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Abstract The nanocrystalline Ni-Zn ferrite thin film with the
chemical formula Ni0.3Zn0.7Fe2O4 were deposited on glass
substrate using sol-gel synthesis of metal nitrate aqueous so-
lutions and spin-coating technique. Thin films of nickel-zinc
ferrite have been prepared using spin-coating technique onto
the ITO glass substrates. As-deposited films are annealed at
400, 500, 600 and 700 °C for 1 h. The Ni-Zn ferrite thin film
with crystallite size of 20 nm has been successfully synthe-
sized. The thickness of deposited films was below 300 nm and
crystallite size was below 20 nm. The X-ray diffraction (XRD)
analysis found the Ni-Zn thin films nanoferrite has a spinel
cubic structure and lattice parameter of Fd3m. The crystallin-
ity of the prepared Ni-Zn ferrite films increases as increase
substrate temperature of a film deposition. Microstructures
and chemical analysis by scanning electron microscopy and
energy-dispersive spectroscopy showed that nanosized nickel-
zinc ferrite particles with a diameter of 18.6 to 41.3 nm exist in
the thin film. Magnetic properties of the Ni-Zn films have
been characterised at room temperature, whereas the satura-
tion magnetization Ms. of the Ni-Zn films increase with in-
creasing grain sizes. Maximum saturation magnetization Ms.

and coercivity Hc are 3.42 emu/g and 16.54 Oe for thin films
annealed at 500 and 700 °C, respectively. TheMs. of the films
shows a trend increasing and the Hc value decreasing as in-
crease the annealed temperature and the grain size of the Ni-

Zn ferrite thin films. The conductivity decreases with increas-
ing annealed temperature. It has been shown that the DC re-
sistivity, saturation magnetization and coercivity of deposited
films are influenced by annealing temperatures. The magnetic
properties of Ni-Zn thin film with grain size of 18.6–41.3 nm
shown a superparamagnetic behaviour were observed.

Keywords Ni-Zn ferrite thin film .Magnetic properties .

Microstructure . Sol-gel . Spin-coating

Introduction

The demand for advanced technology in electronics has
attracted research interest on the structural, magnetic and elec-
trical properties of ferrites. The trend for downsizing electron-
ic devices and the potential applications of soft ferrite mate-
rials have leads to the fabrication of ferrite thin films. Recent
years, an impressive research work on the growth and charac-
terization of ferrite thin film has been developed in the litera-
ture due to their wide range of technological application in
numerous fields.

Ferrite thin films are very important for the fabrication of
sensors [1], memory [2] and microwave devices [3]. There are
several physical methods ion sputtering [2, 4, 5], pulsed laser
deposition [6], sol-gel [7, 8] and spray pyrolysis [9–12], and
chemical methods (solvothermal, photochemical, electro-
chemical, thermolytic, sol-gel, etc.) to synthesize nanocrystal-
line thin film and to control its crystal size [11]. Nickel ferrite
is the most suitable material for device application. It has a
technological importance in electrical and magnetic industries
gas sensor material [12]. Sol-gel is a chemical method that
fabricates material through the process of phase change from
liquid phase (sol) to solid phase (gel). Fabrication that em-
ploys this method will usually be entailed by either spin-
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coating or dip-coating process followed by heat treatment
process. Walker et al. [13] found that annealing treatment is
required to reduce material defects. Annealing treatment is a
common procedure in fabrication of nanomaterial to either
improve the quality of crystal or stabilize the structure at a
temperature [14]. Wang et al. [15] studied the effects of an-
nealing temperature on the structural and magnetic properties
of Ni0.8Zn0.2Fe2O4 thin films at room temperature. The coer-
civity were decrease as average grain size increased by vary-
ing the annealing temperature from 600 to 900 °C, while their
saturation magnetization increased and the crystallinity im-
proved as increase the annealing temperature. These results
also agreed with Mathe and Bhosale [16].

A spin coating with a simple apparatus is a versatile tech-
nique for producing various thin filmmaterials of a wide range
of the composition in air at a relatively low temperature and a
high deposition rate. The spin coating of Co ferrite films [17],
Zn ferrite thin film [18] and Ni-Zn ferrite thin films [19] have
been reported. In this work, nanostructured Ni0.3Zn0.7Fe2O4

ferrite thin films have been prepared by using sol-gel spin-
coating method annealed at low temperatures (400–700 °C).
As a result, the size of grains was obtained below 50 nm with
annealing temperature at lower temperatures (400–700 °C) for
crystallization. Using sol-gel synthesis route is useful to
achieve the nanosize grains fabrication of magnetic ferrite thin
films at relatively low annealing temperature. This sol-gel
synthesis route is an efficient method to fabricate an integrated
thin film device. The phase structure, magnetic hysteresis at
room temperature, microstructure and conductivity of the
nanostructure Ni-Zn nanoferrite thin films has been studied.

