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Abstract
Among the various bone substitutes, carbonate apatite  (CO3Ap) has received significant attention in the field of hard tissue 
regeneration due to its similarity in chemical composition to natural bone and its osteoconductivity and bioresorbability. This 
study aimed to develop a cost-effective method for fabricating porous  CO3Ap blocks while maintaining a balance between 
porosity and mechanical properties. The level of interconnectivity in the porous structure was achieved by adjusting the pore 
volume fractions of the starting materials. The phase and microstructure characteristics of the porous  CO3Ap blocks were 
assessed using techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning 
electron microscopy (SEM). The diametral tensile strength (DTS) of the blocks was determined using a universal testing 
machine. The results demonstrated that the mechanical strength of the blocks stayed within a range that was suitable for 
handling properties. This advantage allows the porous blocks to withstand initial stress during implantation procedures or 
in the early stages of defect healing.
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Introduction

Congenital defects, trauma, carcinogens, and accidents can 
cause damage to hard tissues. While bone has the ability 
to regenerate, it often requires significant time and may 
not always achieve proper healing. In cases where natural 
therapies fail to promote remodeling, bone grafting is uti-
lized to replace the damaged tissues through regeneration. 
Porous carbonate apatite  (CO3Ap) materials are particularly 
appealing as bone substitutes due to their similar structure 
and inorganic composition to human cancellous bone. These 
materials offer several advantages, including the stimulation 

of osteoblast cells responsible for bone formation and osteo-
clast cells responsible for bone resorption. This stimulation 
promotes the beneficial process of bone remodeling and aids 
in the regeneration of lost or damaged bone tissue [1–13].

Over time, porous  CO3Ap materials have garnered 
increasing attention as a viable approach for repairing bone 
defects. Extensive research has focused on improving their 
properties to strike a balance between mechanical strength 
and biological functionality. An interconnected porous 
structure is ideal for facilitating cell migration, nutrient 
exchange, fluid flow, and vascularization. However, achiev-
ing such a structure often comes at the expense of mechani-
cal strength, as a trade-off exists where increased porosity 
results in reduced strength. Several methods exist for fab-
ricating three-dimensional (3D) porous scaffolds, includ-
ing foaming agent–based techniques, the polymeric sponge 
replica process, and templating methods [6, 10, 11, 14–27]. 
In the templating approach, a sacrificial template called a 
porogen is used, which is subsequently removed through 
thermal treatment or dissolution to create the desired porous 
structure. This method offers simplicity and advantages in 
producing interconnected pores with controllable sizes and 
shapes.
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It should be noted that  CO3Ap materials are sensitive to 
elevated temperatures due to the decomposition of the car-
bonate group [2, 3, 28, 29]. Consequently, direct sintering 
cannot be employed to solidify  CO3Ap blocks. Instead, the 
dissolution and precipitation method [3, 17, 23–26, 30–33] 
shows promise in transforming calcium carbonate  (CaCO3) 
precursors into  CO3Ap blocks.  CaCO3, comprising calcium 
and carbonate, is an ideal precursor due to its low solubil-
ity in neutral solutions. Moreover, producing pure  CaCO3 
blocks can be achieved by the reaction of calcium hydroxide 
(Ca(OH)2) with carbon dioxide  (CO2). Ultimately, chemi-
cally pure  CO3Ap blocks are obtained through the phase 
transformation of  CaCO3 precursors in a phosphate salt solu-
tion. This method allows for the production of low-crys-
talline and bioactive  CO3Ap blocks that possess desirable 
biological properties.

In this study, a combination of the templating approach 
and the dissolution and precipitation method was employed 
to create a 3D porous  CO3Ap scaffold. The desired pore 
morphology and size for bone substitutes typically involve 
interconnected pores with diameters ranging from 100 to 
400 μm [14, 34–42]. It is supposed that achieving a balance 
between porosity and mechanical strength in the  CO3Ap 
scaffold is a crucial criterion in this study to provide sur-
geons with better handling of the material of bone graft 
substitutes. In that case, it would be reasonable to propose 
a cost-effective method for fabricating the  CO3Ap scaffold 
for bone implant applications. The ultimate objective of this 
study is to explore the feasibility of such a method.

