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characteristics that are interrelated and exhibit significant 
distinction from bulk materials: the high mobility in the free 
state, the high surface area-to-volume ratio, and the quan-
tum effects [8]. Nanoparticle dimensions are defined in the 
range of 1–100 nm and can be classified into their shape, 
size, and material features. Metallic nanoparticles among 
these nanostructures possess advanced properties includ-
ing quantum confinement, optical, plasmon excitation, and 
large surface energies [9].

Zinc oxide (ZnO) possessing visible transparency (wide 
optical bandgap, Eg = 3.37 eV) and high electrical conduc-
tivity (large exciton binding energy of 60 meV) is an II-VI 
semiconducting ceramic material [10, 11]. In particular, it 
has some characteristic features such as inexpensive, bio-
compatible, non-toxic, high electron mobility, great chemi-
cal, and thermal stability, high optical transmittance as well 
as it is fabricated easily [12, 13]. Because of its properties 
mentioned above and being the most abundant metal oxide 
after iron, ZnO is one of the most researched nanomateri-
als [14]. Due to the uncomplicated control of ZnO prop-
erties, ZnO-NPs with various sizes and shapes (flower-like 

Introduction

Nanotechnology studies its history dating back to 1959, 
are now accepted as a modern and revolutionary technol-
ogy having numerous branches proven in industrial fields 
[1, 2]. The state-of-the-art advances in nanotechnology are 
many nanoscale device developments showing unexpected 
popularity in several scientific fields such as biomedicine, 
environmental and material science, electronics, comput-
ing, and optics [3–7]. Nanoparticles have unique physical 
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Abstract
The plant-mediated, sustainable, facile, eco-friendly, and simple green approaches for the fabrication of metal oxide 
nanoparticles (NPs) have recently attracted the ever-increasing attention of the scientific community. To date, there has not 
been any research on green synthesis of ZnO-NPs by Piper guineense (Uziza) seeds widely used as a therapeutic agent is 
the novelty of the current study. The bioaugmented ZnO-NPs have been manufactured by Uziza seed extract using zinc 
acetate dihydrate as the precursor and sodium hydroxide with calcination. The hexagonal/spherical crystalline structure at 
high purely with a mean size of 7.39 nm was confirmed via XRD and SEM analyses of ZnO-NPs. A strong absorption 
peak at about 350 nm, specific for ZnO-NPs, was observed by a UV-visible spectrometer. The optical bandgap of ZnO-
NPs was estimated as about 3.58 eV by the Kubelka-Munk formula. FTIR findings indicated the presence of biofunctional 
groups responsible for the bioreduction of bulk zinc acetate to ZnO-NPs. The growth rates of E. coli (ATCC 25,922) 
significantly decreased with ZnO-NPs exhibited compared to the controls. This is making ZnO-NPs promising effective 
candidates for medical sectors and environmental applications. This current study is hoped to supply a better understand-
ing of the phytosynthesis of ZnO-NPs and promote the advance of green approaches based on plants.
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nanostructures, nanowires, nanotubes, nanobelts, nanor-
ings, and nanorods) can be synthesized [15].

ZnO-NPs might be prepared using many synthesis 
approaches (chemical, physical, and biological) by manipu-
lating the fabrication mechanisms [16]. Nowadays, mate-
rial scientists are focused on costless effective, simple, 
nontoxic, and eco-friendly methods for the synthesizing of 
nanoscale materials [17]. Thus, chemical and physical syn-
thesis strategies have been gradually replaced by biological 
or “green” methods due to disadvantages such as the release 
of toxic and harmful chemicals, the requirement of complex 
and expensive equipment, the necessity of high pressure 
and temperature, and the consumption of a large amount of 
energy [18].

Here, we discuss the plant-based green synthesis of ZnO-
NPs using the aqueous extracts of Piper guineense (Uziza) 
seeds, in Nigeria. The green synthesized ZnO-NPs will be 
characterized by modern techniques such as scanning elec-
tron microscopy (SEM), energy dispersive X-ray analysis 
(EDAX), ultraviolet (UV-visible) spectroscopy, Fourier 
transform infrared (FTIR) spectroscopy, and X-ray diffrac-
tion (XRD). Besides, the antimicrobial potential of E.coli 
ATCC 25,922 strain of ZnO-NPs will be exhibited.

