’ and centrally managed production
requests. To guarantee the efficient operation of the whole infrastructure, CMS monitors all subsystems according to their
performance and status. Moreover, we track key metrics to evaluate and study the system performance over time. The CMS
monitoring architecture allows both real-time and historical monitoring of a variety of data sources. It relies on scalable and
open source solutions tailored to satisfy the experiment’s monitoring needs. We present the monitoring data flow and software
architecture for the CMS distributed computing applications. We discuss the challenges, components, current achievements,
and future developments of the CMS monitoring infrastructure.

Keywords Monitoring · Distributed computing · Real-time · Variety

Introduction

Data from the CMS experiment [1] at the LHC are stored
and processed in a tiered distributed computing infrastruc-
ture. More than one hundred computing centers worldwide,
connected through a set of grid services responsible for stor-
age, computing, and connectivity. They are used to process
LHC data and produce Monte Carlo simulated events of rel-
evant physics processes. A recent overview of the computing
model of the LHC experiments, based on the Worldwide
LHC Computing Grid (WLCG), can be found in [2].

The CMS distributed computing infrastructure includes
central services and middleware that handle authentication,
workload management, and data management. The workload
management system executes payloads in compute nodes

provisioned through GlideinWMS [3] and made available
as execution slots in a Vanilla Universe HTCondor pool [4].
HTCondor jobs are submitted via specific workload man-
agement tools: WMAgent for central data processing and
Monte Carlo production jobs, and CRAB for user jobs [5].
The data management system is modular and includes sev-
eral components: PhEDEx, the data transfer and location
system; DBS, the Data Bookkeeping Service, a metadata
catalog; and DAS, the Data Aggregation Service designed to
aggregate views and provide them to users and services [6].
Data from these services are available to CMS collaborators
through a web suite of services known as CMSWEB.

Until recently, we monitored most services through
custom tools and web applications. The logging informa-
tion was scattered over several sources and mostly acces-
sible only by experts. The maintenance and operation of
the monitoring applications were becoming increasingly
time-consuming and complicated due to the high turnover
of experts in the computing community.

Nowadays, several solutions are available to gather, store,
and process large amounts of data (for example, the data
produced by monitoring and logging services of comput-
ing applications). Many technologies are available under
an open-source license and are developed and supported by
large software companies and communities.

 * Federica Legger
 federica.legger@cern.ch

 Christian Ariza-Porras
 christian.ariza.porras@cern.ch

 Valentin Kuznetsov
 vkuznet@protonmail.com

1 CERN, Geneva, Switzerland
2 Cornell University, Ithaca, NY, USA
3 Istituto Nazionale di Fisica Nucleare, Via Pietro Giuria 1,

Torino, Italy

http://orcid.org/0000-0003-1400-0709
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-020-00051-x&domain=pdf

 Computing and Software for Big Science (2021) 5:5

1 3

5 Page 2 of 12

During the last two years, the CMS computing commu-
nity has been gradually abandoning in-house solutions in
favor of widely used scalable, and non-SQL tools, such as
Hadoop [7], InfluxDB [8], and ElasticSearch [9]. These ser-
vices are available through MONIT [18], a central monitor-
ing infrastructure provided by the CERN IT department, and
allow for the easy deployment of monitoring and accounting
applications using visualization tools such as Kibana [10],
and Grafana [11]. Grafana allows setting alarms and notifica-
tions upon certain conditions. We build complex monitoring
workflows using different subsystems and perform various
predictive analytics studies. To complement the monitor-
ing infrastructure provided by the CERN IT department, the
CMS monitoring group set up and runs additional monitor-
ing applications based on technologies such as VictoriaMet-
rics [12], NATS [13], and Prometheus [14].

In the following sections, we summarise the past and
current developments of monitoring solutions for CMS
and show why such a technology change was needed and
beneficial to the experiment needs. We describe MONIT,
the monitoring infrastructure at CERN, the organization of
CMS monitoring applications based on MONIT and CMS’s
infrastructure, and future developments.

Previous work and chosen solutions

Till recently, the monitoring infrastructure of CMS, as
well as that of ATLAS [15], another major experiment at
the LHC, was based on a combination of several custom
solutions. These were independently developed by the vari-
ous teams providing relevant computing services, such as
workflow management, data management, site operations.
For instance, the CMSWEB dashboard relied on a custom
Python script regularly querying /proc file systems to pro-
vide a snapshot of service activities of the CMSWEB clus-
ter. Metrics showing the status and operations of the CMS
Tier-0 [16] were collected by an in-house web application
serving through an Apache frontend. ATLAS and CMS used
a custom application provided by the WLCG group of the
CERN IT department to monitor the time evolution of a set
of metrics relative to the jobs executed by their distributed
computing systems, and the status of the computing sites
(also known as SSB - Site Status Board) [17].

Even though the different monitoring applications satis-
fied the basic needs of the experiment, the disadvantages
of this approach are obvious. There was no common data
format (different systems used XML, JSON, CSV) or visu-
alization framework for monitoring metrics. Monitoring
data was stored on different virtual machines accessible
only to a few developers, and therefore we were unable
to aggregate data across various dimensions. The burden
of maintaining and operating each monitoring application

fell on teams with several other duties. Development of
additional features of the monitoring applications, or even
their maintenance and operation became increasingly dif-
ficult without allocation of additional FTEs (Full-Time
Equivalent) for that. For instance, the code base of the
data popularity service was abandoned for years and ran
on an outdated Linux distribution (SLC6). The end-of-
lifetime support of SLC6 at CERN forced us to port it to
a newer Linux distribution (CentOS 7) with significant
effort. Besides, the performances of the custom Python-
based solution scaled poorly with increasing amounts of
data, resulting in significant latencies in data visualization
and aggregation over extended time ranges.

Several solutions are nowadays available on the open-
source market to store, handle, and visualize large amounts
of data as those collected by the CMS monitoring appli-
cations. A common monitoring infrastructure has several
benefits:

• consolidation of the resources needed to operate, main-
tain, and develop the infrastructure itself and the moni-
toring applications. We can share knowledge and devel-
opment efforts among several groups;

• portability of monitoring solutions when using common
data formats for metrics, and common visualization
tools;

• common storage and access to different metrics, easing
the development of in-depth analysis and monitoring
applications of the whole computing system;

• better scalability and reduction in operational costs.

