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Abstract
The Turag River, located in Dhaka, Bangladesh, has emerged as a pivotal case study for assessing water pollution. It faces 
multiple sources of pollutants, including industrial discharges, municipal sewage, agricultural runoff, and urban effluents, 
which significantly impact water quality. This study employed an integrated approach, combining a Water Quality Index, 
machine learning algorithms, and geographic information system, to comprehensively evaluate the Turag River’s water qual-
ity. Thirty water samples, spanning from the river's mouth to its most polluted areas, were collected and analyzed for various 
physicochemical parameters (e.g., temperature, pH, dissolved oxygen, biochemical oxygen demand, total dissolved solids, 
turbidity, total hardness, and transparency) and heavy metal concentrations (e.g., Na, Mn, Cr, As, Ca, Pb, Zn, Cu, and Fe). 
The results were assessed against standards set by the World Health Organization and the Department of Environment of 
Bangladesh. Our findings revealed a significant deterioration in water quality downstream, primarily driven by intensified 
human activities. Physicochemical parameters indicated that most samples fell within the “poor” to “unfit for consumption” 
categories, while heavy metals exhibited a range from “excellent” to “unfit for consumption.” This study not only advances 
our understanding of water pollution dynamics but also equips decision-makers with critical insights to safeguard public 
health, protect water resources, and sustain vital clean-water-dependent economic activities. Furthermore, it highlights the 
urgency of implementing effective pollution control measures to restore the ecological equilibrium of the Turag River and 
similar waterbodies elsewhere.
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1 Introduction

Water is an indispensable resource for all life forms on earth, 
yet approximately 780 million people worldwide lack access 
to improved water sources (Pal et al. 2018; Schmidt 2014). 
Global water security is threatened due to ecosystem modi-
fications and the discharge of pollutants into rivers (Karthe 
et al. 2015). Rivers play a pivotal role in human life among 
various water sources, serving multiple purposes such as 
domestic, industrial, and agricultural use and contributing 
to transportation, tourism, and recreation (Sengupta et al. 
2022). Approximately 187 million individuals depend on 
surface water for drinking, and this reliance is escalating 

due to population growth, rapid urbanization, and industrial 
expansion (Maniam et al. 2022). The increasing demand for 
surface water worldwide poses immense pressure on natu-
ral resources and ecosystems. Urbanization alters land use 
patterns, adversely affecting water quality and diminish-
ing freshwater availability (de Mello et al. 2020; Luo et al. 
2020).

Additionally, water quality deterioration in rivers is 
linked with industrialization, which often releases untreated 
or partially treated effluents into waterbodies (Sarker et al. 
2021). These pollution and encroachment issues jeopard-
ize sustainable access to clean and safe water for the future 
(Connor 2015; Tzanakakis et al. 2020). Developing coun-
tries, in particular, face challenges in providing safe water, as 
both ground and surface water sources become contaminated 
due to inadequate wastewater treatment and drainage facili-
ties (Corcoran 2010; Kookana et al. 2020).
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Dhaka, a megacity in Bangladesh, is experiencing rapid 
population growth, making it one of the most densely popu-
lated regions in the world, with an annual growth rate of 
around 4.5% (Mowla 2015; UN 2016; Nashwan et al. 2020). 
The increasing populations exert immense pressure on 
resources and thus resulted in many environmental issues 
such as urban warming (Dewan et al. 2021; Dewan and Cor-
ner 2012), ecosystem services loss (Abdullah et al. 2022) 
and severe water pollution (Chowdhury et al. 2014; Dewan 
et al. 2012). The Turag River, one of the four rivers sur-
rounding the city, is a lifeline that is experiencing elevated 
levels of water pollution, caused by industrial, residential, 
and agricultural waste, as well as the use of pesticides and 
fertilizers (Bhat et al. 2018; Pathak and Bhardwaj 2021). 
Industrial activities within the Dhaka metro area discharge 
hazardous pollutants, including pesticides and heavy met-
als, further exacerbating pollution in downstream sections 
of the Turag River (Rampley et al. 2020; Uddin and Jeong 
2021). The deteriorating water quality of this river raises 
concerns about the ecosystem’s health and the sustainability 
of resources, necessitating urgent measures to address and 
mitigate the impact of water pollution.

Water quality index (WQI) offers a comprehensive and 
standardized approach to assessing the river’s overall water 
quality, considering various physicochemical parameters and 
heavy metals (Iwar et al. 2021; Rahman et al. 2020). The 
calculation of WQI using different mathematical models 
and machine learning, including deep learning algorithms, 
offers a comprehensive and versatile approach to evaluate 
water quality (Omeka et al. 2023; Paul et al. 2022; Sultana 
and Dewan 2021; Uddin et al. 2023). These diverse meth-
ods enable researchers and environmental practitioners to 
leverage the strengths of each model to obtain accurate, effi-
cient, and adaptive WQI predictions, facilitating informed 
decision-making and effective water resource management. 
Using WQI, decision-makers, and policymakers can make 
informed decisions about water resource management and 
pollution control measures, ensuring sustainable water use in 
the face of increasing demands. The WQI also enables early 
detection of water quality degradation, supporting timely 
interventions and preventing severe environmental damage. 
Furthermore, it aids in raising public awareness about health 
of the river, encouraging community engagement in water 
conservation efforts (Cheshmehzangi et al. 2019; Sanneh 
2018). It is thus a valuable tool to protect ecosystem and 
public health, ensuring the wellbeing of millions relying on 
the river as a vital water source (Almeida et al. 2012; Iqbal 
et al. 2019; Singh et al. 2022).

Investigating the water quality of the Turag River is of 
paramount importance for Dhaka and its surrounding areas 
due to its critical role as a water source for drinking, irri-
gation, industry, and domestic use. The river’s susceptibil-
ity to pollutants from industries, sewage, agriculture, and 

urbanization necessitates a comprehensive understanding 
of its pollution sources and the effects on aquatic ecosys-
tems and downstream regions. Beyond being a microcosm 
of broader urban pollution challenges, Turag’s investiga-
tion guides effective pollution control measures and urban 
planning. Additionally, the River plays a significant role in 
navigation, facilitating the movement of goods and people. 
Ensuring its water quality is essential not only for human 
health and aquatic life but also for maintaining the river’s 
navigability. Pollution can lead to sedimentation, reduce 
water flow, and accumulation of debris, hindering naviga-
tion and economic activities that rely on it (Gani et al. 2023; 
Thushari and Senevirathna 2020). By understanding the 
river’s pollution sources and impacts holistically, informed 
decisions can be made to implement comprehensive inter-
ventions that ensure its sustainable use and benefit the envi-
ronment, communities, and economy.

