RESEARCH

Effect of Y₂O₃ doping on a gehlenite/magnesia-alumina spinel obtained by sintering secondary aluminium ash

Yong Zhang¹ · Tiantian Duan¹ · Xiaojuan He¹ · Yuncai He¹ · Yuting Wang¹

Received: 3 November 2021 / Revised: 19 March 2022 / Accepted: 2 April 2022 / Published online: 27 April 2022 © The Author(s) under exclusive licence to Australian Ceramic Society 2022

Abstract

Due to the rapid development of China's regeneration industry, secondary aluminium ash (SAA) has been extensively produced. The reuse of SAA and Y_2O_3 doping was studied in this research. This proved that SAA can turn into a raw material for gehlenite/magnesia-alumina spinels. Furthermore, doping with Y_2O_3 can aggrandize the densification feature of gehlenite/magnesia-alumina spinels. The densification of the gehlenite/magnesia-alumina spinel without Y_2O_3 was lower than that of the doped spinel in the temperature range of 1573 to 1773 K. At 1673 K, 3 wt% Y_2O_3 was added to the gehlenite/magnesia-alumina spinel. It had a density of 2.05 g·cm⁻³ and a compressive strength of 91.2 MPa. Generally, 3 wt% Y_2O_3 was added, and the sintering temperature at 1673 K was appropriate. The elevation of the densification feature was also attributable to the solubility of Y_2O_3 and the formation of a low-viscosity liquid phase such as YCaAl₃O₇. The SAA can be reused for the recovery of gehlenite/magnesia-alumina spinels. Doping it with Y_2O_3 can broaden its reutilization in new water-resistant ceramic materials.

Keywords Secondary aluminium ash (SAA) \cdot Sintering \cdot Gehlenite/magnesia-alumina \cdot Y₂O₃ \cdot Doping

Introduction

Dregs of aluminium ash have already been popularly produced in China because the aluminium industry has grown. Nevertheless, in a landfill, over 90% of secondary aluminium ash (SAA) is handled without deeper management. In the natural environment, the negative influence of environmental quality has increased over the past few years [1, 2], and it is meaningful to recycle and reduce SAA. Al, $MgAl_2O_4$ (MA) spinels, and corundum are the major compounds of SAA. SAA uses minimal types of additional reagents with low costs that can be used as a raw material for spinels [3, 4]. There are many advantages of magnesium aluminium spinels, including a high melting point, mechanical properties, strong thermal and spalling properties, and excellent chemical performance. These characteristics make MA a main material for many adhibition applications in furnaces. It is necessary to use lining materials for the base and sidewall

⊠ Yong Zhang 752607795@qq.com of the furnace [3]. However, the preparation of magnesium aluminate spinels is still an expensive process and should be supported by high-spirited and new technical techniques, which would lower the cost of raw materials and improve the quality of the outcome.

According to the characteristics of secondary aluminium ash raw materials, the ingredients can be slightly changed to prepare refractory materials [5, 6]. This can realize resource utilization. In recent years, to prepare a lightweight refractory material with both refractory properties (high strength) and reduced mass, the USA, Japan, and other countries successively developed phases that combine with melilite with a high melting point [7, 8]. MA is a kind of magnesium aluminium oxide material with a high melting point (2408 K), good thermal shock resistance, impact resistance, good electrical insulation performance, and strong alkali erosion resistance [9, 10]. Melilite is a class of silicate minerals that are composed of Al, Mg, and iron calcium silicate/sodium silicate, and its general chemical composition formula is (Ca, Na)₂(Al, Mg, Fe)[(Al, Si)SiO₇]. Gehlenite (Ca₂Al₂SiO₇ (C_2AS)) and akermanite $(Ca_2Mg(Si_2O_7))$ are two important minerals in the melilite group. Melilite has a low density, a small thermal expansion coefficient, and a low thermal conductivity. Melilite is rarely the main crystal phase of

¹ College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China

refractory materials because its melting point is not very high, but in improving the compressive strength and hydration resistance of materials, it has a vital function [11]. In conclusion, we can prepare refractory materials in which the main crystal phase is a magnesia-alumina spinel and the combined phase is melilite from secondary aluminium. If the result holds up, the potential harm of secondary aluminium ash to the environment can be reduced, and the field of refractory preparation can also be broadened.

