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Abstract
This study introduces a new methodology that utilizes time–frequency analysis and deep learning to evaluate the post-
earthquake damage analysis of RC frame structures, aiming to enhance assessment efficiency and accuracy. The acceleration 
signals are subjected to four distinct time–frequency approaches for a six-story RC frame building. To accurately assess 
the damage condition of the post-earthquake structure, a combination of optimal parameters in a post-earthquake damage 
assessment model based on a one-dimensional convolutional neural network (1D-CNN) and the Bayesian optimisation 
(BO) algorithm are employed. The results show that the proposed method achieves a 92.5% accuracy in damage assessment 
through the wavelet scattering method, which is known for its quick calculation speed. A conditional generative adversarial 
network (CGAN)-based seismic data generation technique is built to address the issue of inadequate damage sample data 
sets. By producing high-quality samples that closely resemble actual samples, the combination of wavelet scattering and 
seismic data generation model increases the accuracy of damage assessment to up to 90.5%. This can be particularly useful 
in situations when there are limited sample sizes.

Keywords  Conditional generative adversarial network · Convolutional neural network · Earthquake damage assessment · 
RC frame structure · Seismic data generation · Time–frequency analysis

1  Introduction

Earthquakes can cause varying degrees of damage to build-
ings, leading to numerous casualties and significant eco-
nomic losses. Coordinated and effective post-disaster emer-
gency response can reduce casualties, minimize economic 
losses, and quickly restore urban social functions. All of 
this, nevertheless, is dependent upon an accurate and timely 
assessment of the structure's damage level, since an incorrect 
or delayed assessment could cause further losses.

With the improvement of computer hardware perfor-
mance and the popularization of artificial intelligence tech-
nology, neural networks have brought new possibilities for 
the nonlinear seismic response assessment of structures (Xu 
and Chen 2021). Deep learning simulates the information 
processing mechanism of the human brain and establishes 
a model composed of a large number of neurons and con-
nections so that complex pattern recognition problems can 
be solved without too much human intervention. In recent 
years, deep learning has gradually been applied to structural 
damage assessment caused by earthquakes and has achieved 
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significant results (Sony et al. 2021). Typically, the most 
efficient approach involves capturing the structure's vibration 
signal during an earthquake, converting it to the frequency 
or time–frequency domain for reducing feature dimensions, 
eliminating unnecessary data, preserving valuable features, 
and ultimately feeding the extracted information into neural 
networks for damage assessment. (Kong et al. 2017; Hou and 
Xia 2021). The time–frequency analysis method can con-
vert acceleration signals into time–frequency spectra, and 
the migration learning model based on CNN shows promis-
ing evaluation outcomes for this process. This method pos-
sesses the capability to assess the damage state and predict 
the nonlinear seismic response of structures following earth-
quakes, which could be advantageous for promptly evalu-
ating regional earthquake damage post-event (Mangalathu 
2020; Liao et al. 2021; Lu et al. 2021).

With its superior performance in time series analysis, 
1D-CNN can maximize the benefits of deep learning in 
autonomously learning signal characteristics while also 
having the ability to directly learn the properties of vibra-
tion signals (Abdeljaber et al. 2018). One-dimensional time 
series and two-dimensional image coding are the two data 
preprocessing methods that are compared. It is discovered 
that the conversion of one-dimensional time series into 
two-dimensional images prolongs training time, the image 
coding method does not significantly improve prediction 
accuracy when compared with the time series method (Yuan 
et al. 2021). Secondly, 1D-CNN requires a relatively shallow 
architecture compared to 2D-CNN to manage classification 
tasks, which makes 1D-CNN superior in cost-effectiveness 
and computational efficiency (Kiranyaz et al. 2021). Clas-
sifying acceleration signals is the fundamental objective of 
post-seismic damage assessment; hence, 1D-CNN is more 
appropriate for earthquake damage assessment based on 
acceleration signals.

The effective use of deep learning-based approaches 
to structural earthquake damage assessment requires a 
significant and well-balanced data collection. In practice, 
though, obtaining enough damaged samples can occasion-
ally be challenging and in turn performance of damage 
assessment may suffer (Alom et al. 2019). Augmenting the 
data is a common approach to increase damage assessment 
performance in small-sample scenarios. Given the circum-
stances, a deep learning architecture known as a generative 
adversarial network (GAN) may be a viable solution to 
meet our needs. Using a given training dataset, it trains 
two neural networks to compete with one another to pro-
duce more genuine new data. GAN can learn the distribu-
tion of data and generate new sample data, providing a 
new solution to the problem of small original data (Good-
fellow et al. 2014; Rastin et al. 2021) using a deep convo-
lutional generative adversarial network to train the one-
dimensional acceleration signal of the monitored structure 

and realized the quantification and damage localization of 
structural damage. To address the issue of inadequate dam-
age assessment data (Luleci et al. 2022) they developed a 
1D-WDCGAN-GP model by incorporating the Wasser-
stein loss function into the deep convolutional generation 
confrontation network. This model can be utilised to pro-
duce a vibration damage dataset that is comparable to the 
input (Fan et al. 2023) added the self-attention mechanism 
to GAN to learn the intrinsic correlation which facilitates 
the extraction of spatial and temporal correlations between 
structural responses, and reconstructs lost data based on 
precisely measured data. Deep learning has been used in 
earthquake damage assessment, however, creating models 
for earthquake damage assessment that balance accuracy 
and efficiency remains the largest barrier to its wider use 
(Zhang et al. 2022).

Although deep learning has been applied to earthquake 
damage assessment, the primary challenges hindering 
its widespread adoption are achieving a balance between 
efficiency and accuracy in the assessment models and 
addressing the issue of data scarcity. To tackle these chal-
lenges, we propose a novel deep learning method based 
on time–frequency analysis and Conditional Generative 
Adversarial Networks (CGAN).

Proposed Framework:

•	 Seismic Damage Evaluation Framework:

a.	 Our framework combines signal time–frequency 
analysis with a one-dimensional Convolutional 
Neural Network (1D-CNN) for evaluating seismic 
damage.

b.	 We considered five different time–frequency trans-
formation methods to improve the resolution of the 
signal from various perspectives.