The study of water quality in the Turag River has far-
reaching implications encompassing both local ecology and 
public health. The river’s pivotal role as a receptor for pollut-
ants originating from various sources underscoring urgency 
of the problem. The implications extend beyond ecological 
concerns, as the river’s water is extensively used for drink-
ing, irrigation, and industrial processes, directly impacting 
public health. Contaminants entering the river can accumu-
late in the food chain, posing risks to aquatic life and, subse-
quently, to humans who depend on waters. Additionally, the 
current assessment techniques for water quality often lack 
the depth and accuracy needed to comprehensively address 
the complex interplay between pollutants and their effects. 
We address the following research questions: (1) What is 
the current water quality status of the Turag River? (2) 
How do various physicochemical parameters and pollutants 
contribute to the overall water quality of the river? And (3) 
How does the water quality of the river vary spatially and 
temporally along its course? To address these research ques-
tions, we aimed to assess and portray the water quality of the 
Turag River using a combination of WQI, machine learn-
ing algorithms (MLA), and geographic information system 
(GIS) techniques. The proposed methodology presents a 
promising solution to bridge the abovementioned gaps. By 
merging advanced techniques, this methodology offers a 
nuanced understanding of pollution dynamics, quantifying 
their impacts on both the river’s ecology and the health of 
the communities, relying on it. This, in turn, work could 
facilitate informed decision-making for pollution control, 
environmental management, and sustainable utilization of 
the river’s resources, ensuring the preservation of local eco-
systems and protection of public health.

The selection of specific physicochemical parameters 
and heavy metals for this study underwent a meticulous 
process to ensure a comprehensive evaluation of water 
quality dynamics. The chosen physicochemical parameters 



763Elevating Health of the Turag River: A Synergistic Water Quality Assessment Approach  

1 3Published in partnership with CECCR at King Abdulaziz University

encompassed temperature, pH, dissolved oxygen (DO), 
biochemical oxygen demand (BOD), total dissolved solids 
(TDS), turbidity, total hardness, and transparency. Each of 
these parameters was selected based on its role in reflect-
ing different facets of water quality. Temperature, pH, and 
DO are fundamental indicators of aquatic ecosystem health, 
providing insights into the water's thermal stability, acidity, 
and oxygen content. BOD represents organic pollution lev-
els, while TDS enables information about mineral content. 
Turbidity, total hardness, and transparency contribute to the 
assessment of water clarity and potential pollutants. Regard-
ing heavy metals, a strategic selection was made to focus 
on sodium (Na), manganese (Mn), chromium (Cr), arsenic 
(As), calcium (Ca), lead (Pb), zinc (Zn), copper (Cu), and 
iron (Fe). These metals were chosen considering their wide-
ranging sources, both natural and anthropogenic, and their 
recognized impacts on water quality and ecological health. 
The presence of lead (Pb) and arsenic (As) among the cho-
sen metals underlines their significant toxicological implica-
tions and relevance in pollution assessment. Throughout the 
selection process, careful consideration was given to param-
eters that could collectively capture the varying dimensions 
of water quality, ranging from basic physicochemical attrib-
utes to heavy metal contamination.

The contribution of this work to science and society lies 
in its comprehensive assessment of the Turag River’s water 
quality using advanced WQI, MLA, and GIS methodolo-
gies. It will provide updated data, reveal pollution patterns, 
identify sources of pollutants, and raise awareness to inform 
effective water resource management and pollution control 
measures, benefiting both the environment and communities 
reliant on the river.

2  Materials and Methods

2.1  Study Area

The research was conducted in the Turag River, located 
in Dhaka, Bangladesh (23.53° N to 23.54° N and 90.21° 
E to 90.23° E, Fig. 1). This river is a crucial waterbody 
that flows through a densely populated region, serving 
as a vital water source for various purposes, including 
domestic, agricultural, and industrial use (Rahman et al. 
2021a; Yasmin et al. 2023; Yin et al. 2021). Moreover, 
its pivotal role in sustaining local livelihoods and eco-
nomic activities highlights its importance. Ecologically, 
it supports diverse aquatic species and ecosystems, mak-
ing its preservation crucial for maintaining environmen-
tal balance. However, the river’s exposure to pollution 
raises concerns about water quality and ecosystem health. 
Given its interconnectedness with downstream locations, 
the Turag River’s condition has regional implications, 
emphasizing the need for comprehensive assessments and 
effective pollution control measures. In essence, the river’s 
multifaceted contributions to daily life, economies, eco-
systems, and regional water quality underscore its central 
importance. Geographically, the Turag basin encompasses 
varying landscapes and climatic conditions. The topogra-
phy ranges from flat plains to gently undulating terrain. 
The study area is characterized by a subtropical monsoon 
climate, featuring distinct wet and dry seasons. The mon-
soon rains significantly influence the river’s flow and water 
quality dynamics. Ecologically, it sustains a diverse range 
of aquatic species and ecosystems, emphasizing its impor-
tance for maintaining environmental balance. The Turag 

Fig. 1  Location of the Turag 
River and water quality sam-
pling sites
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River was designated as an ecologically critical river 
by the DoE of Bangladesh in 2009 due to its substantial 
pollution burden (Shawon et al. 2021; Whitehead et al. 
2018). This official recognition highlighted the pressing 
need to assess and address the water quality challenges 
the river faced. The study area’s selection was thus guided 
by a commitment to addressing significant environmental 
concerns, contributing to informed decision-making, and 
devising effective strategies for water quality management.

2.2  Data Collection

The Turag River course was subject to a water sampling 
campaign, during which thirty water sample sites were 
collected from various locations. Physicochemical param-
eters including temperature, pH, DO, BOD, TDS, turbid-
ity, total hardness, and transparency (Fig. 2), and heavy 
metals including Na, Mn, Cr, As, Ca, Pb, Zn, Cu, and Fe 
(Fig. 3) parameters were derived from these thirty sample 

Fig. 2  Maps of physicochemical 
parameters in the study area
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sites. Physicochemical parameters included measurements 
of temperature, pH levels, DO to evaluate aquatic life sup-
port, BOD regarding organic matter decomposition, TDS to 
observe overall substance concentration, turbidity for water 
clarity, total hardness reflecting calcium and magnesium 
content, and transparency as an indicator of visual clarity. 
In parallel, heavy metals such as sodium, manganese, chro-
mium, arsenic, calcium, lead, zinc, copper, and iron were 
analyzed to understand their presence and potential impacts 
on water quality and aquatic ecosystems. A comprehensive 
dataset forms the basis for a holistic evaluation of the Turag 
River’s water quality and identification of possible pollution 

sources and mitigation strategies. Incorporating both phys-
icochemical parameters and heavy metal analysis in the 
study provides a comprehensive overview of water quality, 
accounting for various factors that can impact its usability, 
safety, and ecological balance.