Rare earth oxides (REOs) are valid annexing agents that have been diffusely used in chinaware, biotechnology, powder metallurgy, new energy, and chemical technology. WC-MgO bulk composites are doped with La₂O₃. The flexural strength and Vickers hardness are enhanced [12]. CeO_2 is one of the most reactive rare earth metal oxides and has some features, such as a large surface area, a large radius, and strong chemical resistance. It has been widely applied in conformational ceramics, such as oxide and nonoxide ceramics and functional ceramics [13, 14]. WC-Al₂O₃ compounds adulterated with 0.1%CeO₂ showed a fining microstructure and enhanced machine capability compared with nondoped composites [15]. Different scholars have studied the improved sinterability of high-quality spinels doped with 5 wt% Y_2O_3 [16, 17]. Sintering was found to be improved by using rare earth oxides such as 4 wt% Yb₂O₃ and Dy₂O₃ [18]. Densification of the specimens with Y_2O_3 and Nd_2O_3 was attributed to the formation of complex oxides, which activated the crystal lattice [19]. La_2O_3 and CeO_2 formed a liquid phase, which accelerated the densification of the crystal lattice [19]. The grain boundary energies decreased when the spinel was doped with 3 mol% Y₂O₃, Gd₂O₃, and La₂O₃ from grain boundary restraint detection [20].

In this work, the series of objectives were as follows. A gehlenite/magnesia-alumina spinel was synthesized from SAA. The effects of Y_2O_3 doping on the gehlenite/magnesia-alumina spinel were characterized. The mechanisms of densification improvement by Y_2O_3 doping on the gehlenite/magnesia-alumina spinel obtained from SAA were evaluated.

Experimental procedure

Materials

In Jiangxi Province, China, we collected secondary aluminium ash (SAA). The ash was preprocessed by drying, selection, and ball milling to obtain a uniform particle size. Repeated impact during the ball-milling process resulted in a large number of microscopic defects, such as lattice distortions, dislocations, twinned crystal structures, and strain energy in the powders [21]. The mineral phases of the ash were Al, α -Al₂O₃, MA, and AlN (Fig. 1). Chemical phase analysis showed that Al and α -Al₂O₃ accounted for 23.67 wt% and 23.57 wt% of the ash, respectively, with 2.19 wt% AlN and 9.10 wt% MA (Table 1). The analytical grade agents used for analysis and detection included CaO, MgO, and Y₂O₃.

Experiment

After disposal, the D_{50} of SAA was 23.42 µm. In this study, SAA (70.8 wt%) was blended with CaO (18.58 wt%) and MgO (10.62 wt%) in a mixing machine for 1 day. The powders were put into a mould with a 3% bonder at 15 MPa, and then, the powders were pressed into bricks (diameter of 2.5 cm and thickness of 1 cm). The raw bricks were placed in an electric stove for sintering in the range of 1373 to 1773 K for 3 h in air (Fig. 2). The sintering temperature curve of the experiment is shown in Fig. 3. The right and left sides of the stove were sealed with a quartz plug to keep the stove warm. The stove was cooled to 773 K at a rate of 3-4 K/min. The bricks were tested at room temperature. The addition amount was 3 wt% Y₂O₃. The mass fractions of SAA, CaO, MgO, and Y₂O₃ were 68.8%, 18.0%, 10.3%, and 2.9%, respectively.

Sample analysis

The surface microcosmic morphology of the powder was recorded by scanning electron microscopy (SEM, Nova NanoSEN 230). X-ray diffraction (XRD, TRAX, Rigaku) was employed using a Cu K α radiation source and a 10°/ min scanning speed to analyse the crystal structures of the

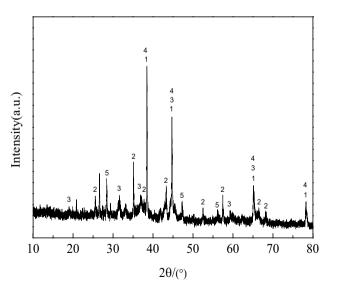


Fig. 1 XRD pattern of the SAA. 1-Al; 2-a-Al₂O_{3;} 3-MgAl₂O_{4;} 4-AlN; 5-ZnS

Table 1 of the SA

Chemical composition SAA (wt%)	Composition	Al	Mg	Si	Ca	Fe	Na	Ti	Others
	Content	39.61	6.39	7.26	3.47	1.20	1.03	1.61	39.43