Materials and methods

Preparation

Calcium hydroxide (Ca(OH)2, 2511–4400, Daejung Chemi-
cals & Metals Co., Ltd, Gyeonggi-do, Korea) was firstly 
mixed with calcium sulfate hemihydrate  (CaSO4.0.5H2O, 
2522–4000, Daejung Chemicals & Metals Co., Ltd, Gyeo-
nggi-do, Korea). The mixing ratio was varied from 50 to 
100%wt. The NaCl granules (125–300 µm) were used as 

sacrificial templates in which the weight ratio of chemical 
powders/NaCl granules was 50:50. Blocks were prepared by 
uniaxial pressing with the compaction pressure as 15 MPa, 
25 MPa, and 45 MPa. The compacted samples were kept at 
37 °C for 24 h in a drying oven. In the next step, they were 
exposed to carbon dioxide  (CO2) gas with 0.2 L/min placed 
in a sealed container for 14 days. Next, they were soaked in 
1 mol/L  NaHCO3 (7566–4400, Daejung Chemical & Met-
als Co. Ltd. Gyeonggi-do, Korea) solution at 60 °C for 48 h 
for the complete carbonation. Blocks were then washed and 
soaked in the distilled water at 60 °C for 48 h to eliminate 
entirely NaCl granules. Consequently, the porous blocks 
could be obtained, and they were then immersed in 1 mol/L 
 Na2HPO4 (7613–4400, Daejung chemical & metals Co. 
Ltd. Gyeonggi-do, Korea) solution at 90 °C for 14 days for 
compositional phase transformation to final apatite phase. 
Finally, samples were taken out, rinsed with distilled water, 
and dried at 60 °C for 24 h before characterization. Samples 
were categorized according to the component of raw materi-
als and the applied compaction pressure as shown in Table 1.

Phase characterization

The sample was ground to fine powder for Powder X-ray dif-
fraction (XRD) analysis using a diffractometer system (D8 
Advance, Bruker AXS GmbH, Karlsruhe, Germany). Vario1 
Johansson focusing mono-chromator and high flux CuKα 
radiation generated at 40 kV and 40 mA were used for opera-
tion with scanning range from 2θ = 10º to 2θ = 60º (where θ 
is the Bragg angle) in a continuous mode. Fourier transform 
infrared spectrometer (FTIR) (InfraRed Bruker Tensor 37, 
Bruker AXS GmbH, Karlsruhe, Germany) analysis with 
KBr method was used to confirm the position of carbonate 
group in the apatite structure. Carbonate content was done 
by chemical analysis using CHN elemental analyzer (CHN 
coder MT-6, Yanaco, Japan).

Microstructure properties

Scanning electron microscope (SEM: S-3400N, Hitachi 
High-Technologies Co., Tokyo, Japan) at 10  kV of 

Table 1  Type of samples Sample Weight ratio of chemical 
powders: NaCl granules

Component of chemical powders Applied compac-
tion pressure 
(MPa)Ca(OH)2 (%wt) CaSO4.0.5H2O 

(%wt)

50–50-15 MPa 50:50 50 50 15
50–100-15 MPa 50:50 100 0 15
50–50-25 MPa 50:50 50 50 25
50–100-25 MPa 50:50 100 0 25
50–50-45 MPa 50:50 50 50 45
50–100-45 MPa 50:50 100 0 45
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accelerating voltage was used to analyze the structure and 
size of the pores. Sputter coating was employed to obtain 
high-quality images. The volume and weight of five samples 
were also measured for total porosity calculation.

Mechanical properties

Diametral tensile strength (DTS) value was collected using 
universal testing machine (AGS-J, Shimadzu Corporation, 
Kyoto, Japan). Five samples were tested to take the average 
DTS value.

Results and discussion

Figure 1 indicates XRD patterns of the samples (marked as 
50–50-15 MPa, 50–100-15 MPa, 50–50-25 MPa, 50–100-
25 MPa, 50–50-45 MPa, and 50–100-45 MPa) after carbona-
tion, reference calcite, Ca(OH)2, and  CaSO4.2H2O respec-
tively. XRD pattern indicated that after carbonation, the 
compacted samples had main peaks at 2theta = 23, 29.5, and 
39° belonging to calcite phase. However, the samples such 
as 50–100-15 MPa, 50–100-25 MPa, and 50–100-45 MPa, 
whose starting chemical ingredient is 100wt% Ca(OH)2, 
possessed the minority species of Ca(OH)2 with the exist-
ence of a weak peak at 2theta = 17.98°.