The decision to start using a common set of tools and tech-
nologies for monitoring was driven by the development of
the MONIT infrastructure at CERN. As a result, the cus-
tom applications for a job and site monitoring offered by
the WLCG group needed to be migrated to MONIT. Within
this environment, the experiments, ATLAS and CMS, are
responsible for injecting the monitoring metrics into MONIT
and set up the necessary visualizations (dashboards). The
technologies supported and implemented in MONIT were
carefully evaluated by CMS. Clear advantages were rec-
ognized in having a common infrastructure and tools that
could be used by several computing teams. However not all
CMS use cases would be covered. For example, quasi-real-
time monitoring of CMS computing services and distributed
workflows need a lightweight implementation that does not
fit well with the data pipeline implemented in MONIT.

A small team of CMS experts (consisting of less than two
FTEs) became responsible for the migration of the WLCG
monitoring applications for CMS, for providing support to
migrate CMS monitoring applications to MONIT, and for
developing and operating the additional monitoring services
needed by CMS.

Computing and Software for Big Science (2021) 5:5

1 3

Page 3 of 12 5

A full description of MONIT is given in Sect. 3, and the
integration with CMS monitoring services is presented in
Sect. 4. In Sect. 4.2 we discuss CMS specific needs and the
implementation of independent monitoring data flows, and
their integration with some specific services of the MONIT
infrastructure.

The CERN MONIT infrastructure

The CERN IT department offers a variety of monitoring
services through the MONIT infrastructure. A typical moni-
toring workflow consists of the following steps (see also
Fig. 1):

• Data injection: data is pushed into the MONIT infra-
structure through ActiveMQ [19] messaging. As an alter-
native, data providers inside the CERN network bounda-
ries may use an HTTP endpoint. Log files may be directly
injected using Logstash [20].

• Data transport and processing: Data is streamed into
MONIT using Apache Kafka [21]. Apache Spark [22]
and Apache Flume [23] are used for further data process-
ing. Data may be enriched with additional information or
data from several sources can be aggregated as needed.

• Data storage: Three storage technologies are available,
depending on the needs of the particular use case: data
volume, schema, and retention policy. ElasticSearch (ES)
is used to store semi-structured data for a short period
of time (up to one month). InfluxDB is used to store
time-series structured, aggregated data for a longer time
range (up to five years, depending on the granularity).
The Hadoop Distributed File System (HDFS) is used for
long-term (currently unlimited in time) storage of data in
a variety of formats (Apache Avro [24], Apache Parquet
[25], JSON [26], plain text).

• Data access: For data access we rely on the stack ES/
Kibana, Grafana, and the SWAN [27] service at CERN.

Kibana is used for data exploration and visualization of
ES data sources. Grafana is a visualization tool that can
read data from several sources such as ES, InfluxDB,
Prometheus, Graphite [28], Open TSDB [29], and
MySQL [30]. Data sources can also be accessed through
the Grafana proxy. The Apache Spark framework is used
to process data on HDFS. The SWAN service provides
access to the CERN Hadoop clusters through a Jupyter-
Hub interface [31].

The ActiveMQ servers and the SWAN service are not strictly
part of the MONIT infrastructure but are offered and man-
aged by the CERN IT department. The MONIT infrastruc-
ture is currently used to monitor the CERN computing center
and several WLCG services as data transfers and network
[32]. ATLAS exploits the MONIT infrastructure for job
accounting and distributed data management monitoring.

The CMS monitoring infrastructure

In this section, we provide an overview of various compo-
nents of the CMS monitoring infrastructure. Comprehensive
monitoring of a complex distributed infrastructure has sev-
eral requirements. The status of all systems must be moni-
tored in real time using predefined views, and detailed infor-
mation to debug issues must be provided to the operation
teams. Understanding the root cause of a certain problem
often means correlating information from different subsys-
tems. An alert system to efficiently collect and sort metrics
from several sources, combine information to raise alerts,
and route them to the right team must be set up. Relevant
metrics should be stored to monitor the evolution of the per-
formances of the systems over time, and be sufficient for in-
depth analyses of the main system parameters (data access
patterns, wall-time consumption, memory usage).

Having recognized the advantages of using well estab-
lished open-source products to build a common monitoring

HTCondor

WMAgent

CRAB

Data Providers
Data transport
and processing

 Kafka

 Spark

Data storage

 ElasticSearch

 HDFS

Data access

Kibana

 Grafana

 SWAN

Data
injection

ActiveMQ
HTTP

Logstash

Fig. 1 The data flow in the CERN MONIT infrastructure. The various steps of a typical monitoring workflow (data injection, transport, process-
ing, storage, and access) are shown from left to right

 Computing and Software for Big Science (2021) 5:5

1 3

5 Page 4 of 12

infrastructure to be shared by several monitoring applica-
tions in CMS, we aim to leverage as much as possible the
services offered by MONIT, and complement them when
necessary. We provide a complete set of monitoring tools
and applications to the CMS community. In Sect. 4.1 we
describe how CMS is building monitoring applications
based on the MONIT infrastructure. In Sect. 4.2 we provide
details of the CMS specific monitoring infrastructure, and
we discuss the CMS monitoring Kubernetes [33] clusters
in Sect. 4.3.

CMS usage of the MONIT infrastructure

A variety of CMS data producers regularly injects data into
the MONIT infrastructure. There are currently more than
twenty-five active CMS monitoring workflows, covering a
large variety of systems: HTCondor job parameters, Glidein-
WMS submission infrastructure, data transfers, and access
patterns, CRAB and WMAgent tasks, CMSWEB services.
Most of these services used to be monitored through custom
web applications and the monitoring metrics were stored
using a variety of different technologies. Regarding the
data flow outlined in Sect. 3, we describe in the following
paragraphs how CMS is using the MONIT infrastructure to
deploy its monitoring applications.

Data injection

Most CMS monitoring data producers use the ActiveMQ
endpoints—with a few exceptions for producers inside
the CERN internal network which use an HTTP REST
endpoint—to inject data in JSON format. The choice
of ActiveMQ is driven by the fact that it is supported by
MONIT for producers inside and outside the CERN network.