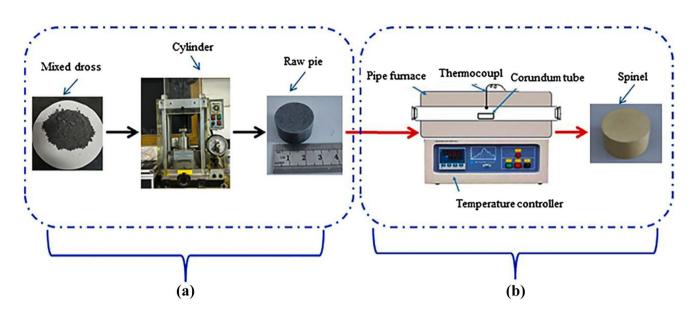


Fig. 2 Schematics of the spinel prepared by SAA: a moulding process and b sintering process

powders. The particle size distribution was examined by a laser particle analyser (OMEC LS-POP, China). The elements in SAA were examined by X-ray fluorescence (XRF-AXIOS, PANalytical, Netherlands). The powders were placed in a hydraulic press (YLJ-40 T, China) to obtain bricks. The compression strength was examined by an electrohydraulic compression machine (TYA-100C, China). The bulk density of the bricks was calculated using the Archimedes principle.

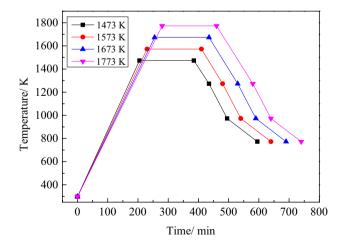


Fig. 3 Sintering temperature curve of the experiment

Results and discussion

Effect of sintering temperature on the characteristics of the gehlenite/ magnesia-alumina spinel

The XRD patterns of the gehlenite/magnesia-alumina spinel from SAA at different sintering temperatures are shown in Fig. 4. The main phases in the spinel were C₂AS and MA in the temperature range of 1373 to 1773 K and C₂AS, MA, and Al₂O₃ at 1373 K. The crossover of SiO₂ enhanced the incorporation of the framework with the MA stroma. The silica compositions began to melt at a high temperature, and the liquid phase formed. SiO₂ softened and turned into a liquid amorphous glass phase. The liquid sintering process is due to the enhanced wetting between particles [22]. From XRD analysis, the main crystalline phases were C₂AS and MA. However, Al₂O₃ disappeared at 1473–1773 K. During the sintering process, the mass transfer was accelerated because of the liquid phase [23]. The results showed that CaO and SiO₂ could easily be turned into the liquid phase. CaO and SiO₂ allowed densification by recrystallization in the presence of the liquid phase [23]. The intensities of C_2AS and MA were slightly different at 1673 K and 1773 K.

The microstructures of gehlenite/magnesia-alumina spinel powders sintered at 1473–1773 K were shown (Fig. 5).

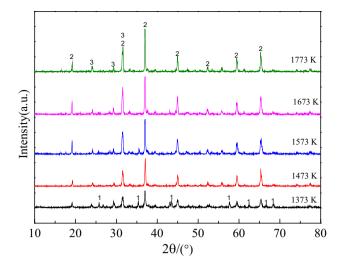


Fig. 4 XRD patterns of the gehlenite/magnesia-alumina spinel at different temperatures. $1-Al_2O_3$; $2-MgAl_2O_4$; $3-Ca_2Al_2SiO_7$

From Fig. 5 (a–d), the grains were breezed tiny at 1473 K for 3 h. The grain boundary size of C_2AS and MA turned obviously with an increase in temperature to 1673 K. Likeness, from Fig. 5 (c–d), the crystalline grains were homogenous. And the MA linked another as the main phase at 1673 K. The main phase of the C_2AS was a big square plate. The products were with little compact and homogeneous microstructures at 1773 K. So the 1673 K was appropriated. In all specimens, a glassy phase appeared, which was mainly due to the liquid glassy phase. The CaO and SiO₂ components in the SAA decreased the viscosity of the glass phase, and that was good for the gehlenite/magnesia-alumina spinel synthesized during the course [24].