•	 Parameter Optimization:

a.	 To further enhance the prediction accuracy and 
computational speed of the deep learning model, 
we employ the Bayesian Optimization algorithm. 
This algorithm fine-tunes the model's parameters, 
ensuring both high precision and efficiency in the 
earthquake damage evaluation process.

•	 Addressing Data Scarcity:

a.	 To overcome the challenge of limited datasets with 
damage samples, we designed a data generation 
model based on Conditional Generative Adversarial 
Networks (CGAN).

b.	 This CGAN model generates synthetic, yet high-
quality seismic damage data, which are subsequently 
integrated into the damage assessment framework.
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c.	 The generated data are tested for their applicability 
and performance, ensuring they effectively augment 
the existing datasets and improve the robustness of 
the deep learning model.

•	 Benefits:

a.	 Enhanced Signal Resolution: The use of multiple 
time–frequency transformation methods ensures 
a detailed and accurate representation of seismic 
signals. It can improve accuracy and computational 
efficiency.

b.	 Optimized Model Performance: Bayesian Optimiza-
tion ensures the model operates with high precision, 
making the evaluation process more accurate.

c.	 Augmented Data Availability: The CGAN-generated 
synthetic data help mitigate the issue of data scar-
city, providing more training samples for the deep 
learning model and improving its generalization 
capabilities.

2 � Methods

2.1 � Time–Frequency Analysis

The accuracy of the earthquake damage model's assessment 
is directly impacted by the various time–frequency trans-
formation techniques used (Kumar et al. 2018, 2021). Each 
of these extracts signals features from a different angle and 
thus has differences in signal sensitivity. To build an earth-
quake damage assessment model, five widely used time–fre-
quency analysis techniques were chosen and integrated with 
1D-CNN. The following are the chosen techniques for 
time–frequency analysis.

(1) Time domain
Acceleration sensors record the properties of the struc-

tural response, which include all facets of the structures' 
physical behavior. The original time-domain acceleration 
signal is directly fed into the one-dimensional convolutional 
neural network, and the damage features are extracted to 
evaluate the damage degree of the structure (Nguyen et al. 
2022).

(2) Fast Fourier transform
Fast Fourier Transform (FFT) is one of the important 

methods in signal processing, which transforms the signal 
from time domain to frequency domain and bridges the 
gap between them. In practical engineering, if the change 
of the signal cannot be observed in the time domain, Fou-
rier transform can be used to transform it to the frequency 
domain for observation (Kumar et al. 2015a, b). For a sig-
nal f (t) = L2(R) , its Fourier transform is defined as:

where f (t) is the signal to be analyzed; L2(R) is a space 
domain; F(ω) is the Fourier transform of signal f (t).

(3) Short Time Fourier Transform
The short-time Fourier transform assumes that the sig-

nal is stationary within a fixed window function g(t) . By 
analyzing the signal using the Fourier transform, the fre-
quency components of the signal are obtained, and then 
the window function g(t) is moved along the time axis to 
obtain the frequency-time varying graph of the signal. For 
a signal f (t) = L2(R) , its short-time Fourier transform is 
defined as:

In the formula: F(ω) is the short-time Fourier trans-
form of the signal f (t) , g(t) is the window function, other 
symbols are the same as above, using Hanning window 
function.

The result of the short-time Fourier transform is a 2D 
time–frequency spectrogram. 1D information can be 
extracted from the two-dimensional time–frequency spec-
trogram using moment methods, which can be used as the 
input for a 1D-CNN. The two time–frequency moments used 
are instantaneous frequency and spectral entropy (Kłosowski 
et al. 2020). Instantaneous frequency is the frequency of the 
signal extracted from the short-time Fourier transform of the 
spectrogram. Spectral entropy is a measure of the sharpness 
or flatness of the frequency spectrum of the signal, based 
on power spectral estimation. The two moments are used as 
the two feature vectors of the sample input into a 1D-CNN.

(4) Discrete Wavelet Transform
The Discrete wavelet transform (DWT) parses a signal 

across various frequency bands, each with its unique resolu-
tion. It systematically breaks down the signal into multiple 
layers. In this approach, the DWT lessens repeated informa-
tion and decreases the complexity involved in calculations 
by streamlining the scaling aspects of the wavelet transform.

The signal is split up into a high-pass filter (HPF) and 
a low-pass filter (LPF) using DWT. The outputs obtained 
from the HPF are referred to as detail coefficients, while 
the outputs obtained from the LPF as approximation coef-
ficients. For the purpose of carrying out the research study, 
only the low-frequency elements are subsequently separated 
into several layers, as shown in Fig. 1.

Two key steps in the discrete wavelet transform process 
are selection of the the right wavelet and decomposition 
level. Making sure these parameters are chosen correctly 
is essential since the results of the signal analysis can be 
greatly impacted by the wavelet basis and the number of 

(1)F(�) = ∫
+∞

−∞

f (t)e−i�tdt

(2)F(�,�) = ∫
+∞

−∞

g(t − �)f (t)e−i�tdt
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decomposition steps chosen. According to references (Zhang 
2019; Li 2020), it demonstrates that the number of decom-
position layers for a sequence with high volatility is typically 
limited to three layers. Ultimately, two wavelets-db15 and 
sym6-were chosen as the wavelet basis functions, and each 
could be broken down into three layers. As the input, the 
low-frequency portion (cA3) was selected.

(5) Wavelet Scattering Transform
In the wavelet scattering transform (WST), we apply a 

modulus operation to the initial wavelet transform because 
the average of the wavelet coefficients is zero, which remains 
unchanged with linear transformations. To capture inform-
ative, non-zero coefficients, this necessitates a non-linear 
transformation—in this case, taking the modulus. Nonethe-
less, this approach may lead to a loss of the signal's high-fre-
quency details. To address this, the method involves iterative 
decomposition of the modulus wavelet coefficients at suc-
cessively higher levels, alongside modulus operations and 

convolutional averaging. Illustrated in Fig. 2, the method 
progressively outputs wavelet scattering coefficients that 
exhibit translation invariance, while the modulus wavelet 
coefficients are successively parsed into subsequent layers 
for further calculations. By iterating the signal layer by layer, 
a series of wavelet scattering coefficients can be obtained 
(Fan et al. 2022). The combination of wavelet and modu-
lus operators in the scattering transform ensures that the 
resultant scattering coefficients do not vary with translation, 
addressing the issue of temporal variability in wavelet trans-
forms. This process enhances stability against local deforma-
tions and captures a wealth of feature information.