The CERN MONIT infrastructure consumes the data via
a Kafka pipeline and redirects them to the ES, InfluxDB, and
HDFS data sinks. CMS data flows may use any combina-
tion of these three storage technologies. We do not impose
a specific schema on injected documents, but the schema
should be consistent over time. The document schema and
daily data volume are defined a priori for each CMS data
producer with the CERN MONIT team, which then allo-
cates and controls the resources to consume the data in their
infrastructure.

Data storage

The CMS data producers exploit all the provided storage
options depending on their particular use case:

• Data is stored in ES for the last 30–40 days depending on
the data source. This data is used to monitor the detailed
status of the system and provide debugging information

in the short term. In addition to the raw data indexes, we
take advantage of the document indexing features of ES
to create purpose-specific indexes that incorporate some
additional logic. For example, we compute and aggregate
over HTCondor jobs that have been retried several times,
or over temporary job statuses.

• Aggregated structured data as time series are stored in
InfluxDB for a limited set of tags and fields. This is used
to build historical views of key performance metrics.

• Raw data containing detailed information is stored on
HDFS for long term analyses.

Data access

Access to the data stored in MONIT is provided through
visualization tools such as Grafana and Kibana for data in
InfluxDB and ES, and Apache Spark jobs (either through
the SWAN service or standalone scripts) for data in HDFS.
Kibana is mainly used for interactive data exploration of the
ES data sources. The search capabilities of ES enable our
users to quickly create ad-hoc queries and visualizations.
Most CMS official dashboards are implemented in Grafana.
Additionally, users can create personalized views.

Data stored in HDFS are typically accessed using Spark-
based workflows and are used to create dedicated views over
long periods (for example, to regularly produce yearly data
popularity plots), or for complex queries and visualizations
that can not be implemented in Grafana or Kibana.

Experiences with the MONIT infrastructure

In the past two years, several custom CMS monitoring appli-
cations have been ported to the MONIT infrastructure. The
first tests with the new infrastructure started in 2017, and the
migration process formally began in October 2018. Since
then the number of data sources, stored data volume, and
usage have steadily grown (see Fig. 2).

HTCondor job monitoring is one of the most important
views, since it provides an overview of the performances of
the CMS distributed computing infrastructure, and was one
of the first to be migrated. Data from the HTCondor pool are
collected, processed, and injected into MONIT at regular
intervals (every twelve minutes) by a service, implemented
in Python, called the spider. It is an in-house pre-processing
tool that converts the job metrics from the custom CMS
specific data formats (HTCondor ClassAds) to JSON docu-
ments that can be fed in MONIT. The spider sends data to
MONIT through the ActiveMQ endpoint. The HTCondor
data is finally stored in ES, InfluxDB, and HDFS.

The complete migration took about one year through
various steps: first, an evaluation phase, where all use
cases were gathered and requirements for the new appli-
cation drafted, then the actual development phase, where

Computing and Software for Big Science (2021) 5:5

1 3

Page 5 of 12 5

the complete data flow was implemented, then a final
evaluation phase, where the new data flow was validated
against the old one, first from CMS monitoring experts,

and then from the wider CMS community. The migration
required the coordination and interplay of several teams:
the MONIT team, the developers of the CMS monitoring

a Evolut ion of HDFS usage

2017 2018 2019 2020

Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr

0
5

10

15

0TB

10TB

20TB

30TB

0GB

2000GB

4000GB

Distinct producers: 14Distinct producers: 14Distinct producers: 14DDDDiiiisssstttt iiiinnnnccccttttcccccccccccccccccccccccccccc pppprrrroooodddduuuucccceeeecccccccccccccccccccccccccccc rrrrssss:::: 11114444Distinct producers: 14

Accumulated size: 25TBAccumulated size: 25TBAccumulated size: 25TBAAAAccccAAAAAAAAA cccccccccccccccccccccccccccccccc uuuummmmuuuullllaaaatttteeeedddd ssssiiiizzzzeeee:::: 22225555TTTTBBBBAccumulated size: 25TB

Monthly data size: max 4558GBMonthly data size: max 4558GBMonthly data size: max 4558GBMMMMoooonnnntttthhhhllllyyyy ddddaaaattttaaaa ssssiiiizzzzeeee:::: mmmmaaaaxxxx 4444555555558888GGGGBBBBBMonthly data size: max 4558GB

Feed historical job monitoring
data

HTCondor Jobs

Distributed Infrastructure

Data Management

Web Services

Service Status

Training

HTCondor Jobs(22,934.91GB)

2017 2018 2019 2020

elast icsearch

infl uxdb

promet heus

14

8

12

Oct ober 2018

Oct ober 2018

March 2019

The development of the Job Monitoring
Dashboard starts

Proof of concept with Prometheus

First exploration with Grafana

b Usage of Grafana dat a-source t ypes in dashboards by creat ion dat e

elast icsearch

infl uxdb

promet heus

152

73

63

Fig. 2 Time evolution distributions showing the development and
adoption of the CMS Monitoring infrastructure. a From top to bot-
tom: the evolution of the total number of CMS data producers in
HDFS, the amount of stored data, the monthly data volume, and

the snapshot (taken in June 2020) of the fraction of storage used by
various data sources. b The number of Grafana dashboards using ES,
InfluxDB, and Prometheus as data sources, ordered by date of crea-
tion

 Computing and Software for Big Science (2021) 5:5

1 3

5 Page 6 of 12

group, and the CMS stakeholders (the data providers and
consumers). In particular, it was crucial to define the
schema of the data in a way that all user requirements can
be satisfied using the visualization options of Grafana or
Kibana.

A major problem we encountered was the lack of schema
validation in the MONIT infrastructure that may lead to
some documents being rejected by ES if the same field has
different types in different documents. To avoid this prob-
lem, we introduced the schema validation of the injected
documents through the CMS client tools, and we are gradu-
ally enforcing it for all CMS data providers. We also noticed
that some attributes are reserved by ES (such as version,
timestamp, UUID), and those should be avoided.

