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Abstract
High-velocity data streams present a challenge to deep learning-based computer vision models due to the resources needed 
to retrain for new incremental data. This study presents a novel staggered training approach using an ensemble model com-
prising the following: (i) a resource-intensive high-accuracy vision transformer; and (ii) a fast training, but less accurate, 
low parameter-count convolutional neural network. The vision transformer provides a scalable and accurate base model. A 
convolutional neural network (CNN) quickly incorporates new data into the ensemble model. Incremental data are simulated 
by dividing the very large So2Sat LCZ42 satellite image dataset into four intervals. The CNN is trained every interval and 
the vision transformer trained every half interval. We call this combination of a complementary ensemble with staggered 
training a “two-speed” network. The novelty of this approach is in the use of a staggered training schedule that allows the 
ensemble model to efficiently incorporate new data by retraining the high-speed CNN in advance of the resource-intensive 
vision transformer, thereby allowing for stable continuous improvement of the ensemble. Additionally, the ensemble models 
for each data increment out-perform each of the component models, with best accuracy of 65% against a holdout test parti-
tion of the RGB version of the So2Sat dataset.

Keywords  Incremental data · Satellite image classification · So2Sat LCZ42 · Sentinel-1 · Sentinel-2 · Deep learning · 
Vision transformer

1  Introduction

Since the first Landsat mission launched on 23 July 1972, 
industry, intelligence, and policy-making bodies have used 
satellite imagery as a primary source of information relating 
to land-use and land-cover change (USGS 2021). According 
to the Committee on Earth Observation Satellites database, 
as of September 2022 there are over 197 current earth obser-
vation satellite missions with a further 138 planned missions 
over the next 17 years ("The CEOS Database," 2022). The 
volume of geospatial data that is collected from satellite mis-
sions is huge. For example, the Landsat archive contains over 
10 million images as of December 2021 ("Landsat Archive 
Adds Its 10 Millionth Image," 2021). Newer missions from 
Europe, USA, China, Brazil, and India create as much data 
each year as does Landsat over a decade with most agen-
cies allowing open access to this data (Câmara et al. 2016), 
resulting in a vast volume of earth observation data available 
for analysis. The question of how to store and analyze this 
huge volume of data has been a popular field of research 
over the past decade, with various highly scalable computer 
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architectures proposed in the literature (Zhao et al. 2022). 
These architectures solve the volume problem by distribut-
ing processing over clusters of high-performance compute 
nodes (Sedona et al. 2019) using parallel processing com-
puting paradigms such as Hadoop/MapReduce (Boudriki 
Semlali and Freitag 2021; Rajak et al. 2015; Tho et al. 
2020), Spark ("Apache Sedona," 2022; Ge et al. 2019), Data 
Cubes (Appel and Pebesma 2019; "Open Data Cube," 2022; 
Simoes et al. 2021), and scalable array databases (Câmara 
et al. 2016; Cudre-Mauroux 2018; Joshi et al. 2019). The 
most popular of these is the Google Earth Engine (Gore-
lick et al. 2017) which is based around a parallel processing 
Hadoop/MapReduce architecture. A recent and comprehen-
sive survey of analytical tools used in addressing volume/
scale considerations of “big earth” data is provided by (Yang 
et al. 2019) and the reader is referred to this survey for a 
comprehensive review of current approaches.

Data volume is not the only complexity encountered in 
satellite image data analysis. A key characteristic of satellite 
imaging is that the collected image data are non-station-
ary. New, incremental images are constantly being added 
as satellites orbit the earth and transmit new data back to 
ground stations. This incremental data is an example of the 
“velocity” dimension of the so-called five Vs of “big data” 
("NIST Big Data Public Working Group," 2022), with the 
other dimensions being volume, veracity, variety, and value. 
Whilst the volume dimension is frequently considered in 
the literature with several viable approaches outlined above, 
velocity is typically overlooked, and satellite image data-
sets tend to be presented and studied as static snapshots. 
Incorporation of non-stationary data into analytical mod-
els is acknowledged as an open challenge for deep learning 
algorithms (Najafabadi et al. 2015) and there is no consen-
sus as to how to learn from streaming data, with a range 
of different techniques used depending on the application 
(Gomes et al. 2019). The body of research into classification 
of high-velocity data is largely concerned with dynamically 
adapting supervised models to add or remove features in 
response to concept drift caused by incremental data, using 
techniques such as single-feature ensembles (Parker et al. 
2012), embedded denoising auto-encoders (Vincent et al. 
2008; Zhou et al. 2012), and deep belief networks (Calan-
dra et al. 2012). Such models are adaptable, but they are 
complex and computationally demanding, thereby limiting 
uptake by framework developers (Gomes et al. 2019).