Figure 2 indicates XRD patterns of the samples (marked 
as 50–50-15  MPa, 50–100-15  MPa, 50–50-25  MPa, 
50–100-25 MPa, 50–50-45 MPa, and 50–100-45 MPa) 
after immersing in  Na2HPO4 1 mol/L at 90 °C for 14 days, 
reference hydroxyapatite (HAp), calcite, Ca(OH)2, and 

 CaSO4·2H2O respectively. Main peaks of apatite phase 
were detected in all the XRD patterns of the samples as 
comparing to the ICDD standard peak of stoichiometric 
hydroxyapatite (standard no. 09–0432). The minority 
phase of calcite also existed with the detection of a weak 
peak at 2theta = 29.5°. Table 2 lists the lattice parameters 
of apatite crystals estimated using XRD data. It should be 
noted that the lattice parameter variation between stoichio-
metric HAp and carbonate apatite  (CO3Ap) was due to the 
introduction of carbonate group into the crystal structure. 
Low crystallinity of B-type  CO3Ap, the same component 
with natural bone, has the contraction of the a-axis and 
the expansion of the c-axis since the smaller  (CO3) groups 
substitute the larger  (PO4) tetrahedra. Therefore, the c/a 
ratio of B-type  CO3Ap is higher than that of standard HAp 
[3, 13, 43–45]. And hence, the obtained results indicated 

Fig. 1  XRD patterns of the compacted samples (marked as 50–50-
15  MPa, 50–100-15  MPa, 50–50-25  MPa, 50–100-25  MPa, 50–50-
45  MPa, and 50–100-45  MPa) after carbonation, reference calcite, 
Ca(OH)2, and  CaSO4.2H2O respectively

Fig. 2  XRD patterns of the porous (marked as 50–50-15  MPa, 
50–100-15  MPa, 50–50-25  MPa, 50–100-25  MPa, 50–50-45  MPa, 
and 50–100-45 MPa) after immersing in  Na2HPO4 1 mol/L at 90 °C 
for 14  days, reference hydroxyapatite (HAp), calcite, Ca(OH)2, and 
 CaSO4.2H2O respectively

Table 2  Lattice parameters from XRD data

Samples Lattice parameters

a(Å) c(Å) c/a

Standard HAp (ICDD PDF 
card no. 9432)

9.4180 6.8840 0.7309

50–50-15 MPa 9.3715 6.9276 0.7392
50–100-15 MPa 9.3581 6.9244 0.7399
50–50-25 MPa 9.3785 6.9307 0.7390
50–100-25 MPa 9.3599 6.9327 0.7407
50–50-45 MPa 9.3774 6.9324 0.7393
50–100-45 MPa 9.3291 6.9102 0.7407
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that all the samples were B-type  CO3Ap which owned the 
increase of the c/a ratio as shown in Table 2.

Figure 3 shows the FTIR spectra of the samples (marked 
as 50–50-15  MPa, 50–100-15  MPa, 50–50-25  MPa, 
50–100-25 MPa, 50–50-45 MPa, and 50–100-45 MPa) 
after immersing in  Na2HPO4 1 mol/L at 90 °C for 14 days, 
calcite,  CaSO4·2H2O, and reference hydroxyapatite (HAp), 
respectively. FTIR spectra of all samples exhibited the 
characteristic peaks of the apatites such as the vibration 
of  PO4

3− group at wavenumber 980–1100  cm−1, 960  cm−1, 
and 560–600   cm−1. When compared with the standard 
spectrum of HAp, it could be seen that  CO3Ap showed 
the difference in the presentation of the doublet peak at 
1455–1410   cm−1 and singlet band at 875   cm−1 caused 
by the vibration of  CO3

2− group [2, 13, 32, 43, 44, 46] . 
Besides, the nonappearance of  OH− peak ở 630  cm−1 also 
supported that B-type  CO3Ap was the main phase of sam-
ples after phosphorization. This was in agreement with the 
estimation of lattice parameter by the above XRD results. 
These results and the carbonate content of  CO3Ap blocks 
measured by CHN analysis (as shown in Table 3) were 
used to confirm the location of the carbonate group in the 
apatite structure. The typical carbonate band of calcite at 
712  cm−1 was neglected, and this implied that a very small 
amount of calcite precursor remained and the phase trans-
formation from calcite to  CO3Ap was almost complete. 
The addition of  CaSO4 could accelerate the nucleation 
within disordered precursors, decrease the reaction time, 
and improve the phase transformation.