Effect of Y₂O₃ on the gehlenite/magnesia-alumina spinel

The grain boundaries were observable from the microstructure of the powders with 3 wt% Y₂O₃ (Fig. 6). By forming a brittle phase because of Y₂O₃, new grain propagation occurred. The crystallite dimension was larger and clearer than that of the spinel without Y_2O_3 . The grain size increases became obvious upon doping with Y₂O₃. Finally, the grain dimension distribution was more uniform and enlarged with 3 wt% Y_2O_3 . Figure 6 shows the microstructure of the gehlenite/ magnesia-alumina bricks with 3 wt% Y₂O₃ at 1473–1773 K. EDS (Table 2) and line scan analysis (Fig. 6) showed that Y was uniformly dispersed in the texting scope. The average length of elongated grains increased with 3 wt% Y_2O_3 . Y_2O_3 is a crystal phase regulator and improves the microstructure. Y₂O₃ addition influenced the densification and microstructure. The presence of YCaAl₃O₇ as a second phase could be beneficial as it influences grain growth and reduces ion segregation at grain boundaries. This may be the reason for the different microstructure refinement trends of ceramic particles shown in Fig. 6 and Fig. 5 [25].

From Fig. 7, the results showed the bulk density and compressive strength of the gehlenite/magnesia-alumina spinel with and without Y_2O_3 doping and upon sintering at 1373-1773 K. The density of the gehlenite/magnesia-alumina spinel increased to 2.03 g \cdot cm⁻³ at 1773 K. The density of the gehlenite/magnesia-alumina spinel increased dramatically from 1.78 to 2.03 g·cm⁻³ as the temperature increased from 1373 to 1773 K. The density of the gehlenite/magnesia-alumina spinel increased mildly when the temperature was 1773 K (from 2.02 to 2.03 g·cm⁻³). The compressive strength of the gehlenite/magnesia-alumina spinel also significantly increased from 69.1 to 75.2 MPa with an increase in temperature from 1373 to 1573 K, which was above the Chinese national standard value of 40 MPa for magnesia and magnesia-alumina refractory bricks (GB/T 2275-2007). When the temperature changed from 1673 to 1773 K, the compressive strength improved slightly from 89.8 to 90 MPa. This showed that 1673 K was suitable for synthesising gehlenite/ magnesia-alumina.

In particular, the density feature of the Y_2O_3 -doped gehlenite/magnesia-alumina spinel improved with sintering. The density of the gehlenite/magnesia-alumina spinel with 3 wt% Y_2O_3 was 2.05 g·cm⁻³ at 1673 K. The compressive strength of the gehlenite/magnesia-alumina spinel with 3 wt% Y_2O_3 showed a similar trend to the density trend. The compressive strengths of the samples doped with 3 wt% Y_2O_3 at 1373–1773 K reached 71.2, 75.7, 77.3, 91.2, and 92.3 MPa. The density and compressive strength of the Y_2O_3 -doped gehlenite/magnesia-alumina spinel improved. Preparation of the Y_2O_3 -doped gehlenite/magnesia-alumina spinel can expand the utilization of SAA in new ceramics.

 Y_2O_3 can be the key factor in the densification of bricks because of the large ionic radius of the Y^{3+} . The glass network structure of the Y_2O_3 influenced the migration of other ions [19]. Y_2O_3 reacted with Al_2O_3 , SiO_2 , or CaO in SAA, and the outcome reinforced intergranular fracture with an increase in the sintering temperature. In addition, ions moved to the intergrain void as the temperature increased. The holes were filled completely, which effectively reduced the residual number of closed pores in the sample [26]. The densification feature of the bricks with Y_2O_3 was superior to that of the gehlenite/ magnesia-alumina spinel without Y_2O_3 (above 1473 K).

Mechanism of enhanced sintering with Y₂O₃ for obtaining gehlenite/magnesia-alumina spinels

Reaction set

XRD patterns of the 3 wt% Y_2O_3 samples sintered at 1473–1773 K are shown in Fig. 8. Thus, from the XRD