2.2 � One‑dimensional Convolutional Neural 
Network

The retention of the original signal features can be maxi-
mized in signal classification problems by 1D-CNN since 

Fig. 1   Wavelet decomposition 
process diagram

Fig. 2   Wavelet Scattering Decomposition Structure
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it does not require changing the input signal's dimension. 
Additionally, training speed can be greatly increased due 
to their minimal model complexity. In 1D-CNN, the funda-
mental layers are an input layer, an output layer, and hidden 
layers. The convolutional, batch normalisation, activation 
function, max pooling, dropout, and fully connected layers 
are the primary components of the hidden layer.

The basic model composition of one-dimensional convo-
lutional neural network is shown in Fig. 3.

The fundamental process of training a network model 
involves iteratively updating parameters through forward and 
backward propagation processes until the output value and 
true value error align with the expected value. This allows 
for the determination of the optimal parameters during train-
ing or the final parameters once training is finished (Cao 
2022).

2.3 � Bayesian Optimization Algorithm

Typically, a Bayesian optimization(BO) algorithm adds new 
sample points to the provided black-box objective function 
and updates the objective function's posterior distribution 
until it nearly matches the true distribution It is a very suit-
able adaptive parameter optimization for classification and 
regression models and belongs to global optimization algo-
rithm (Cui and Yang 2018).

Bayesian optimization algorithm is mainly composed 
of a surrogate model and acquisition function. Since it 
is difficult to obtain the objective function, the surrogate 
model estimates the objective function based on the exist-
ing data and uses Gaussian process as the surrogate model. 
The acquisition function determines how to sample new 
data based on the estimated objective function, and then 
updates the surrogate model based on the newly collected 
data. This process is repeated iteratively, and in an ideal 
scenario, the global optimum of the objective function can 
be found. The BO algorithm is used to optimize the param-
eters of 1D-CNN models, The specific steps are as follows:

(1)	 Determine the maximum number of iterations N, where 
the maximum number of iterations for BO is 60 times, 
with 300 training batches being completed each time.

(2)	 Use the acquisition function to obtain an evaluation 
point, that is, to obtain a certain combination of opti-
mized parameters.

(3)	 Evaluate the objective function value at the evaluation 
point, and choose the error rate of the validation set as 
the objective function value.

(4)	 Integrate the data and update the probabilistic surrogate 
model to make the surrogate model more consistent 
with the distribution of the objective function.

(5)	 If the current iteration n is less than the maximum num-
ber of iterations N, return to step (2) to continue the 
iteration. Otherwise, select the optimal evaluation point 
corresponding to the minimum error rate as the output 
to obtain the optimal parameter combination for the 
network model.

Table 1 shows the parameters that the BO algorithm 
optimized for this case study. Only odd numbers are uti-
lized, and the convolution kernel size is constant through-
out each convolutional layer. The iteration process of the 
Bayesian optimization algorithm is shown in Fig. 4. The 
observation and estimation values of the function have 
reached the minimum value at the 56th calculation step, 
and the computation result is optimal at this time. The 
one-dimensional convolutional neural network model's 
final parameters are then chosen based on the Bayesian 
optimization parameters at this point. The model is evalu-
ated using the testing set to obtain the final model evalu-
ation accuracy.

2.4 � Conditional Generative Adversarial Networks

The specific idea and design of a GAN are depicted 
in Fig.  5. A GAN is comprised of a generator and a 
discriminator.

The adversarial training between the generator and dis-
criminator is represented by the training objective function 
of the GAN model, which can be obtained by,

Fig. 3   1D-CNN structure
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where E represents the expectation, x is the real sample, 
Pr is the real sample distribution law; D(x) is the output of 
discriminator; z is random noise; Pz is the distribution law of 
random noise; G(z) is the output of the generator.

To create specified target data, CGAN adds auxiliary 
information, such as the data's type label, to the genera-
tor and discriminator inputs of the original GAN(Mirza, 
2014). CGAN adds external label information to guide 
the training of the GAN. It can not only learn the infor-
mation of multiple classes of samples at the same time, 
but also to some extent avoid problems such as gradient 
disappearance and model collapse that are easy to occur 
in the GAN training process. The structure of CGAN is 
depicted in Fig. 5.

(3)
min
G

max
D

V(G,D) = Ex∼Pr
[logD(x)] + Ez∼Pz

[log(1 − D(G(z)))]

The data produced by the model has the potential to infi-
nitely mimic the real data if it completely understands the 
complex linkages concealed in the data and achieves a bal-
ance. The training objective function of the CGAN model 
has been modified based on the GAN as can be seen in 
Fig. 6, and the new objective function is represented by the 
following formula.

The network model encounters issues such as mode col-
lapse, and sluggish convergence speed when GAN encoun-
ters a high volume of data features during real training. 
These issues make it harder for the network model to train 
steadily. To solve these problems, CNN is introduced to con-
struct the internal structure of the generator and discrimi-
nator. CNN is capable of extracting features from several 
hidden layers, sharing convolution kernels, and handling 
high-dimensional data with ease. The integration of CNN 
can enhance the CGAN's stability, rate of convergence, and 
quality of data generation. Since the damaged data is a 1D 
signal, 1D-CNN is utilised to build the CGAN model in a 
way that facilitates feature extraction.