In this study, it proved that dissolution–precipitation reac-
tion was suitable for fabrication of the  CO3Ap block. This 
 CO3Ap block maintained its macroscopic structure even 
when it passed through the compositional transformation. 
In short, Ca(OH)2 absorbed the  CO2 gas and transformed 
to calcite then it dissolved in the phosphate solution and 
supplied  Ca2+ and  CO3

2−.  CO3Ap was formed due to the 
supersaturation of the solution containing  Ca2+,  CO3

2−, and 
 PO4

3− with respect to  CO3Ap. The mechanism of this pre-
cipitation could be explained by the stable property of apa-
tite phase in the neutral and basic conditions. It is noted that 
dissolution process must balance with precipitation reac-
tions for the preservation of the precursor structure and the 
efficiency of the reaction. The fast dissolution might lead to 
the deterioration of sample whereas the low process would 
extend the reaction duration [3, 47].

Figures 4 and 5 show the morphology and distribution of 
pores in the bodies of the samples after carbonation and after 
immersing in  Na2HPO4 1 mol/L at 90 °C for 14 days. The 
porous morphology appears as the network of interconnected 
pores. It also indicated that the architecture including size 
and shape of multiple channels with interconnected pores 
was not varied during the dissolution–precipitation reaction 
and phase transformation. The pore size ranging from 100 to 
400 μm made the samples be suitable bone tissue engineer-
ing applications. Figure 6 demonstrates the total porosity 
of calcite precursor blocks formed by the carbonation and 
 CO3Ap formed by the compositional transformation using 
calcite blocks as precursors. The higher applied compaction 
pressure increased the density; consequently, the total poros-
ity decreased. It was also found that the phase transformation 
to  CO3Ap resulted in increasing the total porosity except 
for the samples such as 50–50-25 MPa and 50–50-45 MPa 
which possessed the total porosity of the  CO3Ap blocks 
which was lower than that of the calcite precursor blocks. 
The change in the total porosity was closely related to the 
rate of phase transformation. Thereby, the interlocking of the 
precipitated  CO3Ap resulted in the transformation of calcite 
to  CO3Ap through dissolution–precipitation reactions while 
maintaining the macroscopic block structure.

Fig. 3  FTIR spectra of the samples (marked as 50–50-15  MPa, 
50–100-15  MPa, 50–50-25  MPa, 50–100-25  MPa, 50–50-45  MPa, 
and 50–100-45 MPa) after immersing in  Na2HPO4 1 mol/L at 90 °C 
for 14  days, calcite,  CaSO4·2H2O, and reference hydroxyapatite 
(HAp) respectively

Table 3  Carbonate content of  CO3Ap blocks measured by CHN anal-
ysis (p < 0.05)

Samples Carbonate 
content (mass 
%)

50–50-15 MPa 11.3 ± 0.3
50–100-15 MPa 11.1 ± 0.1
50–50-25 MPa 12.2 ± 0.3
50–100-25 MPa 13.8 ± 0.4
50–50-45 MPa 14.7 ± 0.2
50–100-45 MPa 10.6 ± 0.4
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The present study indicated that porous  CO3Ap blocks 
encountered the requirements of the porous bone implant, 
accordingly; the pore size of the obtained  CO3Ap blocks 
was between 100 and 400 μm and that was the optimal 
size for bone ingrowth. The biological and mechanical 

properties of the material are related to the porous archi-
tecture. The pore diameter ranging from 17.9 to 30.4 μm 
is suitable for the migration of mesenchymal stem cell [48, 
49] ; in addition, the dramatically high proliferation, dif-
ferentiation, and even gene expression can be encouraged 
in the pore range of 100–300 μm [43, 50].

Figure 7 summarizes the DTS values of the samples 
50–50-15 MPa, 50–100-15 MPa, 50–50-25 MPa, 50–100-
25 MPa, 50–50-45 MPa, and 50–100-45 MPa after carbon-
ation and after immersing in  Na2HPO4 1 mol/L at 90 °C 
for 14 days. The strength of the calcite block formed from 
Ca(OH)2 and  CaSO4 precursor mixture was lower than that 
of the calcite block fabricated from pure Ca(OH)2 block. 
On the contrary, after immersing in phosphate solution, 
the  CO3Ap samples obtained from precursors containing 
 CaSO4 had higher strength than the  CO3Ap samples with 
initial chemical composition of 100% mass Ca(OH)2. This 
difference in DTS value of both samples is presumably 
related to the difference in phase composition as indicated 
by the XRD and FTIR results. Moreover, an increase in the 
compaction pressure caused an increase in the DTS value. 
However, the strength of the sample 50–100-45 MPa was 
observed to be lower as compared to that of the others 
compacted under lower pressure. The reason for this is 
due to the deformation under an applied hydraulic pressure 
such as cracks or even layer splitting. After transformation 
to  CO3Ap by immersing in  Na2HPO4 1 mol/L at 90 °C 
for 14 days, the DTS values of the samples were approxi-
mately 0.5–4 MPa. This value would be probably accept-
able for handling properties of bone substitutes.