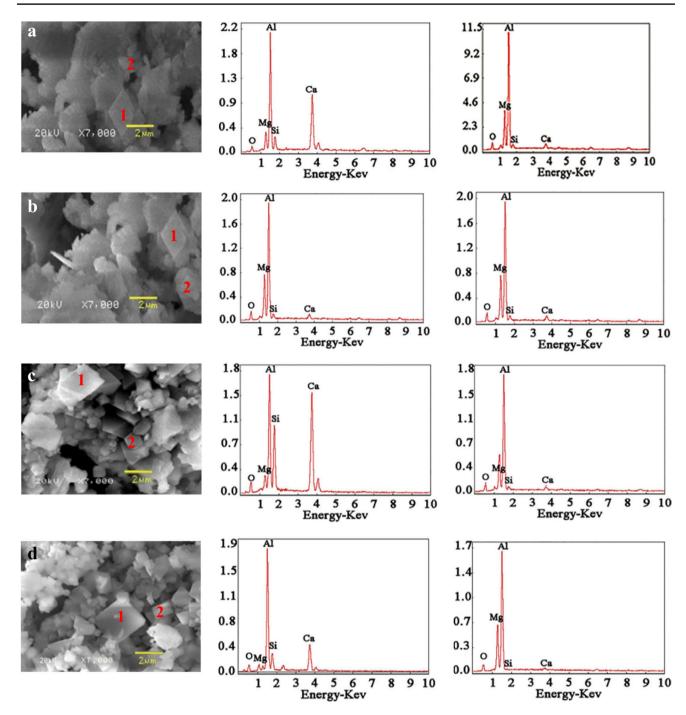


Fig. 5 SEM/EDS images of C₂AS/MA spinel powder at different sintering temperatures. **a** 1473 K; **b** 1573 K; **c** 1673 K; **d** 1773 K; 1 $Ca_2Al_2SiO_7$; 2 MA

analysis, the new compound that included Y ion was $YCaAl_3O_7$. The PDF card number of $YCaAl_3O_7$ is #49–0605. MA, C₂AS, and $YCaAl_3O_7$ were the main phases in the sintered product. Al_2O_3 was the minor phase at 1473 K. $YCaAl_3O_7$ appeared at 1473 K and existed from 1473 to 1773 K. A liquid phase during sintering was beneficial for the densification feature. The large cation size

of Y^{3+} could have caused distortion between layers and an expanded lattice. The presence of YCaAl₃O₇ as a second phase could be beneficial by influencing grain growth and reducing ion segregation at grain boundaries. YCaAl₃O₇ exhibited well-elongated grains in the matrix between MA and C₂AS. YCaAl₃O₇ was helpful in the bonding of two or more MA and C₂AS particles [25, 27].

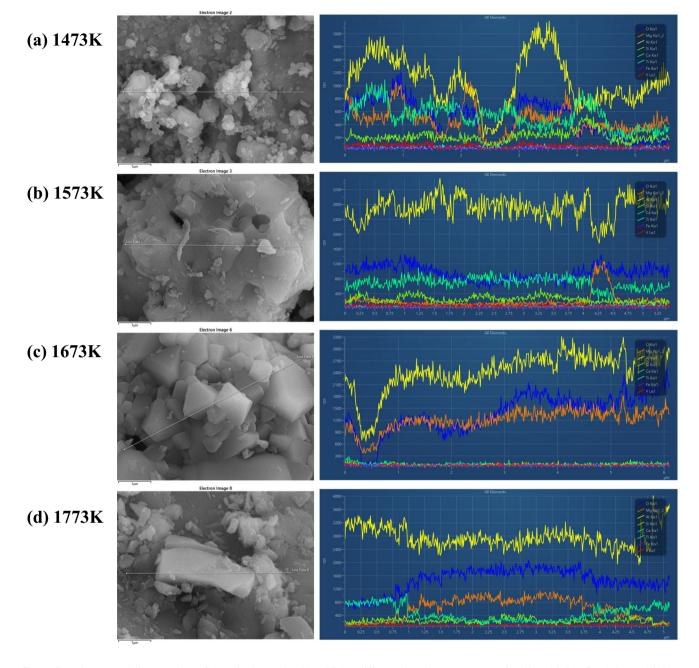
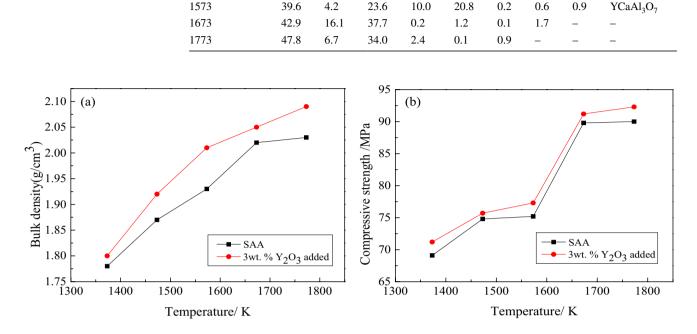