Generators, typically take multidimensional random 
noise as input data. Step size convolution is employed to 
enable the network to sample in the autonomous learning 
space, and spatial pooling in CNN is not used to allow the 
network model to independently learn a more appropriate 
spatial sampling strategy. Between the levels, the batch nor-
malization operation is used to accelerate the convergence 
speed and reduce the over-fitting effect. The ReLU activation 

(4)
min
G

max
D

V(G,D) = Ex∼Pr
[logD(x|y)] + Ez∼Pz

[log(1 − D(G(z|y)))]

Table 1   Bayesian optimization 
parameters

Name Hyper Parameter Network Frame

Learning Rate L2 Regularization Convolution 
Kernel

Convolution 
Deep

Number Of 
Convolution 
Blocks

Search Space [1e-4, 1e-1] [1e-4, 1e-1] [3, 11]
(Only odd)

[1, 3] [1, 5]

Fig. 4   Iterative process of Bayesian optimization algorithm

Fig. 5   Framework of GAN
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function is used to add nonlinear factors to improve the 
expressive ability of the model and solve problems that 
cannot be solved by the linear model. Thus, an expected 
response might be produced. The CGAN generator structure 
is shown in Fig. 7a.

The discriminator usually takes the conditional data as 
input data separately from the generated samples and the real 
samples. The input data is additionally concatenated by the 
discriminator into a matrix that serves as the convolutional 
layer's input. The Leaky ReLU function is utilised as the hid-
den layer's activation function. The feature loss function is 

applied to the discriminant model's second and third hidden 
layers. The discriminant model's fully connected layer and 
sigmoid activation function layer are then used to determine 
true and false, mapping the final result to [0, 1]. The dis-
criminator structure in Fig. 7b.

During the training of CGAN, the generator and dis-
criminator are trained alternately. During the training of 
the generator, the weight values are restricted based on the 
differences between the generated data, the discriminator's 
outcomes, and the feature vector deviations. The trained data 
and the predicted data produced by the generator are fed into 

Fig. 6   Framework of CGAN

(a) Generator

(b) Discriminator

Fig. 7   G and D network structure
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the discriminator during training. The discriminator then 
has to calculate the probability that needs to be forecasted 
and adjust its parameters in response to the discrimination 
deviation. The CGAN model training process is divided into 
three steps:

(1) Raw data preprocessing. The primary focus is on ana-
lysing the original data's time–frequency.

(2) Update discriminator parameters. Random noise with 
labels is calculated by the generator to generate false sam-
ples. Then the coded label information is combined with the 
generated samples or real samples and passed into the dis-
criminator, the loss value is calculated through the loss func-
tion, and the parameters of the discriminator are updated.

(3) Update generator parameters. Following training, 
the discriminator's parameters are set, and the generator's 
parameters are updated in accordance with the determined 
loss value.

3 � Overview of Post‑earthquake Damage 
Assessment Process

Prior to assessing earthquake damage, the time-domain sig-
nal is preprocessed, and then the hyperparameters of the 
one-dimensional convolutional neural network are optimized 
by Bayesian optimization algorithm to increase the accuracy 
of damage assessment. However, when there is little data, 
damage assessment accuracy is typically low. To address 
this, conditional generative confrontation networks are used 
to augment data to improve damage assessment accuracy.

3.1 � CNN‑Based Damage Assessment Method

(1)	 The top acceleration of the structure is one of the fea-
ture variables that can be used to indicate the damage 
state of the frame structure in order to assess the post-
earthquake damage state of reinforced concrete frame 
structures. A CNN-based post-earthquake damage 
assessment model is developed, which mostly consists 
of the actions shown in Fig. 8.

Establish a finite element model of the structure to accu-
rately simulate each component and boundary conditions. 
Determine the damage state of the structure based on the 
maximum inter-story displacement angle of the structure, 
and then calibrate the mapping relationship between the 
acceleration data and the damage state label.

To acquire the damage sample, time-frequency analy-
sis is used as a preprocessing method for the accelera-
tion data. The samples are then separated into datasets for 
training, validation, and testing.

The dataset is fed into a 1D-CNN, and the optimal 
parameters are identified using the Bayesian optimization 
algorithm. The network structure in its optimal configura-
tion is then preserved as the damage assessment model.

Use the developed damage assessment model to evalu-
ate the damage state of the building structure after a new 
earthquake strikes.

Fig. 8   Post-earthquake damage 
assessment process based on 
CNN
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3.2 � Generated Sample Model Based on CGAN

To enhance the precision of damage assessment with lim-
ited samples, CGAN is employed as the generator model 
to generate additional damage samples through data aug-
mentation. The key steps involved in applying CGAN to 
post-earthquake structural damage assessment are outlined 
below, as depicted in Fig. 9.

1.	 Data preprocessing: To create a new training set, time–
frequency analysis is used to preprocess the acquired 
acceleration data.

2.	 Training the network model: The datasets are input into 
the CGAN to find the optimal parameters and save the 
optimal network structure as the generator model.

3.	 Generating fake samples: The generator model is used to 
generate acceleration damage samples and mixed with 
the original data.

4.	 Evaluating sample quality: The quality and accuracy of 
the generated data is evaluated by the damage assess-
ment model.

4 � Data Set Creation

4.1 � RC Frame Structure Design

A six-story RC frame structure was designed according to 
Chinese codes (China Architecture and Building Press 2010; 
Code for Design of Concrete Structures). The basic design 
data are as follows:

The plan dimension of the structure is 21.6 m × 15 m.
The height of the first floor is 4.0m.
Height of the remaining floors is 3.6 m.
Total height of a building is 22.2 m as shown in Fig. 10.
Seismic fortification intensity is 8 degrees.
Seismic group is the second group.
Site category is class II.
Floor dead load is 3.5 kN/m2.

Floor live load is 2.0 kN/m2.

Concrete strength grade is C40.
Steel grade is HRB400.

Fig. 9   Seismic damage assess-
ment model based on CGAN

Fig. 10   The plan and elevation 
layout of RC frame(unit: mm)
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Beam and column section sizes are 300 mm × 600 mm 
and 600 mm × 600 mm.