2.3  Sampling Process

The assessment of water quality involved a systematic and 
comprehensive sampling strategy. Physicochemical param-
eters were diligently collected on a monthly basis throughout 
a one-year period (2022). Each station was subject to three 

Fig. 3  Heavy metals maps
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distinct sampling points: discharge point (DP), contamina-
tion point (CP), and midpoint (MP), resulting in a total of 
1080 samples collected for the evaluation of physicochemi-
cal parameters. This approach was aimed at capturing poten-
tial variations across different points within the same station 
and over different months, thus providing a holistic under-
standing of water quality dynamics.

In parallel, heavy metal analysis was carried out with 
similar rigor. Sampling was conducted twice during each of 
the three seasons—pre-monsoon (mid-March to mid-June), 
monsoon (mid-June to mid-October), and post-monsoon 
(mid-October to mid-March)—resulting in a total of 180 
samples collected for laboratory testing. These samples were 
meticulously tested for heavy metal content following stand-
ardized procedures at the Bangladesh Agricultural Research 
Institute (BARI, http:// www. bari. gov. bd/).

The sampling process involved using clean, 500 ml plas-
tic bottles rigorously cleaned with distilled water before use 
(Armah et al. 2012; Shekoohiyan and Akbarzadeh 2022; 
Wood 1976). Grab sampling was employed to obtain water 
samples, which were promptly sealed and appropriately 
labeled for accurate identification (Cuffney et al. 1993; 
Lyons et al. 2015). The pH levels were measured using a 
pocket-type pH meter, while TDS (total dissolved solids) 
was assessed using a dedicated TDS meter (Nasir et al. 2019; 
Talbert 2007). DO (dissolved oxygen) and BOD (biochemi-
cal oxygen demand) values were determined through titra-
tion methods, ensuring precise measurements (Fathima 
et al. 2014). Temperature readings were recorded with ther-
mometers, and transparency was evaluated using the Secchi 
disk depth (Mustapha and Omotoso 2005). Additionally, 
total hardness values were ascertained by employing EDTA 
titration, and turbidity levels were measured with a turbid-
ity meter (Ehiagbonare and Ogunrinde 2010; Princela et al. 
2021). In the laboratory, the estimation of heavy metals was 
conducted using both instrumental and manual methods, fol-
lowing the standard procedures for reliable results (Akinyele 
and Shokunbi 2015; McLaughlin et al. 2000; Nemati et al. 
2011).

2.4  Methods

Typically, WQI is developed using a standardized methodol-
ogy considering various water quality parameters. The study 
followed a systematic approach in assessing water quality 
using integrated methods (Fig. 4). Firstly, data was gathered 
and categorized into physicochemical parameters and heavy 
metals from 30 randomly selected stations. The second step 
involved calculating WQI using a weighted arithmetic index 
method for both types of parameters (cf. 2.3.1 water qual-
ity index). Subsequently, a geodatabase preparation was 
conducted by converting data into spatial form with inverse 
distance weighted (IDW) interpolation (Figs. 2, 3). This 

supported input parameters with spatial resolution necessary 
for machine learning model development. In the fourth step, 
a supervised classification-based machine learning model 
was constructed, using the calculated WQI values as outputs. 
The dataset was divided into training and validation sets in 
the fifth step (50% each). This choice can be attributed to 
several potential reasons. Firstly, a 50–50 split ensures a 
balanced evaluation of their machine learning model, allow-
ing for a fair assessment of its performance on unseen data. 
Moreover, it might have been necessitated by limitations in 
the available dataset, making it challenging to allocate larger 
proportions for training or testing. Additionally, a balanced 
split can help address issues related to data imbalance, if 
present. We prioritized equal representation to ensure the 
robustness of the model’s generalization capabilities. Over-
all, the selection of a 50–50 split aligns with the aims of this 
work, emphasizing a balanced evaluation while acknowl-
edging potential data constraints. The sixth step focused on 
training the machine learning model and predicting WQI 
values. In the seventh step, the model’s performance was 
validated using multiple statistical indices. Finally, a com-
parative study between the proposed models provided essen-
tial insights for effective water quality management. This 
structured methodology ensures a comprehensive approach 
to addressing water quality assessment and management.

2.4.1  Water Quality Index

WQI is a highly effective method and serves as a standard 
for devising water management strategies. To calculate 
WQI, eight physicochemical parameters, and nine heavy 
metals were selected. The permissible limits for these 
parameters were based on the WHO standards for drinking 
water, and in cases where WHO values were unavailable, 
the Bangladesh drinking water standards provided by the 
Department of Environment (DoE) of Bangladesh were 
used (Table 1). WQI was determined using a weighted 
arithmetic index method (Bouslah et al. 2017; Teshome 
2020). Additionally, a sub-index (Qn) was computed using 
the following expression for each parameter (Zotou et al. 
2020). This approach ensures a clear and robust water 
quality assessment, facilitating better decision-making in 
water resource management. The following steps can be 
considered to calculate WQI: (1) gather data related to 
physicochemical parameters and heavy metals that charac-
terize water quality. (2) Compute the proportionality con-
stant “K” value utilizing Eq. (1), where “Sn” represents the 
acceptable standard for the nth parameter. (3) Compute the 
quality rating (Qn) for the nth parameter using Eq. (2). (4) 
Determine the unit weight (Wn) for the nth parameter using 
Eq. (3). (5) Finally, compute the WQI utilizing Eq. (4).

http://www.bari.gov.bd/
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where K is the weighting factor assigned relative impor-
tance to each water quality parameter in the WQI calcula-
tion (Dunnette 1979). Sn is the sub-index for each parameter, 
quantifying the quality of individual water quality param-
eters separately (Rajkumar et al. 2022).

where Qn is the quality rating for each parameter, represent-
ing a qualitative assessment of the water quality for specific 
parameters (Uddin et al. 2021). Vn is the estimated value 
and Vio represents the ideal value in pure water of the  nth 
parameter of the sampling station.

where Wn is the weighted sub-index for each parameter 
(Uddin et al. 2021), obtained by multiplying the sub-index 

(1)K =
1

∑

(
1

Sn
)

(2)Qn =

(

Vn − Vio

Sn − Vio

)

× 100%

(3)Wn =
K

Sn

value with its corresponding weighting factor, accounting for 
its importance in the overall WQI calculation.

where WQI indicates the water quality index of physiochem-
ical parameters and heavy metals.