Materials and methods

Preparation of seed extract

The dried seeds of P. guineense (Uziza) (Fig. 1(a) were pur-
chased from the Ibusa local market in Delta State, Nigeria, 
in 2023. Seeds (Fig. 1(b) were firstly washed using distilled 
water, dried in the sunlight, and then powdered crushing by 
the electric blender. The powdered seeds (2 g) were soaked 
in 100 mL distilled for 15 min at 60 °C temperature. After 
cooling down, the obtained suspension was filtered through 
a Whatman No.1 filter paper. This seed extract was kept at 
+ 4 °C till used as a reducing and stabilizing agent for NP 
synthesis [19].

Green synthesis of ZnO-NPs

0.25 g of Zn(CH3COO)2.2H2O was dissolved in 25 mL of 
seed extract under continuous stirring until a homogeneous 
mixture for synthesizing ZnO-NPs by green approach. 
Then, this mixture was heated on a magnetic stirrer at 60 C 
for 2 h. Following allowed to cool down at 25 °C, the pH of 
the solution was adjusted to 10 using 2 M NaOH. The solu-
tion color of the initially transparent was turned to slightly 
yellow and finally milky white, indicating the formation of 
ZnO-NPs. The obtained reaction mixture was centrifuged at 
5.000 rpm for 20 min. and the supernatant was discarded. 
Finally, the remaining pellet was washed three times with 
distilled water and absolute ethanol and dried in air at room 
temperature for 3 h. For the yielding of nanomaterial pow-
der products, ZnO-NPs were calcined at 500 °C for 2 h in 
a muffle furnace to remove any impurities [2]. Thus, ZnO-
NPs were obtained and labeled for further physical charac-
terizations and antibacterial analysis. The green synthesis of 
ZnO-NPs is schematized in Fig. 2.

Characterization of ZnO-NPs

The physicochemical properties of ZnO-NPs were inves-
tigated using different characterization techniques. The 
elemental composition and surface morphology of ZnO-
NPs were inspected using a field emission scanning elec-
tron microscope (FESEM, FEI Quanta-FEG-6250) with 
energy dispersive X-ray analysis (EDX) at 20 kV voltage. 
The vibrational bands related to the functional group com-
position of ZnO-NPs were analyzed by a Fourier transform 
infrared (FTIR) spectrometer (Jasco FT/IR-6700 Spectro-
photometer) in the range of 4000–400 cm− 1. The crystal-
line nature of ZnO-NPs nanoparticles was exhibited by a 
Panalytical Empyrean XRD diffractometer Cu Kα radiation 
(λ = 1.54059 Å) radiation obtained at 45 kV and 40 mA, 10◦ 
to 90◦ with 0.01◦ step size. The diffuse reflectance spectra of 
ZnO-NPs were measured using an Ultraviolet-visible spec-
trophotometer (SHIMADZU UV-3600 PLUS).

Fig. 1  (a) P. guineense (Uziza) 
plant (b) Seeds of Uziza
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Antibacterial assay on Escherichia coli

Bacterial stock cultures of E. coli (ATCC 25,922) were 
acquired from 80 °C freezer stocks including 30% glycerol. 
100 µL of stock solution is transferred into 5 mL of Luria 
Broth, placed on a shaker (180 rpm), and then incubated for 
24 h at 37 °C. The overnight culture of strain was streaked 
onto Nutrient Agar using a sterile loop and incubated for 
12–24 h at 37 °C. Following incubation, a single colony of 
strain was selected and stocked into the sterile Nutrient Agar 
for further in vitro anti-bacterial assay.

The antibacterial effect of ZnO-NPs on E. coli was 
estimated by counting viable bacterial cell concentrations 
before and after exposure to the NPs. Briefly, the density 
of the overnight bacterial culture growth in Luria Broth 
was adjusted to 0.5 on the McFarland scale by saline (0.9% 
NaCl). 100 µL of this bacterial suspension was inoculated 
into Luria broth including 25, 50, and 100 µg/mL ZnO-NPs, 
and incubated at 37 °C for 12 h. Then, an amount of 100 
µL of fresh suspension was spread over the surface of Plate 
Count Agar in triplicate, and plates were incubated at 37 °C 
for 12–24 h, and colony forming units/milliliter (CFU/mL) 
were counted. Results were calculated using the equation:

Equation: Cfu(c)-Cfu(s)/Cfu(c)*100.