4.2 � Finite element model

The finite element analysis model of the RC frame structure 
is established by using OpenSees software, and the incre-
mental dynamic analysis is performed on the structural 
model. The P-Delta effect of each beam-column element was 
taken into consideration, and both beams and columns used 
fiber section and nonlinear beam-column elements, which 
were divided into several integration segments. The accepted 
Concrete01 concrete constitutive model has a high computa-
tional efficiency and is simple to converge. It is based on the 
Kent-Scott-Park uniaxial concrete constitutive model, which 
does not take into account the tensile mechanical properties 
of concrete. The steel constitutive model used Steel02, a 
uniaxial isotropic strengthening Giuffre-Menegotto-Pinto 
constitutive model with strong numerical stability and simu-
lation performance that can capture the Bauschinger effect 
of steel. The foundation was handled as a rigid joint and the 
Rayleigh damping was applied by linearly mixing the mass 
and stiffness matrices.

4.3 � Seismic wave selection

The initial requirement for conducting earthquake response 
analysis and accurately evaluating structural damage is the 
rational selection of seismic ground motions. Presently, the 
predominant approach for choosing ground motions consid-
ers magnitude, epicentral distance, and site conditions as 
the primary criteria (Zhang et al. 2019). The magnitude of 
an earthquake can largely affect the spectral and duration 
characteristics of ground motions. Small earthquakes don't 
produce much harm because their energy is so tiny (Qiao 
2020). Therefore, ground motions with magnitudes greater 
than 4 are usually selected for seismic analysis of buildings. 
Near-field and far-field ground motions have different effects 
on the response of structures, which can be differentiated 
by epicentral distance. However, there is currently no uni-
fied definition of near-field and far-field ground motions, 
so an epicentral distance between 0 and 400 km is selected. 
Site conditions significantly affect ground motion records, 
and the amplitude and spectral characteristics of ground 
motions are reflected by changes in site conditions. Wang 
(2016) studied the impact of different earthquake motion 
classifications on the vulnerability curve. To classify a loca-
tion, one generally uses the shear wave velocity within a soil 
layer thickness of 30 m. The PEER seismic motion database 
has divided ground motions into three categories based on 
these measurements: Vs30 : Vs30≤260 m/s, 260 m/s ≤ Vs30
≤510 m/s, 510 m/s ≤ Vs30 . In accordance with the first set of 
criteria, 216 ground motions total—24 seismic events—were 

selected from the PEER earthquake motion database, with 
72 ground motions assigned to each site type. The earth-
quake event parameters selected are shown in Table 2.

4.4 � Classification of Damage State

Selecting the maximum interstory drift angle as the per-
formance indicator for structural damage, referring to the 
reference values in the code (FEMA 357 2000). The classifi-
cation of the damage condition of reinforced concrete frame 
structures is divided into three categories, as illustrated in 
Table 3 (Han et al. 2020).

4.5 � Establish Seismic Damage Data Set

Peak ground acceleration (PGA) and maximum inter-story 
drift angle were chosen as the seismic intensity indicators 
for performing incremental dynamic analysis on a six-
story reinforced concrete frame building. The maximum 
inter-story drift angle of the structure and the associated 
structural damage indicator were obtained by adjusting the 
seismic wave in accordance with PGA and entering it into 
the structure for dynamic time history analysis. The equal-
step approach was applied to all seismic wave time histories, 
meaning that the PGA of each seismic wave time history 
was changed with a step of 0.02g, beginning at 0.02g and 
continuing until the structure collapsed. The direction of the 
seismic wave loading was in the X direction.

where: a�(t) is the adjusted acceleration time history curve, 
a(t) is the original seismic wave acceleration curve, PGA is 
the design acceleration peak, Amax is max the original seis-
mic wave acceleration curve peak.

Since the seismic data were collected from different sta-
tions with different sampling rates and durations, it is nec-
essary to down-sample and truncate the seismic records to 
meet the input requirements of the network model. Specifi-
cally, single seismic data was down-sampled to 200Hz and 
truncated to 6561 data points, a time series of 32.805s, to 
ensure that the data size of all seismic sequences is the same 
length. Zeros are added to the seismic data collection in case 
there is insufficient data. Additionally, baseline drift was 
adjusted for each of the chosen seismic waves.

When applying the five time–frequency analysis meth-
ods mentioned in the previous text to the signal, the data 
dimension of the signal changes. There are 6561 samples 
in the original time-domain signal in total. The signal's 
length can be cut in half with the fast Fourier transform, 
yielding a data point length of 3281. Further, two matri-
ces with a data point length of 129 are produced after 
the short-time Fourier transform in conjunction with the 

(5)a�(t) = a(t) × PGA∕Amax
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time–frequency matrix method. The low-frequency part's 
length becomes one-eighth of its original length with a 
data length of 821 following the discrete wavelet trans-
form; the wavelet scattering transform converts the signal's 
data into a 7 × 258 matrix. The specific data dimensions 
are shown in Table 4.

The earthquake waves in the training set, validation set, 
and test set are from different earthquake events This setup 
ensures that the seismic waves used to train, validate, and test 
the model are completely different, ensuring that the proposed 
method can reasonably and accurately evaluate the damage 
caused by earthquakes to buildings. A total of 216 different 
seismic waves were applied to the structure, and because 
the maximum number of times each seismic wave could be 

adjusted is not the same, Table 5. shows the final data size of 
the training set, validation set, and test set.

Table 2   Ground motion record 
information

Data set Number Seismic event Seismic time Moment 
magnitude

Quantity Total 
amount

Training sets 1 ImperialValley-06 1979 6.53 12 180
2 WhittierNarrows-01 1987 5.99 6
3 LomaPrieta 1989 6.93 12
4 CapeMendocino 1992 7.01 9
5 Northridge-01 1994 6.69 12
6 Kobe_Japan 1995 6.90 12
7 Chi-ChiTaiwan 1999 7.62 12
8 TottoriJapan 2000 6.61 12
9 Anza-02 2001 4.92 12
10 NiigataJapan 2004 6.63 12
11 Parkfield-02 2004 6.00 12
12 Chuetsu-oki_Japan 2007 6.80 12
13 Iwate 2008 6.90 12
14 L'Aquila_Italy 2009 6.30 9
15 ElMayor-Cucapah_Mexico 2010 7.20 12
16 Darfield_NewZealand 2010 7.00 12

Validation sets 17 Coalinga-01 1983 6.36 6 18
18 MorganHill 1984 6.19 3
19 Landers 1992 7.28 3
20 Kocaeli_Turkey 1999 7.51 6