2.4.2  Machine Learning Algorithm

Artificial neural network (ANN) is a computational model 
inspired by the human brain’s neural network structure (Kas-
abov 2019; Shanmuganathan 2016). It consists of intercon-
nected nodes, called neurons, organized in layers. ANN has 
been widely used for WQI calculation because it can process 
large datasets and capture complex relationships between 
input variables and WQI output (Hameed et al. 2017). This 
study describes three optimizers commonly used in train-
ing ANNs: Levenberg–Marquardt, Bayesian Optimization, 
and Scaled Conjugate Gradient. (1) Levenberg–Marquardt 
(LM) optimizer: The LM algorithm is an iterative method 

(4)WQI =

∑

(WnQn)
∑

Wn

Fig. 4  Flowchart for WQI 
prediction
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for nonlinear optimization problems (Lourakis 2005; Yanis 
et al. 2023). In the context of ANN training for WQI calcula-
tion, LM optimizer adjusts the neural network’s weights and 
biases during training to minimize the difference between 
predicted WQI values and actual values from the dataset. 
The LM optimizer is efficient in cases where the cost func-
tion has multiple local minima and is especially useful for 
converging quickly toward the optimal solution (Ozyildirim 
and Kiran 2021). (2) Bayesian Optimization (BO) optimizer: 
The BO is a probabilistic global optimization technique to 
find the optimal hyperparameters for training an ANN (Yanis 
et al. 2023). In the context of WQI calculation, the BO opti-
mizer efficiently explores the hyperparameter space, such 
as learning rates, the number of hidden layers, and neuron 
counts, to identify the best configuration that maximizes the 
ANN’s performance (Yanis et al. 2023). The advantage of 
BO is that it can handle noisy and non-convex objective 
functions, which are common in complex ANN models. (3) 
Scaled Conjugate Gradient (SCG) optimizer: The SCG algo-
rithm is an optimization technique that updates the neural 
network’s weights and biases during training based on the 
conjugate gradient method. It is well-suited for large-scale 
and highly nonlinear problems, making it suitable for ANN-
based WQI calculation. The SCG optimizer efficiently con-
verges to the optimal solution while avoiding the need to 
set manual learning rates, reducing the complexity of the 
training process (Costa et al. 2020).

The selection of specific optimization techniques for the 
ANN model was driven by a combination of their demon-
strated effectiveness in similar studies and their suitability 
for addressing the complexities of water quality prediction. 
Each algorithm was chosen for its unique strengths and com-
patibility with the objectives of this study. These algorithms 
have been successfully applied in diverse fields, including 
hydrology, environmental monitoring, and water quality 
assessment, indicating their adaptability to complex and 
dynamic systems like water bodies. Moreover, their potential 
to provide accurate predictions aligned with the objectives 
of the study further solidified their suitability for the Turag 
River.

2.4.2.1 Data Preparation for  the  Machine Learning Algo-
rithm In this study, a dataset comprising physicochemical 
parameters and heavy metals served as input data, and the 
corresponding WQI calculated using a weighted arithmetic 
index method was the output. To build the model, 50% of 
the total dataset was used for training, while the remaining 
50% was utilized for validation (Xu and Goodacre 2018).

2.4.2.2 Performance Assessment of  the  Machine Learning 
Algorithm Various statistical indices, including  R2 (coef-
ficient of determination), RMSE (root mean squared error), 
MSE (mean squared error), MAE (mean absolute error), and Ta
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the Taylor diagram, were employed to validate the model’s 
performance (Abdalla and Mohammed 2022). These indices 
collectively offer insights into accuracy, precision, and over-
all predictive capability.  R2 quantifies variance explanation, 
RMSE evaluates error magnitude, while MSE and MAE 
provide distinct accuracy perspectives. The Taylor diagram 
presents a unique visual overview of multiple metrics.

3  Results and Discussion

3.1  Onsite and Laboratory Experiments 
for Computing WQI

Table 1 presents minimum, maximum, and mean values of 
various physicochemical parameters measured in a water-
body. They include temperature (ranging from 26.45 to 
31.81 °C), pH (ranging from 6.10 to 7.63), dissolved oxy-
gen (DO) levels (ranging from 3.61 to 6.09 mg/L), and bio-
chemical oxygen demand (BOD) values (ranging from 7.32 
to 17.26 mg/L). Additionally, the table shows the total dis-
solved solids (TDS) ranging from 114.00 to 820.00 mg/L, 
turbidity from 1.39 to 9.95 mg/L, and total hardness from 
10.18 to 100.75 mg/L. The transparency of the water, meas-
ured in inches, varies from 2.08 to 6.98 inches.

These values provide essential information about the 
water quality of the studied river. The temperature, pH, DO, 
BOD, TDS, turbidity, total hardness, and transparency are 
critical parameters used to assess water quality and its suit-
ability for various purposes. The heavy metals and their cor-
responding concentrations include sodium (Na), with values 
ranging from 19.54 to 62.33 mg/L; manganese (Mn), rang-
ing from 0.00 to 0.88 mg/L; chromium (Cr), ranging from 
0.00 to 0.01 mg/L; ranging from 5.09 to 31.47 mg/L; arsenic 
(As), ranging from 0.00 to 0.02 mg/L; calcium (Ca), rang-
ing from 20.09 to 71.69 mg/L; lead (Pb), ranging from 0.00 
to 0.22 mg/L; zinc (Zn), ranging from 0.00 to 0.70 mg/L; 
copper (Cu), ranging from 0.00 to 0.85 mg/L; and iron (Fe), 
ranging from 0.00 to 0.32 mg/L (Table 1).

The observed values in water quality parameters suggest 
a dynamic interplay of natural and anthropogenic factors. 
Temperature fluctuations may be due to seasonal variations 
or thermal pollution, while pH levels could reflect agricul-
tural runoff or urban influences. Dissolved oxygen levels 
may be affected by organic matter decomposition and pol-
lution sources, with elevated BOD values indicating organic 
pollution. Total dissolved solids might be influenced by 
geological, industrial, or agricultural factors, and turbidity 
could result from sediment runoff. Total hardness may relate 
to geological conditions while water transparency can be 
affected by suspended particles and pollutants. The varia-
tions in heavy metal concentrations may be linked to local 
industrial activities or the riverbed’s geological composition. 

Seasonal changes and weather patterns may contribute to 
fluctuations in physicochemical parameters like tempera-
ture and turbidity. Precise causative factors warrant further 
investigation to understand their implications for the Turag 
River’s ecological balance.