Results and discussion

P. guineense Schumach & Thonn, also called “West Afri-
can black pepper, Guinea cubeb, Benin pepper, and Ashanti 
pepper, has high nutritional qualities, vitamins, and minerals 
[20]. It is a culinary spice thriving as native to the tropical 
rain forest of Africa and also partly cultivated in Southern 
Nigeria [21]. Due to its remarkable biological activities 
such as managing anemia, bronchitis, cancer, carminative, 
cough, rheumatism, and stomach ache, it is widely used as a 
traditional source of medicine [22, 23]. It is usually named 
Uziza and Iyre in the South-Eastern Nigerian and Yoruba, 
respectively [24]. In addition, numerous phytochemicals, 
the constituents of crude protein, dry matter, crude fiber, 
crude lipid, high mineral elements, carbohydrates, and ash 
were also reported in the dry biomass of Uziza seeds [24, 
25]. This major substance in Uziza seed biomass is assumed 
to contribute to the green synthesis of biomedically signifi-
cant ZnO-NPs.

The fabrication of biogenic ZnO-NPs was performed 
using aqueous seed extracts of Uziza as reducing, capping, 
and stabilizing agents. Following the addition of NaOH into 
the mixture involving Zn(CH3COO)2.2H2O precursor and 
plant extract, the formation of milky white precipitate was 
confirmed to be the plant-mediated photosynthesis of ZnO-
NPs. The fine white powder obtained subsequently from 
the washing, drying, and calcination steps was labeled as 
ZnO-NPs.

Fig. 2  Fabrication scheme of 
ZnO-NPs using Uziza seeds
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bandgap of ZnO-NPs was estimated by extrapolation of the 
linear portion of the (F(R) = 0) curve to the x-axis obtained 
as 3.58 eV, depending on the sizes of ZnO-NPs. The opti-
cal bandgap value agrees with the literature [31, 32]. The 
bandgap of NPs varies depending on various structural fac-
tors involving oxygen deficiency, grain size, lattice strain, 
and surface roughness [33]. The greater our bandgap value 
than the bulk ZnO (3.37 eV) may be explained by the small 
crystallite sizes of photosynthesized NPs.

The green synthesis of ZnO-NPs mediated Uziza seed 
extract was displayed by a FE-SEM examination. The 
size, size distribution, and shape of ZnO-NPs are shown 
in Fig. 4(a). The SEM images recorded at a magnification 
of 10.000x, 50.000x, and 100.000x display that the biosyn-
thesized ZnO-NPs are mostly spherical and well-dispersed 
without any aggregation. The selected area EDX pattern 
demonstrates the element compositions of nanoparticles 
with an average size of 7.39 nm in Fig. 4(b). The particle 
shape and size expressed by the SEM were further con-
firmed using XRD. The shape and size of biogenic ZnO-
NPs are closely matched with the values previously reported 
[34]. The size and shape of ZnO-NPs play an important role 
in the antibacterial activity against pathogens. NPs with low 
size (4.27 nm) and spherical shape tend to penetrate easily 
into the bacterial cell wall. This is an enormous capability 
in treating clinical infectious bacterial strains. The purity of 
synthesized ZnO-NPs and the presence of Zinc in its oxide 
form were certified by EDX analysis. The strong emission 
peaks of Zn at ∼ 1 keV, 8.6 keV, and 9.5 keV, and the emis-
sion peaks belonging to carbon at ∼ 0.25 keV and oxygen at 
∼ 0.5 keV indicated the successful photo-synthesis of ZnO-
NPs. The elemental composition of the ZnO-NP revealing 
69.38% zinc, 25.12% oxygen, and 5.51% carbon are con-
sistent with the weight peaks that were determined earlier 
[35, 36].