Testing sets 21 Yountville 2000 5.00 6 18
22 BigBearCity 2003 4.92 3
23 SanSimeon_CA 2003 6.52 3
24 Christchurch_NewZealand 2011 6.20 6

Table 3   Structural damage classification based on maximum story 
drift angle

Limiting Condi-
tion

Slight Damage Moderate Dam-
age

Heavy Damage

Maximum Inter-
Story Drift 
Angle

 ≤ 1/200 1/200 ~ 1/100  > 1/100

Table 4   Data dimension of five time–frequency analysis

Number Time–Frequency Analysis Single Signal 
Characteristic 
Matrix

1 Time domain signal, TIME [1, 6561]
2 Fast Fourier Transform, FFT [1, 3281]
3 Short Time Fourier Transform, STFT [2, 129]
4 Discrete Wavelet Transform, DWT [1, 821]
5 Wavelet Scattering Transform, WST [7, 258]

Table 5   Number of seismic waves in each data set

Name Train Sets Validation Set Test Set

Numbers 180 18 18
Total quantity after 

amplitude modulation
13,793 524 1118
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5 � Damage Assessment Based on CNN Model

5.1 � Results Evaluation Index

To evaluate the performance of the model more intuitively and 
understand its generalization ability, some evaluation indica-
tors are introduced to measure the performance of the model. 
Commonly used evaluation indicators in deep learning include 
accuracy, precision, recall, and model runtime.

(1) Accuracy A, the ratio of correctly detected samples to 
the total samples, is calculated as follows:

In the formula: TP refers to the number of correctly identi-
fied positive samples; TN refers to the number of correctly 
identified negative samples; FP refers to the number of incor-
rectly identified positive samples; and FN refers to the number 
of incorrectly identified negative samples.

(2) Precision P, the ratio of correctly detected target sam-
ples to all detected target samples, is calculated as follows:

(3) Recall R, the ratio of correctly detected target samples 
to the actual target samples, is calculated as follows:

(4) Model training time: In deep learning, the model 
parameters need to be repeatedly updated during training. 
If the model converges too slowly and the training time is 
long, the number of iterations will be reduced, which will 
prevent the model from achieving better performance, and 
the accuracy of the model will also be affected. Therefore, 
the model training time is also an important performance 
indicator for the model.

5.2 � Comparison of evaluation results.

Under the same computer hardware configuration, the net-
work models of the five time–frequency analysis meth-
ods were trained and tested using the same dataset. The 

(6)A =
TP + TN

TP + FP + FN + TN

(7)P =
TP

TP + FP

(8)R =
TP

TP + FN

computer hardware used had an i5-12400F CPU, NVIDIA 
GeForce GTX3060 GPU, and 16GB of memory. 1D-CNN 
model was built and trained using the MATLAB platform. 
The generalization ability of the 1D-CNN optimized by 
Bayesian optimization was evaluated using the test set in 
the simulated data. The damage assessment results of the 
five time–frequency analysis methods and the 1D-CNN 
model are shown in Table 6., and the confusion matrix is 
shown in Fig. 11.

According to Table 6, the accuracies of the original 
time-domain signal, fast Fourier transform, wavelet trans-
form, and wavelet scattering are all above 80%, which 
indicates that the seismic damage assessment method 
combining time–frequency analysis with one-dimensional 
convolutional neural network can evaluate post-earthquake 
frame structural damage.

Figure 11. shows the confusion matrices of the five 
time–frequency analysis methods, where the columns are 
the predicted classes of the one-dimensional convolu-
tional neural network model, the rows are the true classes 
obtained by nonlinear time-history analysis, the last col-
umn represents the recall rate, the last row represents the 
precision rate, and the lower right cell represents the accu-
racy. On the test set, the high recall rate, precision rate, 
and accuracy indicate that the model has better generaliza-
tion ability. It can be seen that the accuracy of the wavelet 
scattering method is the highest among the five time–fre-
quency analyses, up to 92.5%, which indicates that this 
model method has good generalization ability for seismic 
damage assessment. Since the accuracy of the fast Fou-
rier transform combined with the time–frequency matrix 
method is very low, this method is no longer considered 
in subsequent analysis.

5.3 � The Influence of Network Structure on Training 
Results

The common problem with training deep learning network 
models is that it takes too long to train, often requiring a 
long time to achieve high accuracy. Therefore, this sec-
tion mainly compares various time–frequency analysis 
methods to select the method with the shortest training 
time and high accuracy, to improve the accuracy of the 
earthquake damage assessment model and shorten the 
training time. To evaluate the computational efficiency of 
deep learning network models, the computation time and 
resources consumed by five network models containing 

Table 6   Accuracy of five time–
frequency analysis methods

Name TIME FFT DWT WST STFT

db15 sym6 default

Accuracy (%) 86.6 86.7 90.8 90.4 92.5 58.4
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four time–frequency analyses were compared. Compu-
tational resources, as an important indicator of network 
models, mainly include two parameters: the number of 
parameters and the number of computations, which deter-
mine whether the model can run on limited hardware 
devices and whether its computation time is controllable.

Table 7 presents the network architecture, number of 
parameters, computational cost, and time taken for five 
different network models. As shown in Table 7., the com-
putation time for the wavelet scattering-based time–fre-
quency analysis method combined with one-dimensional 
convolutional neural network is the shortest, taking only 
144 s with the same hardware configuration. This is 
because (1) as shown in Table 4, the wavelet scattering-
based time–frequency analysis method has a smaller data 

dimension compared to other time–frequency analysis 
methods, and (2) the wavelet scattering-based network 
model has fewer parameters and computational costs com-
pared to other network models, requiring less computing 
resources. So choosing the most efficient analysis method 
and network model with the highest computing accuracy 
is essential for post-earthquake damage assessment under 
limited computing hardware. Based on the results of the 
evaluation of accuracy, computation time, and resource 
utilization, we recommend using the wavelet scattering-
based time–frequency analysis method combined with a 
one-dimensional convolutional neural network model for 
fast post-earthquake damage assessment among the five 
time–frequency analysis methods and network models 
compared.