These results provide crucial insights into the heavy metal 
concentrations in the water body, significantly assessing 
water quality and potential environmental impacts (Li et al. 
2023; Lv et al. 2022). The minimum and maximum values 
indicate the range within which the heavy metal concentra-
tions vary, while the mean value represents the average con-
centration (Keshav Krishna and Rama Mohan 2016; Panghal 
et al. 2021). Researchers and policymakers can determine 
the potential risks of heavy metal pollution by comparing 
these concentrations to established water quality standards 
or guidelines (Egbueri et al. 2021; Li et al. 2021).

3.2  Water Quality Index by the Weighted Arithmetic 
Index

In this study, a weighted arithmetic index model was 
employed to calculate WQI values, ranging from 56.31 
to 117.53 (for physicochemical parameters, Fig. 5a), with 
an average of 87.28 and WQI values, ranging from 1.84 to 
196.12 (for heavy metals, Fig. 5c), with an average of 76.06 
in the study area. The water quality evaluation utilized the 
classification technique developed by Brown et al. (1972). 
Based on the WQI values, water quality status for phys-
icochemical parameters was categorized into three types, 
“poor,” “very poor,” and “unfit for consumption” (Table 2), 
while WQI values for heavy metals were classified into five 
categories, “excellent,” “good,” “poor,” “very poor,” and 
“unfit for consumption” (Table 3). Notably, there were no 
stations classified as “excellent” and “good” water quality 
status for physicochemical parameters, while nine stations 
(30%) fell under the “excellent” category and three stations 
(10%) fell under the “good” category for heavy metals in 
the study area. In addition, from physicochemical and heavy 
metals parameters, five stations (16.67%) and 12 stations 
(40%) fell under the category of “unfit for consumption,” 
respectively. These findings shed light on the varying water 
quality conditions in the area and highlight the significance 
of continuous monitoring and appropriate management strat-
egies to enhance and preserve Turag River’s water quality.

The findings of this study indeed highlighted the signifi-
cant impact of intensified human activities on the deteriora-
tion of water quality along the Turag River. Several human 
activities were strongly correlated with a decline in water 
quality, pointing to potential pollution sources that war-
rant attention. Industrial activities emerged as one of the 
major contributors. Industries, particularly those discharging 
untreated or poorly treated effluents, can introduce heavy 
metals, organic pollutants, and other contaminants into the 
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river. Industries situated near the river's course, including 
manufacturing plants, chemical processing units, and textile 
factories, have the potential to significantly influence water 
quality negatively. Urban areas, characterized by dense pop-
ulations and various anthropogenic activities, also showed a 
strong correlation with declining water quality. Urban runoff 
from roads, residential areas, and commercial spaces can 
carry pollutants like oil, heavy metals, litter, and nutrients 
into the river. Additionally, inadequate sewage treatment 
systems in some urban areas can lead to the discharge of 
untreated sewage and organic matter, further contributing 
to water quality degradation. Agricultural practices, includ-
ing the use of fertilizers and pesticides, also played a role 
in influencing water quality. Runoff from agricultural fields 
can carry excess nutrients, sediment, and chemicals into the 
river, impacting water clarity, nutrient levels, and potentially 
promoting algal blooms.

3.3  ML‑Based WQI

In this study, WQI calculation employed the ANN machine-
learning algorithm with three optimizers: LM, BO, and 
SCG. These optimizers were utilized to train the ANN model 
and predict the WQI values. Among the three optimizers, the 

LM optimizer demonstrated superior performance compared 
to BO and SCG.

In summary, LM’s convergence speed, noise resilience, 
capacity to handle non-linearity, and compatibility with 
regression problems collectively contributed to its superior 
performance, making it the preferred optimizer for calculat-
ing WQI and improving water quality assessment and man-
agement strategies (Kadam et al. 2019; Yaseen et al. 2019). 
Consequently, the final water quality index was developed 
based on the output of the LM optimizer when used with the 
ANN algorithm. This well-structured approach ensures the 
selection of the most effective optimizer to obtain accurate 
and reliable WQI predictions, which are crucial for water 
quality assessment and management decisions (Barzegar 
et al. 2020; Salem and Elwakil 2023). Figures 5b and 5d 
depict the machine learning output based on the LM opti-
mizer. According to the spatial distribution of the result-
ing map, the WQI values ranged between 50.07 (low) and 
115.65 (high) for physicochemical parameters. Furthermore, 
the spatial distribution of WQI for heavy metals illustrated 
that the WQI values ranged from -9.40 (low) to 186.59 
(high) in the study area. The higher WQI observed in the 
location very close to the industrial zone can be justified by 
the potential impact of industrial activities on water quality. 

Fig. 5  Water quality index for physicochemical parameters and heavy metals. a A weighted arithmetic index method and b machine learning 
algorithm. c A weighted arithmetic index method and d machine learning algorithm
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This finding aligns with earlier studies (Haghnazar et al. 
2022; Ukah et al. 2020), which also reported similar obser-
vations, indicating the influence of industrial zones on water 
quality degradation. Industries often release pollutants and 
waste into nearby water bodies, increasing contaminants and 
reducing water quality (Barasarathi et al. 2022; Kanu and 
Achi 2011; Rajaram and Das 2008). The proximity to the 
industrial zone likely exposes it to a higher concentration 
of pollutants, resulting in a higher WQI value compared 
to other locations farther away from industrial influences 
(Medeiros et al. 2017; Srivastava et al. 2011; Wilbers et al. 
2014).

3.4  Correlation Matrix of Physicochemical 
Parameter and Heavy Metals

According to the heat map, representing the correlation 
matrix for physicochemical parameters, WQI is most 

strongly influenced by biochemical oxygen demand (BOD) 
with a high coefficient value of 0.91 (Fig. 6a). On the other 
hand, temperature has the lowest impact on WQI with a 
coefficient value of 0.11. By reordering the coefficient 
values in descending order of importance, the following 
sequence is observed: temperature (0.11) < dissolved oxy-
gen (DO) (0.19) < turbidity (0.35) < pH (0.36) < total dis-
solved solids (TDS) (0.38) < total hardness (0.43) < transpar-
ency (0.57) < BOD (0.91). This analysis provided valuable 
insights into the relative significance of each physicochemi-
cal parameter in calculating WQI.