In InfluxDB a limited set of aggregated tags are stored.
The aggregations are computed every twelve minutes and
stored for one week. Additional aggregations, e.g. 1-h,
1-day, 7-days and 30-days bins are stored for five years.
We currently store eighteen tags, with a series cardinality
(unique combination of tags values) of almost nine million.
The performance of InfluxDB is affected by the cardinal-
ity of the stored time series, and that imposes strong lim-
its on the number and type of tags that we can store. The
MONIT team is currently evaluating a future retirement of
the InfluxDB workflow for this use case, and its replacement
with a dedicated ES index to store the time aggregated data.

With the experience gained in the migration of the
HTCondor job monitoring application, more custom work-
flows have been moved to MONIT in the past months: data
popularity and data access, and the Site Status Board, a
monitoring application that gathers metrics about perfor-
mances and status of all CMS computing sites. Several ana-
lytics workflows have been added to exploit the wealth of
data stored in HDFS, which allows in-depth study of several
performance metrics, such as the evolution in time of CPU
efficiencies for HTCondor jobs, or resource requests for
memory, CPU’s, storage.

CMS additional components

The MONIT infrastructure does not cover all CMS monitor-
ing requirements, for example, the need for quasi-real-time
monitoring of CMS computing nodes, complex HTCondor
job workflows, applications, and services. To fill this gap,
we evaluated several open-source solutions and deployed
additional monitoring services based on tools such as Pro-
metheus, VictoriaMetrics and AlertManager [34]. The
choice of these tools was based on their wide adoption, per-
formances, and solid reputation in the IT world. They are all
written in Go and can be easily integrated in Kubernetes. In
comparison to the technologies offered by MONIT, we value
the following advantages:

• Prometheus does not require a metrics schema. The ser-
vice is used to collect a dynamic set of metrics (load,
I/O, network usage) from hundreds of CMS nodes and
services. Due to the flexibility of the Prometheus eco-
system, we can follow a decentralized approach to fit
the constraints of our system (such as authentication
boundaries). We run different Prometheus instances on
different CMS clusters, but store all the metrics using
a common back end (VictoriaMetrics).

• Victoria Metrics outperforms InfluxDB and other time-
series databases for data with large cardinality [35].

• The built-in alert mechanism in Grafana is based on
raising alerts when certain values are outside of a preset
range. The alerts can be configured using a graphical
interface. While this approach is intuitive, it is limited
to use cases where only a few and simple alert rules
are needed. AlertManager allows us to collect alerts
from several services: Prometheus, VictoriaMetrics,
Grafana, and covers alert unit tests, templates, various
routes, regular expressions. Alerts can be handled pro-
grammatically in AlertManager, and applying changes
to AlertManager alerts can be accomplished with a few
Unix shell commands rather than hundreds of clicks
on a web interface. Complex alert rules, based on the
combination of several conditions, can be easily pro-
grammed in AlertManager while achieving the same
effect can be cumbersome in Grafana. The details of
the alert system are described in Sect. 5.5.

The CMS monitoring infrastructure includes the follow-
ing components (see also Fig. 3):

• the Prometheus service used to monitor various CMS
services and nodes;

• the Logstash service used to parse and send the
CMSWEB logs to the MONIT timber service;

• the NATS (Neural Autonomic Transport System) ser-
vice to provide real-time messaging to monitor the sta-
tus of CMS production workflows and campaigns;

• Pushgateway, a service provided by Prometheus that
allows pushing metrics from jobs which cannot be
scraped, such as ephemeral and batch jobs;

• VictoriaMetrics, a fast and efficient time series DB,
used as long-term storage for Prometheus and NATS
messages;

• the AlertManager to handle alerts for Prometheus met-
rics.

Prometheus and VictoriaMetrics are the main data sources.
We store metrics in Prometheus for fifteen days, and up to
one month in VictoriaMetrics. We plan to increase further
the time retention policy for data in VictoriaMetrics.

Computing and Software for Big Science (2021) 5:5

1 3

Page 7 of 12 5

Also we developed and maintain a set of scripts and ser-
vices for several purposes:

• the spider service [36] described in Section 4.1.4 to col-
lect the HTCondor job parameters and push them into
MONIT;

• the CMSSpark framework [37] that provides common
access to a variety of CMS data sources on HDFS.
CMSSpark is used by several workflows, for example, to
collect and aggregate the data used for the data popular-
ity views;

• various CMS databases, such as DBS, are regularly
dumped in HDFS by a set of Apache Sqoop [38] jobs.

The maintenance of such a complex infrastructure repre-
sents certain challenges, such as service deployment, version
control, and resource utilization. We gradually migrated the
monitoring services described above to a Kubernetes infra-
structure to fully leverage its ease of deployment, dynamic
scalability, and minimal maintenance costs.

The CMS monitoring Kubernetes clusters

As shown in Fig. 3, the CMS monitoring infrastructure is
based on two distinct Kubernetes clusters: the NATS cluster
that contains the NATS service, and the CMS monitoring
cluster that hosts various services dedicated to CMS moni-
toring needs (as described in Sect. 4.2). The Kubernetes
clusters are deployed in the CERN Openstack cloud infra-
structure [39]. The reasons to set up two different clusters
are the following:

• ease of maintenance: the clusters have different capacities
and require different node and storage allocations. The
NATS cluster runs on nodes with two cores and 4 GB
RAM, whereas the Monitoring cluster is made of larger
nodes, with four cores per node and 16 GB RAM;

• upgrades and maintenance can be scheduled indepen-
dently;

• security and networking, we use different authentication
schemas in each cluster as well as expose different ports,
e.g. the NATS cluster is exposed to the outside world on
a dedicated (non-standard) port, while the Monitoring
cluster and its services are accessible via standard HTTPs
port.