5.4 � Robustness Verification

Since the signals collected in practical environments gen-
erally have some external interference, especially under 
the influence of earthquakes, the collected acceleration 
signals inevitably contain some noise. Usually, the impact 
of this type of noise is simulated by adding Gaussian white 
noise.

Signal-to-noise ratio (SNR) is commonly used in engi-
neering to evaluate the strength of noise in the signal. The 
formula for SNR is as follows:

1 2 3 1 2 3 1 2 3

1 313 20 0 94.0% 1 327 31 0 91.3% 1 172 112 34 54.1%

2 47 290 12 83.1% 2 33 315 50 79.1% 2 118 175 37 53.0%

3 0 71 365 83.7% 3 0 35 327 90.3% 3 70 94 306 65.1%

86.9% 76.1% 96.8% 86.6% 90.8% 82.7% 86.7% 86.7% 47.8% 45.9% 81.2% 58.4%

1 2 3 1 2 3 1 2 3

1 345 20 0 94.5% 1 338 23 0 93.6% 1 340 14 0 96.0%

2 15 335 42 85.5% 2 22 306 10 90.5% 2 20 344 27 88.0%

3 0 26 335 92.8% 3 0 52 367 87.6% 3 0 23 350 93.8%

95.8% 87.9% 88.9% 90.8% 93.9% 80.3% 97.3% 90.4% 94.4% 90.3% 92.8% 92.5%

TIME FFT STFT

DWT-db15 DWT-sym6 WST

Fig. 11   Confusion matrix of five time–frequency analysis methods

Table 7   Computing resources and time of five network models

Name TIME FFT DWT WST

db15 sym6

Convolution Kernel 9 7 11 11 9
Convolution Deep 1 2 2 2 1
Convolution Blocks 

Number
5 2 4 4 1

Params (MB) 0.17 0.17 0.21 0.21 0.09
Capacity (KFlops) 127.11 137.77 221.42 221.42 65.61
Time(s) 1200 619 408 412 144
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where: Psignal represents the power of the original signal, and 
Pnoise represents the power of the noise signal.

In order to evaluate the noise resistance of the earth-
quake damage assessment model, Fig. 12 shows the orig-
inal signal before adding Gaussian white noise and the 
signal after adding white noise. It can be seen from the 
figure that after adding white noise, the original signal is 
seriously contaminated by Gaussian white noise signal, 
which will affect the signal characteristics of the original 
vibration signal, the processing of the signal by time–fre-
quency analysis, and the feature extraction of the network 
model, and may therefore affect the accuracy of damage 
assessment.

Table 8 shows the evaluation results of different time–fre-
quency analysis methods and network models under the 
influence of noise. When the SNR is 1dB, the accuracy of 
all five models decreases, but the recognition accuracy of 
the wavelet scattering transform method is still above 90%. 
The results show that the earthquake damage identification 
model based on wavelet scattering transform and one-dimen-
sional convolutional neural network has good anti-noise and 
robustness. Therefore, further research is conducted using 
the earthquake damage assessment model established based 
on wavelet scattering time–frequency method and deep 
learning.

(9)SNR(dB) = 10 log10

(
Psignal

Pnoise

)

5.5 � Effect of Sample Size on Training Results

To improve the generalization ability of the structural post-
earthquake damage assessment model, a large number of 
training samples are needed. However, it is not realistic to 
obtain a large number of real working condition data samples 
in practical engineering applications. This section focuses 
on the dependency of the structural post-earthquake damage 
assessment model on the number of samples. In this experi-
ment, only the amount of training set data was reduced, 
while the amount of validation and test set data remained 
unchanged. The performance of the model was studied by 
selecting the sample quantity of 4 and 8 earthquake events 
in Table 3 as the training set. The specific earthquake event 
numbers and damage sample quantities of the training set 
are shown in Table 9. When the number of earthquake events 
is 4, the model recognition accuracy is less than 90%. As 
the number of earthquake events increases, the accuracy 
significantly improves. When the number of earthquake 
events increases from 4 to 8, the accuracy improves by 7.6%. 
When the number of earthquake events is 16, the accuracy 
can reach a maximum of 92.5%. The accuracy after adding 
noise also improves with the increase in the sample quan-
tity. It indicates that the generalization ability of the damage 

Fig. 12   Raw signal and noisy 
signal

Table 8   Accuracy under noise

Name TIME FFT DWT WST

db15 sym6

Accuracy 85.4% 85.7% 89.0% 89.6% 90.5%

Table 9   Training results with different sample sizes

Number of seismic events 
(ratio of number to total)

4 (25%) 8 (50%) 16 (100%)

Seismic event serial number 2, 4, 6, 8 2, 4, 6, 9, 10, 
12, 14, 16

ALL

Number of damage samples 2996 6897 13,793
Noise-free accuracy (%) 82.9 90.5 92.5
1dB noise accuracy (%) 80.2 88.4 90.5
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assessment model improves with the increase of sample 
quantity, and the evaluation accuracy of the established post-
earthquake damage assessment model is also higher.

6 � Sample Generation Based on CGAN Model

6.1 � Generative Adversarial Network Parameters

Due to the characteristics of the CGAN structure, the accel-
eration damage samples are adjusted to meet the input and 
output of the network model. The time domain samples are 
cropped, and the final data dimension is 16,400. The wave-
let scattering transform samples are cropped, expanded, and 
flattened. First, the data dimension is cropped to 7256, the 
mean is taken in the vertical dimension and added to the 
original data, and then flattened. The final data dimension 
is 1*2048. After preprocessing, the above samples are used 
as the training set for the CGAN. By comparing the per-
formance of the two in terms of data quality and damage 
evaluation accuracy, the effectiveness of the time–frequency 
analysis combined with CGAN data generation method in 
post-earthquake damage evaluation is verified.

Both the discriminator and generator in the text use con-
volutional neural networks. Reasonable network structures 
can improve the feature extraction ability of the model and 
further improve its generalization performance. Prior to mul-
tiple experiments, various network models are constructed 
for different datasets, and the network structures of the gen-
erating network and the discriminating network correspond-
ing to different datasets are determined based on the above 
evaluation indicators, and the hyper-parameters are set as 
shown in Table 10.