A strong positive correlation between BOD and the 
WQI can be attributed to the nature of BOD as a crucial 
indicator of water pollution (Subramaniam et al. 2023; 
Taher et al. 2021; Umwali et al. 2021), which represents 
oxygen microorganisms consume while decomposing 
organic matter in water. Higher BOD levels indicate the 
presence of significant organic pollution, which negatively 

Table 3  Water quality index of the study area for heavy metals, based on a weighted arithmetic index method

Station Latitude Longitude Na Mn Cr As Ca Pb Zn Cu Fe WQI Water quality status

1 23.89079 90.39094 31.24 0.04 0.002 0.0013 30.53 0.02 0.02 0.02 0.03 19.84 Excellent
2 23.89084 90.39098 26.31 0.01 0.001 0.001 25.36 0.01 0.01 0.01 0.01 7.08 Excellent
3 23.89183 90.38992 19.54 0.00 0.001 0.0004 20.09 0.00 0.00 0.00 0.00 1.84 Excellent
4 23.89404 90.38923 28.61 0.01 0.002 0.0012 27.68 0.01 0.01 0.01 0.01 8.61 Excellent
5 23.89418 90.38928 35.19 0.04 0.002 0.0016 33.91 0.05 0.05 0.05 0.05 34.82 Good
6 23.89459 90.38875 47.88 0.07 0.002 0.0125 53.94 0.16 0.05 0.07 0.14 106.47 Unfit for Consumption
7 23.8947 90.38883 53.29 0.18 0.002 0.0195 61.34 0.18 0.59 0.07 0.21 135.41 Unfit for consumption
8 23.89572 90.38743 54.213 0.20 0.003 0.0211 69.83 0.18 0.61 0.85 0.27 141.59 Unfit for consumption
9 23.89579 90.38745 41.39 0.06 0.002 0.0021 43.39 0.11 0.01 0.06 0.08 72.07 Poor
10 23.89848 90.38494 38.97 0.05 0.002 0.0019 41.57 0.10 0.09 0.06 0.08 63.47 Poor
11 23.89853 90.38482 22.57 0.00 0.001 0.0009 22.68 0.01 0.00 0.01 0.01 4.55 Excellent
12 23.8989 90.38303 19.64 0.00 0.001 0.0003 20.14 0.00 0.00 0.00 0.01 2.25 Excellent
13 23.89948 90.38062 62.33 0.44 0.003 0.0202 71.69 0.22 0.70 0.12 0.32 196.12 Unfit for consumption
14 23.89885 90.37823 53.91 0.17 0.003 0.0199 67.67 0.20 0.60 0.08 0.24 146.03 Unfit for consumption
15 23.89764 90.37683 23.39 0.03 0.002 0.0115 45.72 0.02 0.04 0.03 0.15 22.92 Excellent
16 23.89663 90.37458 28.64 0.88 0.005 0.0185 35.45 0.02 0.06 0.06 0.19 145.37 Unfit for consumption
17 23.89635 90.3719 35.92 0.05 0.002 0.0019 38.49 0.08 0.07 0.06 0.08 52.52 Poor
18 23.8961 90.36929 33.61 0.24 0.005 0.0211 38.35 0.02 0.07 0.09 0.24 62.20 Poor
19 23.89509 90.36639 21.55 0.32 0.006 0.0169 49.38 0.14 0.05 0.11 0.27 134.49 Unfit for consumption
20 23.89457 90.36414 45.31 0.06 0.002 0.0029 50.57 0.15 0.05 0.07 0.09 93.55 Very poor
21 23.89361 90.36124 33.78 0.04 0.003 0.0175 69.49 0.21 0.07 0.01 0.05 133.06 Unfit for consumption
22 23.89264 90.36019 48.39 0.08 0.002 0.0136 55.82 0.16 0.06 0.07 0.16 111.00 Unfit for consumption
23 23.89528 90.35861 55.14 0.08 0.004 0.0214 36.41 0.19 0.03 0.12 0.31 131.30 Unfit for consumption
24 23.8973 90.35734 31.97 0.03 0.002 0.0011 31.98 0.04 0.03 0.04 0.04 26.53 Good
25 23.89833 90.35698 57.92 0.34 0.003 0.0213 70.81 0.19 0.66 0.10 0.30 163.89 Unfit for consumption
26 23.89922 90.3553 43.87 0.06 0.002 0.0025 48.45 0.14 0.02 0.06 0.09 86.32 Very poor
27 23.90041 90.35513 30.63 0.03 0.002 0.00143 29.95 0.01 0.01 0.01 0.01 12.37 Excellent
28 23.90044 90.35518 20.52 0.01 0.001 0.0006 20.25 0.00 0.00 0.00 0.01 3.59 Excellent
29 23.90147 90.35545 52.29 0.14 0.002 0.0156 59.64 0.17 0.06 0.07 0.17 125.35 Unfit for consumption
30 23.90149 90.3555 35.32 0.05 0.002 0.0017 34.23 0.05 0.05 0.06 0.06 37.24 Good
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impacts water quality and the overall ecosystem (Carr and 
Neary 2008; Kanu and Achi 2011; Shehab et al. 2021). 
As a result, higher BOD values lead to lower WQI scores, 
reflecting poor water quality. On the other hand, weak 
negative correlations observed with parameters like tem-
perature and DO can be explained by their effects on the 
aquatic environment. Warmer temperatures may accelerate 
the metabolic activity of organisms, including microorgan-
isms responsible for decomposition. This increased meta-
bolic activity can lead to a higher BOD and, consequently, 
a lower WQI. Similarly, low dissolved oxygen levels can 
indicate poor oxygen saturation in water, affecting the sur-
vival of aquatic organisms and contributing to lower WQI 
scores (Meshesha et al. 2020; Pandit et al. 2023; Rahman 
et al. 2021b).

The correlation matrix for heavy metals revealed their 
respective influences on the construction of the WQI 
(Fig. 6b). Among the heavy metals, Pb exhibits the highest 
positive influence with a coefficient value of 0.89, indicat-
ing a significant impact on the WQI. On the other hand, Cu 
has the lowest positive influence, with a coefficient value of 
0.39. Reordering the heavy metals based on Pearson’s corre-
lation coefficients in descending order of influence on WQI 
yields the following sequence: Cu (0.39) < Mn (0.64) < Zn 
(0.67) < Cr (0.68) < Na (0.78) < As (0.85) < Ca (0.87) < Pb 
(0.89). This analysis provided a precise overview of the rela-
tive impacts of each heavy metal on calculating the water 
quality index, offering valuable insights for assessing and 
managing water quality concerning heavy metal contamina-
tion (Akhtar et al. 2021; Bhuiyan et al. 2016; Ouyang et al. 
2018).