NATS Kubernetes cluster

NATS is a simple, secure, and high-performance open
source messaging system for cloud-native applications.
Due to its excellent performance benchmarks, lightweight
nature, and easily maintainable infrastructure, it fits well our
requirements for real-time monitoring applications. It pro-
vides a basic publisher subscription model for clients written
in a variety of programming languages. The NATS cluster
is available outside of the CERN firewall, and accessible
to all CMS collaborators and services through token-based
authentication. The NATS cluster provides the NATS ser-
vice, which works as a proxy between CMS data providers,
such as CMSSW (the CMS software framework), DBS, and
WMAgent, and data subscribers located either on the client
infrastructure or within the CMS monitoring cluster. In the
latter case, we run a series of dedicated NATS subscribers

Fig. 3 The architectural dia-
gram of the CMS monitoring
infrastructure. The MONIT
infrastructure (described in
Sect. 1) is shown in the right
box, and the components main-
tained and provided by CMS
(described in Sect. 4.2) are
displayed in the left box

NATS
subscribers VictoriaMetrics Prometheus

CMS Monitoring cluster CERN MONIT

cms-nats.cern.ch
WMAgent,

DBS,
CMSSW

Production tools feed
messages to NATS serverNATS cluster

NATS subscribers
can run anywhere

T2_US /a/b/c TaskA 8081
T2_US /c/d/e TaskB 9091
T2_UK /x/y/z TaskC 1234

NATS
subscribers

AlertManager

 Computing and Software for Big Science (2021) 5:5

1 3

5 Page 8 of 12

which consume data from the NATS server and feed them
into the VictoriaMetrics back-end.

The NATS Kubernetes cluster consists of two nodes with
two CPU cores and 4 GB RAM each, and hosts only the
NATS operator and NATS cluster pods. They handle all
NATS requests coming from distributed clients. The cluster
is currently occupied at 50% of its capacity and can be eas-
ily scaled horizontally by adding more nodes in the future.

CMS monitoring Kubernetes cluster

The CMS monitoring Kubernetes cluster is used to moni-
tor our computing nodes, services, and applications. It is
deployed in the internal CERN network and is available on
a private network for CMS nodes and services via dedicated
firewall rules. The cluster hosts both the Prometheus service
that consumes metrics from various exporters running on
CMS nodes and services and the VictoriaMetrics service
as long-term storage back-end for the Prometheus server.
Since both Prometheus and VictoriaMetrics data sources
are supported by the MONIT infrastructure, we designed
Grafana dashboards to monitor our Kubernetes clusters, the
CMSWEB Kubernetes cluster, and various CMS nodes, ser-
vices, and applications.

A dedicated AlertManager service runs within the CMS
monitoring cluster. It is configured to set up various alerts
based on key metrics of the monitored applications. The
AlertManager service is tightly integrated into Prometheus
and provides a monitoring service to handle all alerts in our
monitoring infrastructures. We discuss the details of the alert
notification system in Sect. 5.5.

The CMS Kubernetes monitoring cluster consists of two
nodes with 16 CPU cores and 30 GB RAM each and hosts
68 individual applications running within the Kubernetes
pods. In total only 15% of the cluster resources are currently

used, leaving us room to horizontally scale the provided
monitoring services.

CMS monitoring applications

The architectural diagram of the complete monitoring infra-
structure, including all components described in Sect. 4, is
shown in Fig. 4. In this Section, we discuss various moni-
toring use cases and applications for CMS based on this
architecture. We start with an overview of HTCondor job
monitoring in Sect. 5.1. In Sect. 5.2 we provide details of the
monitoring applications for CMS services. CMSWEB and
Kubernetes monitoring are described in Sect. 5.3. Real-time
monitoring is discussed in Sect. 5.4. Alert handling is pre-
sented in Sect. 5.5. We conclude with a discussion of various
command-line tools experts use for monitoring in Sect. 5.6.

HTCondor job monitoring

Monitoring central and user activities on the CMS distrib-
uted computing resources play an important role in a variety
of stakeholders (computing experts, management, developer,
and operation teams). This monitoring workflow is based on
data collected by the spider service described in Sect. 4.1.4.
Using the InfluxDB data source we provide a full set of
dashboards for CMS collaborators containing several views:
the time evolution of jobs in different statuses (completed,
running, and pending), utilization of CPU cores, average
CPU efficiency, queue and wall-clock times per core and
per CPU. All visualization can be further broken down into
various categories such as job types, job input types, com-
puting site where the job was executed. A crucial view of
the job monitoring application based on the ES data source
allows CMS users to monitor the status of their HTCondor

Fig. 4 Architectural diagram
depicting the various compo-
nents used by the CMS monitor-
ing applications. Components
managed by the CERN MONIT
team are shown in green, while
components managed by CMS
are shown in blue. The Sqoop
module belongs to both infra-
structures since it executes CMS
workflows on the HDFS storage
system provided by the MONIT
infrastructure

Data sources

Basic systems’ metrics

Service Availability
metrics

…

HTCondor Spider

WMAgent

Prometheus exporters

Phedex

CRAB

…

Integra�on

Ac�veMQ

Ka�a

HTTP REST endpoint

Sqoop

NATS

Storage

Prometheus

Elas�cSearch

InfluxDB

HDFS

VictoriaMetrics

Access

AlertManager

Grafana

Kibana

Swan

CMSSpark

CMSMonitoring monit

Managed by CERN IT CMS

Computing and Software for Big Science (2021) 5:5

1 3

Page 9 of 12 5

jobs submitted through CRAB. This is an example where
additional support indexes needed to be created to satisfy
all user requirements for visualization.

Services and nodes monitoring

Various CMS applications, services, and hardware nodes
are monitored using Prometheus, VictoriaMetrics, and
AlertManager. Prometheus is a very useful tool to moni-
tor individual services, from a detailed overview of various
metrics of a single Linux node to more complex metrics rep-
resenting service behavior. We use both standard and custom
made exporters to scrape service metrics and expose them to
our Prometheus servers. The Prometheus service provides
a functional query language called PromQL (Prometheus
Query Language), that allows users to explore service
behaviors. It is integrated with Grafana and supported in
the CERN MONIT infrastructure as a data source. Victoria-
Metrics provides several enhancements to PromQL and can
be used as a fast storage backend for Prometheus. We lever-
age this functionality to extend the time retention policy for
our metrics. Alert Manager provides a useful way to write
individual alerts based on nodes and service metrics.

All CMS production systems, including CMSWEB ser-
vices, individual virtual machines (VMs), and k8 clusters,
are monitored through these tools. We provide both service-
specific dashboards and overview dashboards representing
the status of nodes, services, databases associated with cer-
tain activities in CMS.