Fig. 6 SEM images and line scanning of the spinel powder with Y2O3 at different sintering temperatures for 3 h. a 1473 K. b 1573 K. c 1673 K. d 1773 K

Effect of Y₂O₃ dissolution and exsolution

With MDI Jade 5.0 software, the lattice cell refinement function can be used to calculate the lattice constant changes. From Table 3, the lattice parameters at different temperatures were higher than those obtained with refinement, which may be attributed to the dissolution of Y_2O_3 and other compounds such as CaO and SiO₂ [28, 29]. The lattice parameter of C₂AS increased at 1473 to 1573 K and decreased at 1673 K. The lattice parameter of MA increased at 1473 to 1673 K and decreased at 1773 K. Dissolution and exsolution were related to diffusion. Diffusion enhances intermolecular motion, which is good for the densification of materials [30].


Figure 9 illustrates the mechanism underlying the enhancement in the characteristics of the gehlenite/magnesia-alumina spinel derived from SAA after Y_2O_3 doping. The densification feature of the gehlenite/magnesia-alumina spinel was attributed to the low-viscosity liquid phase. The Temperature/K

1473

Table 2 EDS analysis for the

spinel powders with Y_2O_3 at 1473–1773 K for 3 h

Possible phase

Element content (wt%)

Mg

10.3

Al

25.6

Si

4.6

Ca

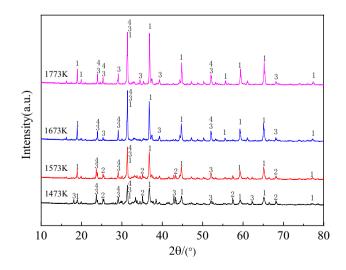
18.2

Ti

0.4

Fe

0.5

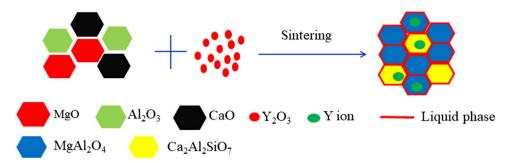

Y

0

40.4

Fig. 7 Properties of the gehlenite/magnesia-alumina spinel with 3 wt% Y2O3 after sintering at different temperatures: **a** bulk density and **b** compressive strength

dissolution and exsolution of Y_2O_3 occurred in the sintering process. Schmid [31] and Su [32] reported that Y^{3+} was concentrated in the intergranular regions. The ionic radius of Y^{3+} was large than the ionic radii of Al^{3+} , Si^{4+} , Ca^{2+} , and Mg^{2+} . The solute misfit strain energy was obtained because of the other ionic radii of Y^{3+} and other ions. The


Fig. 8 XRD patterns of the gehlenite/magnesia-alumina spinel doped with 3 wt% Y2O3 at sintered at different temperatures for 3 h. 1-MgAl2O4; 2-Al2O3; 3-Ca2Al2SiO7; 4-YCaAl3O7

predominant driving force for the segregation of Y³⁺ moved to the crystalline grain boundaries. Y^{3+} diffused into the anomalous microscopic defects and filled the crystalline grain boundaries during the high-temperature sintering process. Dissolution of Y ion in the sintering process resulted in cation vacancies that reinforced movement and mass transfer [30, 33]. The Y ion in other ion sites caused lattice strain, which also reinforced the mass transport process for densification [18, 30, 34]. Y₂O₃ moved to the ion boundaries and then entered the gehlenite/magnesia-alumina spinel lattice. Interionic migration decreased the residual pores in the MA and C₂AS boundaries and increased the density feature of the spinel. The Y₂O₃ can also reduce the coefficient of thermal expansion and the softening point of the glass phase. Several factors cooperatively enhance the characteristics of the gehlenite/magnesia-alumina spinel [35].