Experimental

The starting materials used were nickel nitrate hexahydrate,
iron nitrate nanohydrate and zinc nitrate hexahydrate were
used as a precursor for the starting sol preparation. The pre-
cursors were dissolved in a beaker using deionised water and
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Fig. 2 Hysteresis loop of
Ni0.7Zn0.3Fe2O ferrite thin films
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stirred for 15minswith amolar ratio of Ni:Zn:Fe = 1:1:2 using
a hot plate. A sol-gel formed after left 24 h for aged. The aged
sol 1.0 ml was dropped on ITO glass substrate and spin coated
for 25 s at 3500 rpm (revolutions per mins). The deposition

was repeated several times to obtain the require thickness
(300 nm). The films were drying in room temperature and
annealed in air at temperatures of 400, 500, 600 and 700 °C.
The structure and phase deposited films were examined by
XRD using Philips X’pert diffractometer model 7602 EA
Almelo operating at 40 kV/30 mA obtained in the theta range

Table 1 Saturation magnetization and coercivity of Ni0.3Zn0.7Fe2O4

ferrite thin films

Temp (°C) Ms (emu/g) Hc (Oe) Grain size (nm) Crystallite size (nm)

400 1.287 16.184 18.6 16.71

500 2.395 16.536 26.3 16.22

600 2.653 12.288 28.1 17.03

700 3.421 8.297 42.32 18.45

Table 2 Average grain size and thickness for different annealing
temperature

Annealing temperature (°C) 400 500 600 700

Average grain size (nm) 18.61 26.25 28.12 41.32

Thickness (nm) 145.7 180.7 221.5 285.6
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Fig. 3 Comparison of the
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20° to 80° using low scan with 0.012o step size, 0.44 s scan
step size, CuKα radiation (λ = 1.5417Å).Magnetic properties
of the samples; saturation magnetization (Ms), remnance

magnetization (Mr) and coercivity (Hc) were recorded at room
temperature using a vibrating sample magnetometer (VSM)
model 7404 Lake Shore. The maximum value of the applied
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Grain size (nm)

Grain size (nm)

(c) Av. grain = 28 ±10 

(d) Av. grain = 41 ±10 

Grain size (nm)

Grain size (nm)

Fig. 4 FESEM images of the
Ni0.7Zn0.3Fe2O ferrite thin films
at a as-deposited, annealed at b
400, c 500, d 600 and e 700 °C
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magnetic field is 5000 G (G), using an interval of 134 G. The
microstructure and composition of the sample was carried out
by a NovaNano 230 field emission electron microscopy
(FESEM), voltage 5.0 kV with attached energy-dispersive
(EDX) spectroscopy. The electrical resistance measurements
were made by using standard two-probe method Keithley dig-
ital multimetres.

Results and discussion

Structural analysis

Figure 1 shows the XRD pattern of spin coating and air
annealed ferrite thin films on the ITO glass substrate. The
XRD patterns show single cubic spinel phase of the
Ni0.3Zn0.7Fe2O4 ferrite thin films according to JCPDS refer-
ence code 74–2081 and 82–1049, respectively. As the

increase in grain size as increasing annealing temperature, as
indicate the narrowing the XRD spectrum lines. As (220),
(311), (400), (511), (440) which are allowed peaks of the
single cubic spinel structures. Plane (311) most intense in each
annealing temperature whereas other at relatively low intense.
These planes formed nickel–zinc ferrite phases. The small
peak intensities in XRD pattern revealed the existence of fine
grain nanocrystalline with the most part as amorphous. The
crystallite sizes of all ferrite thin films are found to be between
16 and 18 nm calculated using Scherrer equation. Annealing
temperature has pronounced the effect on grain size. The lat-
tice parameter calculated for pure nickel ferrite thin film is
8.338 Ǻ claimed by Gupta et al. [20]. This is in accordance
with the variation in lattice parameter with Zn content reported
for the bulk ferrites.