CMSWEB and Kubernetes monitoring

User activities on the CMSWEB and CMS monitoring
Kubernetes clusters are monitored by collecting metrics
scraped by Prometheus. System and application logs are
collected using the Logstash, Filebeat [40], and ES stack,
as shown in Fig. 5. All logs are streamed into the CERN
MONIT and CERN security infrastructures. Selected log
metrics are injected into ES and then visualized in Grafana.
For instance, hourly and daily statistics for services on the
CMS distributed computing infrastructure are collected.
This information is extremely valuable to track the on-going
users’ activities and the load on our systems, services, data-
bases and is successfully used to debug various issues with
CMS production systems.

In addition, we run independent log scraping and send
relevant information, including system and Apache server
logs on all production nodes, via Apache Flume [23] streams
to the CERN security infrastructure. This data is securely
stored within the CERN security infrastructure, in com-
pliance with the CERN privacy policies, and may be used
by the CERN security team to monitor potential hacker
activities.

Recently many CMS services were migrated to Kuber-
netes clusters, including our own CMS monitoring infra-
structure. Resources on Kubernetes are monitored through
metrics scraped by Prometheus and visualized in Grafana by
the Kube eagle [41] middleware. The collected metrics show
activities on the Kubernetes cluster, and they are integrated

Fig. 5 The data flow for
CMSWEB and Kubernetes
logs. Logs are processed
and streamed by the Filebeat
daemon on each individual
Kubernetes pod, and sent to the
Logstash service that redirects
them to ES. The Prometheus
service scrapes service metrics
via various exporters and is
available as a data source in the
CERN MONIT infrastructure.
In both cases, the information
can be visualized with Kibana
or Grafana

Filebeat
Service app

Monitor exporter

Filebeat
Service app

Monitor exporter

Prometheus

Filebeat
Service app

Monitor exporter

CERN MONIT
Infrastructure

ElasticSearch

Grafana

Logstash

 Computing and Software for Big Science (2021) 5:5

1 3

5 Page 10 of 12

with the AlertManager workflow so that notifications are
issued in case of problems with the monitored cluster.

Real‑time monitoring

Real-time monitoring is useful for several CMS use cases,
for example, to track failures of workflows executed on the
CMS distributed computing resources. CMS users or opera-
tors may need to monitor failures at a certain computing
center, or for access to certain data. The size of the data
produced by specific workflows may need to be monitored.
Such requests can be made to specific CMS production data-
bases, such as DAS or DBS. These queries create additional
loads to CMS production services, which may have undesir-
able outcomes such as DoS (Denial of Service). Therefore,
we proposed and implemented a (quasi) real-time monitor-
ing service for typical use cases as those above described
through NATS (introduced in Sect. 4.2).

We integrated NATS publishers into the CMS produc-
tion services and collected the required information in the
NATS server. The benefit of using the NATS server is that
it works as a proxy between data publishers and subscrib-
ers, i.e. it does not store the injected metrics, but guaran-
tees their redirection to any number of subscribers. In other
words, it works like a one-way chat messaging system where
publishers push the message and any subscriber can receive
it right away. Since the data volume for message exchange
can be high, and quite often happening in a burst, we kept
the NATS server separated from the CMS Monitoring clus-
ter, and deployed it into a dedicated Kubernetes cluster, as
shown in Fig. 3. This allows us to separate the load between
the distributed agents (the publishers) and the CMS sub-
scribers. Several subscribers within the CMS monitoring
cluster capture the flow of information and redirect it to the
VictoriaMetrics backend so that it can be later used to build
Grafana dashboards for a variety of use cases.

Alerts

Alerts play an important role in a constantly growing
monitoring infrastructure. Grafana provides simple thresh-
old-based alerts that can be set up for any supported data
sources. Metrics scraped by Prometheus and VictoriaMet-
rics are used to set up more complex rule-based alerts in
AlertManager. Alerts can be configured to be sent out to
various channels: email notifications, ticketing systems, or
communication platforms such as Slack [42].

However, these systems cannot intelligently group alerts,
and correlate them with already known system outages. We
often found that, while it is desirable to get proper notifi-
cations about system misbehavior, human operators cannot
cope with a sustained flow of alerts. This typically happens

in cases where the same event raises multiple failures and
therefore multiple alerts from several systems.

We are currently developing an intelligent alert system
that takes into account system outages notifications from
several data sources, such as the Site Status Board and sev-
eral ticketing systems (ServiceNow [43], GGUS [44]), and
overlays them with alerts coming from our metrics. For this
purpose, we exploit several features of AlertManager: alerts
chaining, grouping, and silencing.

Command line tools

While the majority of CMS monitoring use cases are cov-
ered by the broad spectrum of visualization capabilities of
Grafana and Kibana, for some cases Command Line Inter-
face (CLI) tools are required. For instance, some services
need to programmatically access the data sources in the
MONIT infrastructure, or some services running behind a
firewall need to provide terminal-based monitoring. In this
section, we review several CLI tools that we developed in the
past months. The degree of adoption in the CMS computing
community of such tools strongly depends on their ease of
use. We opted to write our tools in the Go programming lan-
guage since it can provide static executables for all computer
architectures supported by CMS.

The following set of tools are distributed through CVMFS
[46]:

– monit: a tool to query ES and InfluxDB as well as to
inject data to ES through a Grafana proxy;

– NATS: subscriber and publisher CLI tools;
– dbs_vm: a tool to query VictoriaMetrics;
– grafterm [45]: a tool to visualize metrics stored in Pro-

metheus or VictoriaMetrics in a terminal-based user
interface.

All tools are also available on GitHub [47] and released
under the MIT license [48].

Results

We present a summary of various measurements (data vol-
umes, data sizes, usage statistics) related to the various CMS
monitoring components described in the previous sections.

Rates of received and sent messages on the ActiveMQ
brokers range between 4 KHz and 7.5 KHz. On average,
CMS producers send more than 3.5 million messages per
hour. Most of the messages are sent by the spider.

We maintain forty data sources in ES, twenty-seven
in InfluxDB, eighteen in Prometheus, and collect data in
more than twenty HDFS locations. The data in ES are
organized in daily indexes corresponding to more than

Computing and Software for Big Science (2021) 5:5

1 3

Page 11 of 12 5

twenty different document types specific to CMS. The total
size amounts to more than 20 TB. The data volume on ES
is mostly driven by the HTCondor job data, with a daily
index size of about 30 GB, while the other data sources
have a daily index sizes of 1 GB or less.