6.2 � Generating Samples Based on the CGAN Model

In the training process of the CGAN model, there is a mutual 
game between the generator and the discriminator. If one 
model learns too fast, it will prevent the other model from 
training, resulting in the model being unable to converge. 

To evaluate the training effect of the model, this paper cal-
culates the scores of the generator and discriminator and 
draws their score graphs to evaluate the training status of the 
model. The score calculation formula for the generator and 
discriminator is as follows:

where Gscore is the generator score, Dscore is the discriminator 
score, ŶGenerated is the probability value of the output of the 
generated data in the discriminator, and ̂YReal is the probabil-
ity valu + e of the output of the real data in the discriminator.

In the ideal CGAN model, the scores of the generator and 
discriminator are both 0.5, indicating that the generated data 
approximates the real data and the discriminator cannot dis-
tinguish between real and generated data. When the score of 
the generator model is close to 1, it means that the generator 
model learns too fast, causing the discriminator to be unable 
to effectively train. At this time, although the generated data 
from the generator model is significantly different from the 
real data, the discriminator cannot identify the authenticity 
of the input data. When the score of the discriminator model 
is close to 1, it means that the discriminator model learns 
too fast, causing the generator to be unable to effectively 
train. To balance the learning ability of the two models, the 
number of convolutional kernels in the discriminator can be 
increased (decreased), dropout layers can be added to the 
generator (discriminator), and the number of convolutional 
kernels in the generator can be reduced (increased).

After preprocessing the data and inputting it into the 
constructed CGAN model for training, the training score 
process is shown in Fig. 13. It can be seen from the train-
ing score graph that after 500 training batches and 13,000 
iterations of training, the final scores of the generator G 
and the discriminator D in the CGAN model are both 
around 0.5, indicating that the model has converged.

After the CGAN model converges, random numbers are 
input to the model for data generation, and the generated 
results are shown in Fig. 14. Since the goal of the CGAN 
model is not to produce data that is exactly the same as 
the real data, but rather to produce output that has slight 
variance and is sufficiently similar to the real data, direct 
comparison between generated data and real data cannot 
evaluate the quality of the generated data.

6.3 � Damage Assessment Based on CNN Model

In order to intuitively verify the effectiveness and signifi-
cance of this work, the seismic damage assessment model 

(10)Gscore = mean
(
ŶGenerated

)

(11)Dscore =
1
2
mean

(
ŶReal

)
+

1
2
mean

(
1 − ŶGenerated

)

Table 10   Improved CGAN network model parameter settings

Parameter Name Numerical Value

Training Batches 500
Small Batches 256
Learning Rate 0.002
Noise Dimension 128
Optimizer Adam
Number Of Generator Layers 18
Number Of Discriminator Layers 25
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established was earlier selected to evaluate the quality of 
the generated acceleration damage data. Different training 
sets were designed to verify the actual effect of CGAN on 
damage assessment, and the number of validation sets and 
test sets remained the same as in the previous section. The 
different proportions of the training sets and their damage 
assessment accuracy are shown in Table 11.

Table 11 demonstrates that the model's classification 
accuracy rises with the number of training set data. The clas-
sification accuracy of the mixed-data training set is higher 
than that of the generated-data training set. Additionally, the 
training set with mixed data exhibits a significantly higher 
classification accuracy when compared to a training set 
with a small number of real samples. This suggests that the 
CGAN-generated samples can effectively improve the accu-
racy of damage assessment by filling small sample datasets. 
However, the classification accuracy does not increase as the 
number of generated samples is increased. The classification 
accuracy of the mixed data is marginally less than that of the 
real data when the amount of mixed data reaches the maxi-
mum value of the real data. This suggests that the CGAN-
generated samples contain additional pertinent information 
with real sample features, which causes classification errors 
in the classification model.

In conclusion, the samples generated by the CGAN 
model have high similarity to real samples and can effec-
tively expand small sample damage data, which has a certain 
effect on improving the accuracy of small sample damage 
assessment.

Fig. 13   CGAN model training 
process score chart

Fig. 14   CGAN model data 
generation diagram

Table 11   CGAN training set samples

Original data 
volume

Generation Blending 
generation

Accuracy (%)

TIME WST

2996 0 2996 65.9 82.9
3600 6596 70.1 84.7
7200 10,196 72.0 88.2
10,800 13,796 72.9 88.4

6897 0 6897 82.9 90.5
7200 14,097 85.8 91.6

13,793 0 13,793 86.6 92.5
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7 � Conclusion

This research investigates a seismic damage assessment 
technique using time–frequency analysis and 1D-CNN, 
along with a seismic data generation approach using CGAN 
and time–frequency analysis, in order to address the issues 
of low accuracy and efficiency in post-earthquake structural 
damage assessment. Numerical simulations verify the effec-
tiveness and robustness of these techniques. The following 
is a summary of the findings:

(1) Five time–frequency analysis techniques and their 
associated network models are examined and evaluated. 
Four of these methods can attain an accuracy exceeding 
80%, with the highest evaluation accuracy recorded by the 
integration of the scattering time–frequency analysis method 
with 1D-CNN, achieving 92.5%. This enables automated 
seismic damage assessment without the need for manual 
intervention in extracting damage feature parameters.

The computational efficiency of deep learning is analyzed 
from two perspectives such as the data dimension after 
time–frequency analysis and the computational resources 
of the network model. The integration of scattering time–
frequency analysis with one-dimensional convolutional 
neural network requires the smallest data dimension and 
computational resources, resulting in the shortest com-
putation time of just 144 s. This facilitates swift seismic 
damage assessment using minimal hardware resources.
The combination of 1D-CNN with scattering time–fre-
quency analysis continues to show greater accuracy even 
with noise added to the original signal. This highlights 
its resilience and superior generalisation skills in a range 
of work environments.
The CGAN model can be trained iteratively over several 
rounds to identify useful features in damage acceleration 
data and provide realistic acceleration damage data. The 
suggested acceleration damage sample production model 
is added to the original dataset, and this dataset is used 
to train the post-earthquake damage assessment model. 
The results show that the latter performs best under the 
identical training set conditions.
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