Table 3 Lattice constants (Å) of $\mathrm{Y}_2\mathrm{O}_3\text{-doped}$ spinel at different sintering temperatures

Temperature/K	Ca ₂ Al ₂ SiO ₇	MgAl ₂ O ₄		
Refine/Å	7.68580	8.08310		
1473	7.69397	8.09246		
1573	7.69863	8.09709		
1673	7.69622	8.10043		
1773	7.69354	8.08361		

Fig. 9 Mechanism underlying the enhancement in the characteristics of the gehlenite/magnesia-alumina spinel derived from SAA after Y2O3 doping

Conclusions

Secondary aluminium ash (SAA) can be used as the raw material of gehlenite/magnesia-alumina spinels. The density of the bricks changed from 1.78 to 2.03 g·cm⁻³, and the compressive strength changed from 69.1 to 90 MPa when they were sintered at a temperature ranging from 1373 to 1773 K for 3 h. The compressive strength of the gehlenite/magnesia-alumina spinel was above the Chinese national standard value of 40 MPa for magnesia and magnesia-alumina refractory bricks (GB/T 2275-2007). The density and compressive strength of the gehlenite/ magnesia-alumina spinel doped with 3 wt% Y₂O₂ and sintered at 1673 K were 2.05 g·cm⁻³ and 91.2 MPa, respectively. The enhancing mechanism of Y₂O₃ doping contributed to the solubility of both Y_2O_3 and Y_2O_3 -containing compounds, such as YCaAl₃O₇, which was turned into the low-viscosity liquid phase as the sintering temperature exceeded 1473 K.

Funding This work was supported by National Natural Science Foundation of P. R. China (Grants 52004113).

Declarations

Conflict of interest The authors declare no competing interests.

References

- Hong, J.P., Wang, J., Chen, H.Y., Sun, B.D., Li, J.J., Chen, C.: Process of aluminum dross recycling and life cycle assessment for Al-Si alloys and brown fused alumina [J]. Trans. Nonferrous. Metals. Soc. China. 20, 2155–2161 (2010)
- Lopez-Delgado, A., Tayibi, H., Perez, C., Alguacil, F.J., Lopez, F.A.: A hazardous waste from secondary aluminum metallurgy as a new raw material for calcium aluminate glasses [J]. J. Hazard. Mater. 165, 180–186 (2009)
- Dmaschio, R., Fabbri, B., Fiori, C.: Industrial applications of refractories containing magnesium aluminate spinel [J]. Ind. Ceram. 8, 121–126 (1988)
- 4. P E Tsakiridis. Aluminum salt slag characterization and utilization--a review [J]. J. Hazard. Mater. 2012: 217–218.

- B Dash, B R Das, B C Tripathy, BHATTACHARYA I N, DAS S C. Acid dissolution of alumina from waste aluminum dross [J]. Hydrometallurgy. 2008, 92(1–2): 48–53.
- David, E., Kopac, J.: Hydrolysis of aluminum dross material to achieve zero hazardous waste [J]. J. Hazard. Mater. 209–210(4), 501–509 (2012)
- Shinzato, M.C., Hypolito, R.: Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents [J]. Waste Manage. 25(1), 37–46 (2005)
- 8. Tan, R., Khoo, H.H., Chen, A.: Study of a primary aluminum supply chain [J]. J. Clean. Prod. **13**(6), 607–618 (2005)
- Tavangarian, F., Emadi, R.: Synthesis and characterization of pure nanocrystalline magnesium aluminate spinel powder [J]. J. Alloy. Compd. 489(2), 600–604 (2010)
- Bonnefont, G., Fantozzi, G., Trombert, S., Bonneau, L.: Finegrained transparent MgAl₂O₄ spinel obtained by spark plasma sintering of commercially available nanopowders [J]. Ceram. Int. 38(1), 131–140 (2012)
- Lv, C.S., Wang, J.W., Jia, Y.Z.: Effects of red mud content on the sintered red mud bricks [J]. J. Saf. Environ. 13(4), 98–100 (2013)
- Ma, J., Zhu, S.G., Di, P., Zhang, Y.: Influence of La₂O₃ addition on hardness, flexural strength and microstructure of hot–pressing sintered WC-MgO bulk composites [J]. Mater. Des. **32**(4), 2125–2129 (2011)
- Qiu, G.M., Li, X.K., Qiu, T., Zhao, H.T., Yu, H.H., Ma, R.T.: Application of rare earths in advanced ceramic materials [J]. J. Rare Earths 25(2), 281–286 (2007)
- Kong, L.B., Zhang, T.S., Ma, J., Boey, F., Zhang, R.F.: Mullite phase formation in oxide mixtures in the presence of Y₂O₃, La₂O₃ and CeO₂ [J]. J. Alloy. Compd. **372**(1–2), 290–299 (2004)
- Qu, H.X., Wu, Q., Wen, H.Q.: Effect of CeO₂ additives on the microstructure and mechanical properties of WC-Al₂O₃ composites [J]. Baosteel Tech. Res. 9, 17–22 (2015)
- Baranova, T.F., Kurskaya, I.N., Dabizha, N.A., Petrov, Y.B., Lukin, E.S.: Sintering high-purity fusions of MgO and MgO·Al₂O₃ [J]. Refractories 22, 180–182 (1981)
- Shi, Z.M., Pan, F., Liu, D.Y., Liang, K.M., Gu, S.R.: Effect of Ce⁴⁺-modified amorphous SiO₂ on phase transformation towards α-cordierite [J]. Mater. Lett. 57, 409–413 (2011)
- Sarkar, R., Tripathi, H.S., Ghosh, A.: Reaction sintering of different spinel composition in the presence of Y₂O₃ [J]. Mater. Lett. 58(16), 2186–2191 (2004)
- Tian, Z.K., Wang, Z.F., Wang, X.T., Naihuo, C.: Effect of rare earth oxides on synthesis of magnesium aluminate spinel by reaction sintering [J]. Refractories 42, 326–329 (2008)
- Hasan, M., Dholabhai, P., Dey, S., Uberuaga, B.P., Castro, R.H.: Reduced grain boundary energies in rare-earth doped MgAl₂O₄ spinel and consequent grain growth inhibition [J]. J. Eur. Ceram. Soc. **37**, 4043–4050 (2017)
- Suryanarayana, C.: Mechanical alloying and milling [J]. Prog. Mater. Sci. 46, 1–184 (2001)