On HDFS we currently store around 300 GB per day
before compaction. The compaction process takes care of
deleting duplicate records and compresses the JSON docu-
ments reducing the storage needs for historical data of a
factor up to 90%. After compaction, the CMS data sources
account for around 32 GB per day. The largest data source
is the HTCondor job monitoring metrics that currently has
a size of 22.5 TB.

The total data volume in Prometheus and VictoriaMet-
rics is smaller than that in MONIT but is gradually grow-
ing. Currently, we store the 30000 active time series for a
total of 15.7 billion data points at an ingestion rate of 4.2
kHz. The total number of entries in the inverted index is
11 million, and the daily time series churn rate is 30000.
The total size on disk amounts to 8 GB, with a total index
size of 170 MB. The average query range duration is 30
ms. The Prometheus service currently covers more than
one hundred nodes with 125 exporters, more than three
thousand measurements, and provides almost one hundred
different alert records and alert rules.

The CMS computing community built more than three
hundred Grafana dashboards using all available data
sources. On average CMS users are daily accessing more
than thirty different dashboards. More than fifty Grafana
alert rules are set up to send alerts to about twenty differ-
ent channels, while in AlertManager we configured four-
teen different receivers. Several Spark-based workflows
periodically generate a variety of views to monitor specific
aspects, for example, CMS data access and popularity, and
HTCondor job metrics such as CPU efficiency and mem-
ory consumption.

Due to the unmanaged structure of the previous monitor-
ing systems in CMS, it is not possible to make a direct com-
parison with the presented metrics. An obvious advantage
of the new system is, therefore, the possibility to track all
monitoring applications and data sources available to CMS,
and being able to measure its performances. This can be
taken as a baseline for future improvements.

While the custom applications needed a consistent man-
power effort to be developed and maintained, with the com-
mon monitoring infrastructure we can leverage components
that can be re-used by several groups, for instance, the tools
to inject messages into MONIT, or the CLI tools. The expe-
rience gained in developing particular features or services
can be easily shared. The CMS monitoring infrastructure is
currently operated and maintained by less than two FTEs,
and that includes also work on future developments and sup-
port and training for the CMS user communities.

The versatility of Grafana dashboards allows us to com-
bine several data sources in a single view, and additional
customized views can be effortlessly created. In the past,
only the standard views were available, and creating new
ones or making modifications was a long process that
required expert work. On the other hand, custom applica-
tions can be more easily tailored to specific needs. For exam-
ple, Grafana views are designed to give global overviews but
are not particularly suited for digging into specific details.
This disadvantage can be overcome by a careful design of
the data schema, to have a structure that can be easily visu-
alized in Grafana. Nevertheless, it was not always possible
to recreate the same ‘look and feel’ of the previous custom
applications.

The variety of storage technologies and associated visual-
ization tools allows us to build different kinds of monitoring
applications, such as real-time monitoring, accounting, and
historical analysis, for the same data source. In the previ-
ous system, typically only one use case was implemented
for each data source. However, we remark that Grafana
and Kibana dashboards are by far the most preferred way
to access the data. Metrics stored on HDFS, requiring pro-
grammatic access through Spark workflows, are used only
by a handful of experts. The possibility to browse HDFS
data using a graphical interface is currently part of our R&D
efforts.

In general, to fully exploit the power of open-source tech-
nologies, we recognize the value of providing specific train-
ing to our collaborators, in addition to the publicly available
online resources that can be found for open-source prod-
ucts. We, therefore, organize periodic training events with
hands-on sessions focused on topics such as data injection
and visualization, alert setup, and management. We observe
a growing community of CMS users that master access to
the various metrics and can build monitoring applications.

Summary

In the era of distributed computing, the monitoring infra-
structure plays an important role to ensure the efficient
operation of computing nodes, services such as data man-
agement and workflow management, computing clusters,
and distributed facilities. We presented a global overview
of the CMS monitoring infrastructure, which leverages both
the CERN MONIT infrastructure and a variety of additional
monitoring services and applications deployed on in-house
Kubernetes clusters. We discussed architectural choices, les-
sons, and presented measurements of various performance
metrics and statistics.

Based on our experience, the choice of open-source tools
is the key to build scalable and maintainable applications
in such a complex heterogeneous environment. The various

 Computing and Software for Big Science (2021) 5:5

1 3

5 Page 12 of 12

tools discussed in a paper address specific functionalities,
from data injection to data visualization, and their choice
is driven by the need for ease of maintenance and sustain-
able evolution of the infrastructure. In particular, we show
that the CERN MONIT infrastructure is suitable for push-
ing monitoring data from distributed data providers, while
the stack composed by Prometheus, VictoriaMetrics, and
AlertManager covers specific needs of CMS internal data
services. The adoption of Kubernetes significantly simplifies
the deployment of all the tools and allows to build a scal-
able infrastructure based on dynamic resource allocation.
The chosen visualization solutions, Kibana, and Grafana
have been proven to be easy-to-use tools for interactive data
exploration and production quality dashboards respectively.
In conclusion, we are confident that the current monitoring
strategy will fulfill CMS expectations and challenges in the
up-coming HL-LHC (High Luminosity LHC) era, where
experiments will be required to cope with at least a factor
ten higher data rates.

Acknowledgements We thank the CERN IT department, and in par-
ticular the MONIT team, for the successful collaboration throughout
these years. We also thank our CMS colleagues who contributed to the
migration effort and helped us build a solid monitoring infrastructure.
This work has received funding from the European Union Horizon
2020 research and innovation program under the Marie Sklodowska-
Curie grant agreement LHCBIGDATA No. 799062.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Collaboration CMS (2008) The CMS Experiment at the CERN
LHC. JINST 3:S08004

 2. Bird I et al (2014) Update of the Computing Models of the
WLCG and the LHC Experiments, CERN-LHCC-2014-014,
LCG-TDR-002

 3. Sfiligoi I et al (2009) The pilot way to grid resources using
Glidein WMS. Proc WRI World Congress Comput Sci Inf Eng
2:2428–432

 4. Thain D, Tannenbaum T, Livny M (2005) Distributed computing
in practice: the condor experience. Concur Comput Pract Exp
17(2–4):323–356