The previous studies stated that porosity was inversely 
proportional to the strength in which the strength and 
durability of bone substitutes were considerably affected 
by pore size of greater than 100 μm [17, 31, 39, 51–54]. 
It should be noted that promoting the bone ingrowth and 
regeneration is the advantage of interconnecting porous 
structure; however, the dominance of large pores can 
significantly deteriorate the mechanical properties and 
threaten the implant stability. The current generation of 
bone-substituting materials should be equilibrium between 
the biological and mechanical properties for the effective 
hard tissue grafting. The obtained  CO3Ap block from 
the effective composition-transformation process had 
the proper mechanical strength satisfying the handling 
property of the porous bone implant; therefore, it could 
withstand the initial stress in the reconstructive surgeon. 
The  CaCO3 precursor transformed to the B-type  CO3Ap 
characterizing with the high content of carbonate that 
is equivalent to the natural human bone. Therefore, the 
 CO3Ap block in this study is expected to exhibit the same 
osteoconductivity and bioresorbability of human bone, 
while also promoting superior bone remodeling that con-
tributes to bone healing over time.

500 µm 500 µm

500 µm 500 µm

500 µm 500 µm

500 µm 500 µm

500 µm 500 µm

500 µm 500 µm

a) b)

c) d)

e) f)

g) h)

i) j)

k) l)

Fig. 4  SEM images of the fracture surfaces of the samples after car-
bonation [a 50–50-15  MPa, c 50–100-15  MPa, e 50–50-25  MPa, g 
50–100-25 MPa, i 50–50-45 MPa, and k 50–100-45 MPa] and after 
immersing in  Na2HPO4 1  mol/L at 90  °C for 14  days [b 50–50-
15  MPa, d 50–100-15  MPa, f 50–50-25  MPa, h 50–100-25  MPa, j 
50–50-45 MPa, and l 50–100-45 MPa]
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Fig. 5  The pore size distribution analysis of the samples after car-
bonation [(a) 50–50-15 MPa, (c) 50–100-15 MPa, (e) 50–50-25 MPa, 
(g) 50–100-25 MPa, (i) 50–50-45 MPa, and (k) 50–100-45 MPa] and 

after immersing in  Na2HPO4 1 mol/L at 90 °C for 14 days [(b) 50–50-
15 MPa, (d) 50–100-15 MPa, (f) 50–50-25 MPa, (h) 50–100-25 MPa, 
(j) 50–50-45 MPa, and (l) 50–100-45 MPa]

Fig. 6  The total porosity of the samples 50–50-15  MPa, 50–100-
15  MPa, 50–50-25  MPa, 50–100-25  MPa, 50–50-45  MPa, and 
50–100-45 MPa after carbonation (black column) and after immers-
ing in  Na2HPO4 1  mol/L at 90  °C for 14  days (grey column) 
(p < 0.05)

Fig. 7  Diametral tensile strength (DTS) of the samples 50–50-
15  MPa, 50–100-15  MPa, 50–50-25  MPa, 50–100-25  MPa, 50–50-
45  MPa, and 50–100-45  MPa after carbonation (black column) and 
after immersing in  Na2HPO4 1 mol/L at 90 °C for 14 days (grey col-
umn) (p < 0.05)
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Conclusion

In summary, the present study introduced a low-cost 
method for the preparation of porous  CO3Ap bone sub-
stitutes. The content and size of the NaCl porogen affects 
the interconnected microporous structure. This porous 
architecture was stable even when the sample is going 
through two phase transitions as showing in microscopic 
images. The mechanical properties of the  CO3Ap block are 
suitable for processing during implantation (0.5–4 MPa). 
The B-type  CO3Ap block was characterized with the high 
carbonate content in the structure similar to human bone. 
This bone replacement material is expected to provide a 
positive approach to improve the quality of bone defect 
treatment, especially for low-income patients in develop-
ing countries.
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