- X P Tan, S Q Liang.Thermal phase transformation of SiO₂-Al₂O₃-ZrO₂ glass [J]. J. Central South Univ. (Science and Technology). 2011, 42(1).
- P Y Yan, W Y Yang. Study on the cementitious behaviour of CaO Al₂O₃ SiO₂ glass [J]. J. Chin. Ceram. Soc. 1997, 25(4).
- Ge, X.Z., Ge, Q., Ge, X.S., Ji, D.H., Huang, Y., Zhang, Z.L., Zhang, H.B.: Influence of La₂O₃ addition on microstructure and mechanical properties of Al₂O₃ ceramics [J]. Mater. Sci. Forum **956**, 69–77 (2019)
- Fu, P., Xu, Z.J., Chu, R.Q., Li, W., Xie, Q.: Application study actuality and development foreground of rare earth oxides in ceramics materials [J]. Ceramics. 12, 7–10 (2008)
- Akin, I., Yilmaz, E., Sahin, F., Yucel, O., Goller, G.: Effect of CeO₂ addition on densification andmicrostructure of Al₂O₃–YSZ composites [J]. Ceram. Int. **37**, 3273–3280 (2011)
- Naik, P.P., Tangsali, R.B.: Enduring effect of rare earth (Nd³⁺) doping and γ-radiation on electrical properties of nanoparticle manganese zinc ferrite [J]. J. Alloy. Compd. **723**, 266–275 (2017)
- Kim, T., Kim, D., Kang, S.: Effect of additives on the sintering of MgAl₂O₄ [J]. J. Alloy. Compd. 587, 594–599 (2014)

- Sarkar, R., Das, S.K., Banerjee, G.: Effect of additives on the densification of reaction sintered and presynthesised spinels [J]. Ceram. Int. 29, 55–59 (2003)
- Schmid, H.K., Pennefather, R., Meriani, S., Schmid, C.: Redistribution of Ce and La during processing of Ce(La)-TZP/Al₂O₃ composites [J]. J. Eur. Ceram. Soc. 10, 381–392 (1992)
- Su, C.H., Duanmu, Q.D., Wang, Y.: Non-equilibrium thermodynamic analysis of the concentration distribution of rare earth oxide at alumina transparent ceramic crystal boundary [J]. J. Chin. Ceram. Soc. 26, 802–807 (1998)
- Hirai, S., Murakami, H., Katayama, H.G.: Effect of additives on the formation of MgAl₂O₄ from MgO and Al₂O₃ [J]. J. Japan Inst. Metals. Mater. 55, 166–171 (1991)
- Skomorovskaya, L.A.: Magnesia spinel ceramics alloyed with rare earth oxides [J]. Glass Ceram. 50, 165–168 (1993)
- 35. Wu, T.T.: Effect of rare earth oxides on the wear reaiatance and acid resistance of high-alumina ceramic [D]. Wuhan University of Technology, Wu Han (2017)

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.