The XRD pattern of biosynthesized ZnO-NP mediated 
Uziza is illustrated by the definite line broadening of the char-
acteristic peaks in Fig. 5. These Bragg diffraction peaks with 
2θ values associated ZnO-NPs identified as 31.9°, 34.6°, 36.4°, 
and 56.7°, indexed to the (100), (002), (101), and (110) lat-
tice planes, respectively. These peaks matching well with the 
standard card (JCPDS Card No. 98-002-9272) confirmed the 
spherical to the hexagonal phase of ZnO-NPs with space group 
P 63 mc. The absence of any distinctive XRD peaks apart from 
the sharp ZnO peaks indicates the purity and high crystallinity 
structure of NPs. These peaks are paralleled to those of previ-
ous studies [37, 38]. The average crystalline size (D) of fabri-
cated ZnO-NPs calculated from the most intense peaks using 
Debye-Scherrer’s equation:

D =
kλ

β hklcosθ
� (2)

The toxic-free substances in Uziza seed extract can be 
asserted to act as reducing agents that converted the metal 
precursor to ZnO-NPs. This finding related to phytofabri-
cation was supported by the literature studies revealing the 
biosynthesis of ZnO-NPs mainly depends on the species of 
plant used [26, 27].

These phytochemical agents are found at different con-
centrations depending on plant types and have a significant 
effect on the synthesis, stabilization, and quantity of ZnO-
NPs. The bio-reduction mechanism of ZnO-NPs mediated 
phytochemicals is examined by three main strategies: (1) 
the activation phase: the bounding of the zinc ions in salt 
solutions to the reducing metabolites presented in Uziza 
seed extract, then the reduction of metal ions, and the nucle-
ation of metal atoms. (2) the growth phase referring to Ost-
wald ripening: Increase in the thermodynamic stability of 
ZnO-NPs as a result of the coalescing of nearby small NPs 
spontaneously into larger particles. (3) termination phase: 
the oxidizing resulting in the linking of metal ions, and the 
determining of the final shape [28].

A strong absorption peak of around 350 nm showed the 
successful synthesis of ZnO NPs via the green approach. 
This result satisfies the characteristic ZnO absorption peak 
due to tending to have shorter wavelengths of nanoscale 
materials [29, 30]. The optical bandgap of NPs was esti-
mated by a graph plotted (F(R)hv)2 versus photon energy 
(hv) in Fig. 3’s inset. For a given wavelength the Kubelka-
Munk formula adapts the diffuse reflectance data to the 
function F (R),

F (R) =
K

S
=

(1 − R)2

2R
� (1)

where k is the absorption coefficient, R∞ is the diffuse 
reflectance, and s is the scattering coefficient. The indirect 

Fig. 3  (F(R)hν)2 versus photon energy (hv) spectrum of ZnO-NPs
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throughout the manufacture of ZnO, the FTIR spectrum of 
aqueous extract and NPs were compared in Table  1. Broad 
absorption peaks at 3435.77 and 3421.62  cm− 1 in a higher 
energy region are related to the -OH stretching frequency of 
phenolic and flavonoid components. The absorption bands at 
2922.97 and 2924.78  cm− 1 are characteristic of the–C-H-in 
alkanes N–H or the C = O stretching vibrations, respectively. 
The following bands at around 1630.66–1627.20 cm− 1 corre-
spond to C = O stretching carboxylic vibration in the amide I 
and amide II groups. C-H stretching vibrations of the aromatic 
ring are attributed to the bands (1452.48 and 1422.99 cm− 1). 

where λ is the X-ray wavelength (1.5406), k 0.94 is Scher-
rer’s constant, θ is the FWHM in radians of the peak, and 
β is the Bragg diffraction angle [39]. D value depicted from 
the highest intensity peak corresponding to 101 planes 
located at position 36.4° is in ranges from 10 nm. The crys-
talline size of ZnO-NPs detected by Scherrer’s equation is 
by those of SEM images.

As shown in Fig.  6, the functional groups in the Uziza 
extract and ZnO-NPs were classified by FT-IR analysis. To 
demonstrate the organic substances (phenolics and flavonoids) 
still kept in a structure after the calcination step performed 

Fig. 6  FTIR spectrum of ZnO-NPs and Uziza

 

Fig. 5  Typical XRD pattern of biogenic ZnO-NPs

 

Fig. 4  (a) SEM images of ZnO-
NPs at different magnifications 
and (b) elemental composition of 
ZnO-NPs
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at wavelength 469 cm− 1 is in accordance with those of litera-
ture findings at 400 to 500 cm− 1 [42], 450 cm− 1, and 600 cm− 1 
[35], and 486 cm− 1 [43].