 5. Ivanov T et al (2019) Improving efficiency of analysis jobs in
CMS. EPJ Web Conf 03006

 6. Giffels M, Guo Y, Kuznetsov V, Magini N, Wildish T (2014) The
CMS data management system. J Phys Conf Ser Vol 513, Issue 4

 7. Apache Hadoop, http://hadoo p.apach e.org

 8. InfluxDB, https ://www.influ xdata .com/time-serie s-platf orm/influ
xdb/

 9. Elasticsearch, http://elast ic.co
 10. Kibana, https ://www.elast ic.co/produ cts/kiban a
 11. Grafana, http://grafa na.org
 12. VictoriaMetrics, https ://victo riame trics .com/
 13. NATS https ://nats.io/
 14. Prometheus, https ://prome theus .io/
 15. ATLAS Collaboration, The ATLAS Experiment at the CERN

Large Hadron Collider, JINST 3 S08003 (2008)
 16. Hufnagel D et al (2011) The architecture and operation of the

CMS Tier-0. J Phys Conf Ser 331:032017
 17. Andreeva J et al (2010) Experiment dashboard for monitoring

computing activities of the LHC virtual organizations. J Grid
Comp 8:323–339

 18. Aimar A et al (2017) Unified monitoring architecture for IT
and grid services. J Phys Conf Ser 898:092033. https ://doi.
org/10.1088/1742-6596/898/9/09203 3

 19. Apache ActiveMQ, http://activ emq.apach e.org
 20. Logstash, https ://www.elast ic.co/produ cts/logst ash
 21. Apache Kafka, http://kafka .apach e.org
 22. Apache Spark, http://spark .apach e.org
 23. Apache Flume, https ://flume .apach e.org/
 24. Apache Avro, https ://avro.apach e.org/
 25. Apache Parquet, https ://parqu et.apach e.org/
 26. JSON (JavaScript Object Notation), https ://www.json.org
 27. Piparo D et al (2018) SWAN: a service for interactive analysis

in the cloud. Fut Gen Comput Syst 78:1071–1078. https ://doi.
org/10.1016/j.futur e.2016.11.035

 28. Graphite, https ://graph iteap p.org/
 29. Open TSDB, http://opent sdb.net/
 30. MySQL, https ://www.mysql .com/
 31. Jupyter, https ://jupyt er.org
 32. Aimar A et al (2019) MONIT: monitoring the CERN data centres

and the WLCG infrastructure. EPJ Web Conf 214:08031
 33. Kubernetes, https ://kuber netes .io/
 34. Prometheus AlertManager https ://prome theus .io/docs/alert ing/

alert manag er/
 35. VictoriaMetrics benchmarks, https ://victo riame trics .githu b.io/

Artic les.html
 36. The spider repository, https ://githu b.com/dmwm/cms-htcon dor-es
 37. CMSSpark framework, https ://githu b.com/dmwm/CMSSp ark
 38. Apache Sqoop, https ://sqoop .apach e.org/
 39. Castro León J (2019) Advanced features of the CERN OpenStack

Cloud, EPJ Web Conf. 214 07026
 40. Filebeat, https ://www.elast ic.co/beats /fileb eat
 41. Kube-eagle Prometheus exporter for Kubernetes clusters, https ://

githu b.com/cloud workz /kube-eagle
 42. Slack, https ://slack .com
 43. ServiceNow, https ://www.servi cenow .com/
 44. Antoni T, Buhler W, Dres H, Grein G, Roth M (2008) Global

grid user support: building a worldwide distributed user support
infrastructure. J Phys Conf Ser 119:052002

 45. Grafterm, https ://githu b.com/slok/graft erm/
 46. Buncic P, Aguado Sanchez C, Blomer J, Franco L, Harutyunian

A, Mato P, Yao Y (2010) CernVM: a virtual software appliance
for LHC applications. J Phys Conf Ser 219:042003

 47. CMSMonitoring framework, https ://githu b.com/dmwm/CMSMo
nitor ing

 48. MIT license, https ://opens ource .org/licen ses/MIT

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://hadoop.apache.org
https://www.influxdata.com/time-series-platform/influxdb/
https://www.influxdata.com/time-series-platform/influxdb/
http://elastic.co
https://www.elastic.co/products/kibana
http://grafana.org
https://victoriametrics.com/
https://nats.io/
https://prometheus.io/
https://doi.org/10.1088/1742-6596/898/9/092033
https://doi.org/10.1088/1742-6596/898/9/092033
http://activemq.apache.org
https://www.elastic.co/products/logstash
http://kafka.apache.org
http://spark.apache.org
https://flume.apache.org/
https://avro.apache.org/
https://parquet.apache.org/
https://www.json.org
https://doi.org/10.1016/j.future.2016.11.035
https://doi.org/10.1016/j.future.2016.11.035
https://graphiteapp.org/
http://opentsdb.net/
https://www.mysql.com/
https://jupyter.org
https://kubernetes.io/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://victoriametrics.github.io/Articles.html
https://victoriametrics.github.io/Articles.html
https://github.com/dmwm/cms-htcondor-es
https://github.com/dmwm/CMSSpark
https://sqoop.apache.org/
https://www.elastic.co/beats/filebeat
https://github.com/cloudworkz/kube-eagle
https://github.com/cloudworkz/kube-eagle
https://slack.com
https://www.servicenow.com/
https://github.com/slok/grafterm/
https://github.com/dmwm/CMSMonitoring
https://github.com/dmwm/CMSMonitoring
https://opensource.org/licenses/MIT

	The CMS monitoring infrastructure and applications
	Abstract
	Introduction
	Previous work and chosen solutions
	The CERN MONIT infrastructure
	The CMS monitoring infrastructure
	CMS usage of the MONIT infrastructure
	Data injection
	Data storage
	Data access
	Experiences with the MONIT infrastructure

	CMS additional components
	The CMS monitoring Kubernetes clusters
	NATS Kubernetes cluster
	CMS monitoring Kubernetes cluster

	CMS monitoring applications
	HTCondor job monitoring
	Services and nodes monitoring
	CMSWEB and Kubernetes monitoring
	Real-time monitoring
	Alerts
	Command line tools

	Results
	Summary
	Acknowledgements
	References