3.5  Validation

Table  4 presents the performance evaluation of three 
machine learning models for WQI calculation: LM-ANN, 
BO-ANN, and SCG-ANN. For the training dataset, the LM-
ANN model exhibited highest  R2 value (0.997), indicating 
a strong correlation between predicted and actual WQI. It 
also achieved lowest RMSE (2.5), MSE (9.05), and MAE 
(1.52), indicating minimal prediction errors. BO-ANN per-
formed well with an  R2 of 0.980 and relatively low error 
metrics, while SCG-ANN showed a lower  R2 of 0.920 and 
higher error values. This finding is consistent with previous 
studies (Deshpande et al. 2022; Hassan et al. 2021; Kadam 
et al. 2019), which also reported similar observations, fur-
ther highlighting the significant influence of industrial zones 
on water quality deterioration.

For testing dataset, LM-ANN performed excellently with 
an impressive  R2 of 0.999, showcasing the model’s strong 
predictive capabilities. It achieved a reasonably low RMSE 

Fig. 6  Heat map of Pearson correlation

Table 4  Performance of three machine learning models for WQI cal-
culation

Dataset Model R2 RMSE MSE MAE

Training LM-ANN 0.997 2.5 9.05 1.52
BO-ANN 0.980 3.7 12.15 1.92
SCG-ANN 0.920 6.7 15.90 4.90

Testing LM-ANN 0.999 3.6 11.01 1.78
BO-ANN 0.989 3.9 12.05 1.90
SCG-ANN 0.940 4.9 14.05 3.90
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(3.6), MSE (11.01), and MAE (1.78), confirming its accu-
racy. BO-ANN also demonstrated good performance with 
an  R2 of 0.989 and relatively low error metrics. SCG-ANN 
performed adequately but had a lower  R2 of 0.940 and higher 
error values than the other models.

Additionally, the Taylor diagram was constructed to 
evaluate further the performance of the different machine 
learning models for WQI calculation (Fig. 7). The diagram 
provided a comprehensive visualization of multiple statisti-
cal metrics, such as correlation coefficient (r), RMSE, and 
standard deviation (SD), allowing for comprehensive model 
comparison (Asadollah et al. 2021; Kumar and Pratap 2023; 
Rezaie-Balf et al. 2020).

The Taylor diagram analysis reaffirmed the excellent per-
formance of the LM-ANN model. It exhibited higher “r” and 
lower RMSE values than other models. Moreover, the stand-
ard deviation ratio indicated that LM-ANN model’s predic-
tions were more consistent and closer to the observed values 
than BO-ANN and SCG-ANN (Deshpande et al. 2022; Miah 
et al. 2020; Zounemat-Kermani 2012).

3.6  Comparative Analysis

Both maps (developed from a weighted arithmetic index 
and LM-ANN model) were classified into five categories: 
excellent (1), good (2), poor (3), very poor (4), and unfit 
for consumption (5) (Brown et al. 1972). The two-dimen-
sional matrix multiplication method was then applied to 
calculate similarities and dissimilarities between the maps 

(Islam and Sado 2000; Rahman et al. 2021c). In assess-
ing the physicochemical parameters, this study observed 
that 88.13% of the areas shared the same WQI values in 
both maps, as represented by diagonal elements of the 
matrix (class no.: pixel values, 1:1395, 4:7002, and 9:362, 
Fig. 8). This indicates that the intensity of WQI was con-
sistent in 88.13% of the locations across the two maps. 
The remaining 11.87% of places showed dissimilarities, 
as noted in the non-diagonal values in the matrix. Besides, 
WQI for minimum physicochemical value was above 50 
in both analyses, and it observed that the water quality 
categories start from “poor” to “unfit for consumption.” 
The transition of water quality from “excellent” at the 

Fig. 7  Taylor diagrams representing the relationship between actual and predicted results for WQI using machine learning algorithms

Fig. 8  Comparison of WQI, developed using a weighted arithmetic 
index method with WQI output from the machine learning algorithm 
(e.g., LM-ANN)
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source to “unfit for consumption” downstream along the 
Turag River is a useful observation that sheds light on 
the varying levels of pollution and anthropogenic influ-
ences. This transition can be attributed to a combination 
of diverse pollution sources that progressively impact 
water quality as the river flows downstream. The poten-
tial sources of pollution contributing to this deterioration 
include industrial discharges, municipal sewage, agri-
cultural runoff, and urban effluents. Industries release 
various pollutants, including heavy metals and organic 
compounds, into the river, which accumulate as the river 
flows downstream. Municipal sewage introduces organic 
matter and nutrients, contributing to elevated BOD and 
nutrient levels. Similarly, agricultural runoff can carry 
pesticides, fertilizers, and sediment, affecting water clar-
ity and nutrient content. Urban effluents from populated 
areas can introduce a range of contaminants, including 
pathogens and pollutants from household activities.

Similarly, in the comparative evaluation of heavy 
metals, this study revealed that 83.65% of the areas had 
identical WQI values in both maps, represented by the 
diagonal elements of the matrix (class no.: pixel values, 
1:1395, 4:7002, and 9:362, Fig. 8) (class no.: pixel values, 
1:1071, 4:1376, 9:1447, 16:1016, and 25:3404, Fig. 8). 
This indicates that 83.65% of locations shared the same 
WQI intensity in both maps. Conversely, 16.35% of places 
exhibited dissimilarities, showing variations in WQI val-
ues across the two maps. This analysis provides valuable 
insights into the degree of agreement and discrepancies 
between the two maps concerning water quality assess-
ments based on physicochemical parameters and heavy 
metals (Islam and Sado 2000). The differences between 
the models can be attributed to the variations in data vari-
ability, model complexity, and selection of input features 
(Chia et al. 2022; Deshpande et al. 2022). Additionally, 
differences in optimization methods and the presence of 
outliers may also contribute to divergent predictions.

The high percentage of similarities (88.13% for phys-
icochemical parameters and 83.65% for heavy metals) 
between the machine learning model’s WQI and the tra-
ditional index or empirical formula highlights its potential 
as a viable alternative for WQI calculation (Chia et al. 
2022; Hassan et al. 2021). This suggests that the machine 
learning approach offers a reliable and consistent means 
of assessing water quality, demonstrating its capability to 
replace or complement traditional methods with improved 
accuracy and precision (Tung and Yaseen 2020; Yaseen 
et al. 2019). These findings support adopting machine 
learning models as practical tools for water quality assess-
ment and decision-making in resource management.

3.7  Implications and Practical Applications

The findings of this work hold far-reaching implications 
across the spheres of environmental management, policy-
making, and public health, intricately influenced by the 
integration of the weighted arithmetic index, machine 
learning algorithms, and GIS techniques. Incorporation of 
a GIS enabled us to integrate geospatial data, conduct spatial 
analysis, and visualize complex water quality patterns in a 
spatial context. This approach offered valuable insights that 
might not have been as evident through traditional analysis 
methods. The unique strength of GIS lies in its ability to 
uncover spatial trends and relationships that might be missed 
by analyzing data in isolation. We identified specific regions 
where pollution sources, such as industries or urban areas, 
were contributing to localized water quality degradation. 
Moreover, maps helped us understand the spatial variations 
in water quality parameters, revealing gradients of contami-
nation and highlighting areas of concern that demanded tar-
geted interventions.