Magnetic properties

The hysteresis loop of Ni-Zn ferrite thin films as in Fig. 2. The
magnetic parameters of saturation magnetization Ms. and co-
ercivity Hc are listed in Table 1. The Ms. and Hc could be
attributed to the varied grain size and crystallinity. The lower
value of Ms. Ni0.3Zn0.7Fe2O4 films could be caused by the
several reasons. Kumar et al. [21] stated that a large grain
boundary volume presented in thin films would result in in-
crease of the Ms. Other reasons the increase Ms. are due to
complex spinel structure, it was difficult to gain
Ni0.3Zn0.7Fe2O nanoferrite films with perfect crystallization.
The metal cations can occupy either A sites (tetrahedral) or B
sites (octahedral), which will result in a partially disordered
cation distribution in the crystal lattice [22]. The saturation
magnetization (Ms) increases with the grain size, and the ob-
servations on larger decrease are interpreted mostly by oxygen
absorption, characteristic to the preparation technique.
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The coercivity Hc was decreases as increase the anneal-
ing temperature and average grain size (Fig. 3). The max-
imum value of Hc was 16.54 Oe for the grain size
26.25 nm. The Hc observed were closed to Nie et al.
[23] as reported that the value of Hc within the range
20–210 Oe. The decreases of Hc contributed from the
transition of the single domain to the multidomain [24].
The coercivity (Hc) has a maximum at grain size of about
26 nm and a steep decrease at larger grain sizes (41.3 nm).
The smaller grain sizes, the decrease of Hc due to the
randomizing effects of thermal energy. Thermal energy
is important role in magnetic instability of single domain
magnetic particles. Due to the smaller grain sizes, the
thermal agitation becomes small and will not be able to
cause fluctuations in the magnetic spin orientations of the
nanoparticles where they freeze in random orientations.
The latter is probably due to the decreased anisotropy
constant, which leads to a sharp decrease in coercivity
according to the random anisotropy model. Relation of
the decrease Hc as increase grain size as stated by
Fernando et al. 2011 [25] that show the linear inverse
proportionality between coercivity (Hc) and grain size
(D) by Hc α 1/D.

Microstructure analysis

The FESEM images show the Ni0.3Zn0.7Fe2O4 films have
dense and homogenous grains with an average grain size
is tabulated in Table 2. The average grain size of the
Ni0.3Zn0.7Fe2O4 nanoferrite thin films are 18.61 nm
(400 °C), 26.25 nm (500 °C), 28.12 nm (600 °C) and
41.32 nm (700 °C). The grains of the films are spherical
and uniform, and cohesion of grains is due to the

magnetic attraction. The average grain size of the films
is presented in Fig. 4. The histogram of grain size distri-
bution shifted to the larger grain size as the annealing
temperature increased. The grain size of the films also
increases as temperature increases (Figs. 4 and 5).

Electrical properties

Figure 6 shows the linear curve of the I-V measurement of
the Ni0.3Zn0.7Fe2O4 nanoferrite films in ambient light
with voltage supply ranging from −10 to 10 V. Linear
curves indicate that the gold metal contact show ohmic
behaviour with the thin films. From the graph, it showed
that the most conductive sample is 700 °C followed by
600, 500 °C and the least conductive is for sample
sintered at 400 °C. From the I-V measurement, resistivity
ρ were calculated and plotted as in Fig. 7. The resistivity
ρ were found to increase with increase annealing temper-
atures, 2.4–6.4 × 10−3 Ωcm. The films perform a larger
grain size with increase annealing temperature. The high
resistivity 6.4 × 10−3 Ωcm can be due to the high band
gap of the material and is within the range of the reported
values [26]. The resistivity decreases at 700 °C due to the
grain size increases (42.3 nm) as compared to 600 °C
grain size of (28 nm). Increase annealing temperature
leads to a decrease in grain boundaries and hence resis-
tivity [26]. Smaller grains also imply smaller grain to
grain surface contact area and therefore reduced the cur-
rent flow, thus decrease the resistivity [27]. The conduc-
tivity σ graph plotted as a reciprocal of electrical resistiv-
ity. Conductivity σ of the Ni0.3Zn0.7Fe2O4 nanoferrite thin
films showed a decreased in conductivity as the increas-
ing annealing temperatures, 1.55–4.14 × 102 S-cm. The
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conduction mechanism in ferrites is due to electron hop-
ping of Fe2+ between Fe3+ ions and hole hopping between
Ni2+ and Ni3+ at two adjacent B sites [28]. Zn is substitut-
ed with Ni in NixZn1-xFe2O4, and enters the octahedral
sites, whereas zinc has a strong affinity for tetrahedral
sites. Therefore, a partial substitution of Ni for zinc di-
lutes the conduction mechanism occurring through octa-
hedral sites [29].

Conclusion

Spherical Ni0.3Zn0.7Fe2O nanoferrite thin films with grain size
of 18.6–42.3 nm have been fabricated via sol-gel synthesis
and spin-coatingmethod. XRD spectra confirm the films crys-
tallinity increases with increase the annealing temperatures.
Films annealed at 700 °C shows good crystallinity. EDX
shows stoichiometric formation of Ni0.3Zn0.7Fe2O nanoferrite
thin films. The Ni-Zn thin film was observed the presence of
the superparamagnetic behaviour, as the smaller grain size
range. Magnetic parameters Ms. and Hc were observed as the
Ms. decreases and Hc increases with the increase annealing
temperatures. The electrical resistivity of films was found to
increase with increasing annealing temperature. This conven-
tional process is a simple and very useful method to synthesize
high-quality sphere-like Ni-Zn nanoferrite thin films. It will be
promising low-cost alternative methods that produce high-
quality thin films nanoferrite in the future.
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