The antibacterial efficacy of biogenic ZnO-NPs was scru-
tinized by counting total viable cells as observed in Fig. 7. % 
Inhibition and total viable count (CFU) in cultures exposed to 
ZnO-NPs at various concentrations are summarized in Table 2. 
The strong inhibitory effect of ZnO-NPs on E. coli growth was 
noted as compared to the control samples without NPs. The 
highest bactericidal activity was notified as 99.99% in compari-
son with control (0.0%) regardless of ZnO-NPs concentrations. 
Our results agree with those of Awwad et al. (2020); Iqbal et 
al. (2021); Ahmad et al. (2022); Vo et al. (2023) [44–47]. The 
excellent antibacterial efficiency of ZnO-NPs synthesized via 

The sharp bands at 1012.93 and 1056.53  cm− 1 are due to 
the–C-N stretching vibrations of aliphatic amines. The other 
bands at 850.98–844.32 cm− 1 are corresponding to the C-H 
bending of carboxylic acids and aromatics. The spectral peak 
at 482.34 cm− 1 corresponded to Zn and O bonding vibrations 
confirming behaved as a reducing and capping agent pheno-
lic compounds for the synthesized ZnO-NPs. These FT-IR 
results related to the roles of flavonoids, protein molecules, 
and the other functional groups in the bioreduction of metal 
ions were supported by previous findings [40, 41]. Our peak 
regarding the characteristic stretching vibration band of Zn-O 

Table 1  The absorption spectra of probable assigned phytochemical 
compounds by FTIR
Possible assignment Absorption 

peaks in Uziza 
(cm-1)

Absorption 
peaks in 
ZnO-NPs 
(cm-1)

-OH stretching 3421.62 3435.77
–C-H stretching in alkanes 2924.78 2922.97
C = O stretching in carboxylic groups 1630.66 1627.20
–CH stretching in aromatic rings 1452.48 1422.99
C-N stretching in aliphatic amines 1012.93 1056.53
C = C bending in alkene 850.98 844.32
ZnO 482.34

Table 2  The colonies number on the PCA plates of E. coli (ATCC 
25,922) cells grown with various concentrations of ZnO-NPs, plant 
extract, and without ZnO-NPs
E. coli growth conditions Number of bacterial 

colonies (CFU/mL)
% Inhi-
bition

without ZnO-NPs 91.00 × 108 ± 3.50 %0.00
with Uziza extract 672 × 107 ± 15.00 %26.15
with 25 µg/mL ZnO-NPs 335 × 102 ± 10.00 %99.99
with 50 µg /mL ZnO-NPs 88 × 102 ± 9.00 %99.99
with 100 µg/mL ZnO-NPs 46 × 102 ± 6.00 %99.99

Fig. 7  The viability of E.coli 
(ATCC 25,922) cells (a) without 
ZnO-NPs and (b) with ZnO-NPs 
at 25, 50, and 100 µg/mL and (c) 
with Uziza extract
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indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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the green route depends on having a larger surface area of NPs 
with smaller sizes and showing one of the possible inhibition 
mechanisms mentioned in the literature. Antibacterial actions 
of ZnO-NPs involve (1) the generation of reactive oxygen 
species (ROS) causing oxidative stress, damage of DNA, and 
disruption of cell membrane and finally leading to cell lysis; 
(2) the destroying of the cellular integrity and eventually bacte-
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Conclusions

Here, we imply a facile, simple, and one-pot eco-friendly green 
synthesis of biobased ZnO-NPs by P. guineense extract. This 
current study demonstrated the successful synthesis of hexago-
nal/spherical ZnO-NPs by reducing, capping, and stabilizing 
agents indicating the presence of phytochemical compounds in 
the extract. To the best of our knowledge, this study is the first 
to research the phytosynthesis of ZnO-NPs by P. guineense 
from Nigeria. The strong inhibitory ability for biogenic ZnO-
NPs on E. coli strain showing high resistance against standard 
antibiotics is considered to help the developed novel antimicro-
bial agents to alternative the costly and less efficient drugs that 
are used in the clinical setup. We hope that our data tenders to 
the readers to the promising ideas to find out original and up-
to-date strategies for metal NPs that can be used in biological 
systems-related applications.
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