In terms of environmental management, the study’s holis-
tic assessment of water quality serves as a valuable guide for 
resource allocation and targeted interventions. The identi-
fication of pollution sources and their spatial distribution 
empowers environmental managers to prioritize mitigation 
efforts effectively. Additionally, the quantification of the 
impact of diverse parameters and heavy metals on overall 
water quality informs the design of customized strategies to 
combat pollution challenges.

In the domain of policy-making, the results of this study 
offered a data-rich foundation for crafting evidence-based 
regulations. The synergy of the weighted arithmetic index, 
machine learning predictions, and GIS visualizations allows 
policymakers to comprehend the intricate relationships 
among factors influencing water quality. This knowledge 
aids in the creation of contextually relevant standards and 
guidelines, facilitating the implementation of practical pollu-
tion control measures. Furthermore, the predictive capabili-
ties of the machine learning model enable proactive policy 
development, enabling preemptive measures against evolv-
ing water quality scenarios. Concurrently, the assessment’s 
ramifications extend to public health, where the direct impli-
cations of water quality on human well-being are profound. 
The evaluation’s capacity to quantify pollutants and potential 
health risks equips health authorities to provide timely advi-
sories and implement protective measures. This proactive 
approach mitigated the risk of waterborne illnesses, safe-
guarding communities dependent on these water resources. 
In essence, the integrated methodology not only enriches the 
understanding of water quality but also fosters a paradigm 
shift in sustainable water resource management, policy for-
mulation, and public health safeguards, all united through a 
robust synthesis of innovative methodologies.
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Furthermore, these results are instrumental in raising 
public awareness about the importance of water quality and 
the associated health risks. An informed citizenry is more 
likely to advocate for stringent pollution control measures 
and hold responsible parties accountable for maintaining 
clean water resources. These insights also have implications 
for long-term planning, facilitating the implementation of 
monitoring programs and adaptive management strategies. 
Such efforts support the continual improvement of water 
quality over time and contribute to the overarching goal of 
preserving public health, ecological equilibrium, and the 
sustainable utilization of the Turag River’s waters.

3.8  Limitations of this Study

Despite the significance of the Turag River, the study has 
certain limitations. These include constraints on the tempo-
ral scope of data collection and the availability of historical 
data, which may limit the ability to capture long-term trends 
fully. Additionally, the study focuses on physicochemical 
parameters and heavy metals, while other potential pollut-
ants may warrant future investigation.

In addition, the classification of water quality as “unfit 
for consumption” for both physicochemical parameters and 
heavy metals in certain areas raised significant concerns 
about potential health risks associated with exposure to pol-
luted water. The presence of pollutants beyond permissible 
limits suggested that the water might contain contaminants 
that could have adverse effects on human health. Substances 
such as heavy metals, pathogens, and organic pollutants can 
pose risks through direct contact, ingestion, or even inhala-
tion of contaminated water vapors. However, it is important 
to note that while the study identified areas with compro-
mised water quality, a direct assessment of the public health 
impacts was not conducted as part of this research. Quantify-
ing the precise health risks would require a comprehensive 
public health impact assessment, considering factors like the 
population exposed, the duration of exposure, and the spe-
cific health effects linked to the identified pollutants. For a 
more accurate evaluation of health risks, future studies could 
consider collaborating with public health experts to conduct 
health risk assessments. These assessments would involve 
quantifying exposure levels, understanding potential path-
ways of exposure, and analyzing health outcomes associated 
with specific pollutants. By quantifying health risks, policy-
makers and relevant authorities can make informed decisions 
regarding water quality management and develop appropri-
ate measures to safeguard public health and wellbeing.

Moreover, the integration of hydrodynamic models with 
water quality models could offer insights into pollutant 
transport and fate under varying flow conditions. Exploring 
the socio-economic impacts of water quality degradation and 
assessing the effectiveness of implemented pollution control 

measures are essential for comprehensive decision-making. 
Further studies on emerging contaminants like pharma-
ceuticals and micro plastics can address modern pollution 
challenges. Engaging local communities and stakeholders in 
collaborative research endeavors can also yield insights into 
traditional practices and community needs, fostering a more 
holistic approach to pollution management. By exploring 
these avenues, future research can deepen the understanding 
of the complexities surrounding water quality in the Turag 
River. These endeavors would contribute to more effective 
pollution management strategies, informed policy decisions, 
and a sustainable approach to preserving the health of the 
river ecosystem and the well-being of the communities 
dependent on it.

4  Conclusions

This study focused on developing and applying machine 
learning algorithms to calculate WQI in the context of 
physicochemical parameters and heavy metals using LM, 
BO, and SCG optimizers with ANN models for prediction. 
The models’ performance evaluation and comparative analy-
sis revealed that the LM-ANN model consistently outper-
formed the other two algorithms, exhibiting high accuracy 
and predictive capabilities (0.997 ~ 0.999). The Taylor dia-
grams demonstrated the reliability of the LM-ANN model, 
reinforcing its suitability for water quality assessment. 
Moreover, the analysis of similarities and dissimilarities 
between the machine learning model and traditional meth-
ods indicated a significant percentage of agreement, affirm-
ing the machine learning model’s potential as an alternate 
and robust approach for WQI calculation (physicochemical 
parameters: 88.13% and heavy metals: 83.65%). In addition, 
WQI is notably influenced by BOD, demonstrating a sub-
stantial coefficient value of 0.91. Among the array of heavy 
metals studied, Pb emerges as a dominant factor, showcasing 
a prominent positive influence with a coefficient value of 
0.89. This highlights Pb’s pronounced impact on shaping the 
WQI, signifying its pivotal role in the overall water quality 
assessment. Overall, the findings of this study contribute 
valuable insights to the field of water quality assessment and 
highlight the effectiveness of machine learning models in 
supporting water resource management and environmental 
decision-making processes.

Future studies could explore the integration of more 
advanced machine learning algorithms and comprehensive 
datasets with real-time sensor data to improve the accuracy 
and predictive capabilities of WQI calculations. Addition-
ally, investigating the potential of explainable AI techniques 
and integrating machine learning models with emerging 
technologies, such as IoT and remote sensing, could lead to 
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intelligent and autonomous water quality monitoring sys-
tems for more efficient water resource management.
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