In this work we present the novel idea of a two-speed 
network ensemble that can quickly incorporate new incre-
mental data via a fast-training component, whilst preserving 
model stability using a slower-training but higher accuracy 
base component. The fast-training component model is a 
high-speed convolutional neural network (HS-CNN). The 
slower-training base component model is a Vision Trans-
former (ViT) (Dosovitskiy et al. 2020). As an ensemble, 

these two complementary network architectures produce a 
scalable, accurate, and adaptable computer vision model for 
land-use/land-cover analysis of satellite image patches as 
represented by standard climate zone labels. The two-speed 
network allows incremental data to be incorporated into 
the ensemble model more quickly than retraining the base 
component in isolation would otherwise allow. Although 
the presented technique can be applied to any “big data” 
computer vision task, a very large satellite imaging dataset 
has been chosen for the study as a useful demonstration of 
the usefulness of the proposed method in solving the real-
world problem of efficiently processing high velocity earth 
observation data.

This paper is organized as follows: Section 2 outlines 
related work and describes the principles of operation for 
the classifiers. Section 3 describes the satellite image data-
set, component and ensemble classifier network architec-
tures, and the staggered training schedule that is used to 
simulate incremental data over time. Experimental results 
are presented in Sect. 4, tabulated for both component and 
ensemble models. Results are discussed in Sect. 5, including 
a detailed analysis of the superior classification performance 
of the ensemble model over each of the component models. 
We conclude with Sect. 6 describing limitations of the study 
and detailing planned future work.

2 � Related Work

Initially, automated methods for the analysis of this data 
were based on pixel analysis since the coarse-grained image 
pixels contained features of interest within the pixel bound-
ary (Richards and Jia 2006), and comparative changes of 
discrete pixel values within the same image patch could be 
used to indicate land-use/land cover changes (Shakya et al. 
2021). Modern satellite images have pixels that are much 
smaller than typical objects of interest. Meanwhile, com-
putational methods for the analysis of satellite images have 
evolved from hand-crafted feature extraction techniques 
such as histogram analysis, GIST descriptors (Oliva and 
Torralba 2001), scale-invariant feature transform (SIFT) 
(Lowe 2004), and histogram of oriented gradients (HOG) 
(Dalal and Triggs 2005), through machine learning meth-
ods such as principal component analysis (PCA) (Hotelling 
1933), Random Forest (RF) (Du et al. 2015), Support Vec-
tor Machines (SVM) (Niknejad et al. 2014), and K-Means 
clustering (Rekik et al. 2009), to supervised deep learning 
systems. Deep learning systems combine automatic feature 
extraction and classification using multi-layer neural net-
works, typically variants of the convolutional neural network 
(CNN) first proposed by (LeCun et al. 1989).
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CNNs are a refinement of the basic feed-forward multi-
layer perceptron (MLP) class of artificial neural network. 
Whilst MLP is comprised of at least three fully connected 
layers of neurons (Rumelhart et al. 1986), the CNN uses 
convolution filters panned across the input layers to extract 
feature maps which are then pooled to achieve dimensional 
reduction (LeCun et al. 1989). Layers in a CNN are sparsely 
connected since only convolved patches of the input image 
are connected to lower layers, as shown in Fig. 1.

The combination of convolutions, sparse connections, 
and pooling allows CNNs to train very efficiently via back-
propagation. The efficiency of CNNs allows for their net-
work architecture to consist of many layers. For example, 
VGG-16 and VGG-19 are CNN networks commonly used 
for computer vision tasks, consisting of 16 and 19 layers 
respectively (Simonyan and Zisserman 2015). The CNN 
implements a hierarchy of filters that extracts course-grained 
features such as edges at the top level with progressively 
finer feature extraction (such as colors and textures) occur-
ring at deeper levels of the network (Bau et al. 2020). The 
ability of CNNs to extract finer features more efficiently than 

MLP architectures has led to the dominance of CNNs in 
many computer vision tasks including image classification, 
image enhancement, video processing, semantic segmenta-
tion, and object detection (Bhatt et al. 2021). An in-depth 
review of the history and wider applications of CNNs is 
beyond the scope of this paper, and the reader is referred to 
the recent comprehensive work by (Alzubaidi et al. 2021) 
for further reading.

Recently, competitive image classification results have 
been achieved by studies implementing a convolution-less 
architecture based on the transformer architecture commonly 
used in natural language processing (NLP) tasks (Vaswani 
et al. 2017). It was found by (Dosovitskiy et al. 2020) that 
transformer architectures could be applied to the task of 
image classification. Rather than feeding word embeddings 
into the transformer per NLP tasks, large images were bro-
ken into sequences of patches and fed into the transformer 
along with the corresponding patch position as training 
inputs to a sequence of attention modules denoted as L in 
Fig. 2. Output from the attention modules is used as input 
to a MLP header resulting in a classification output. This 

Fig. 1   Schematic for a simple two-layer CNN showing convolution, 
pooling, hidden and output layers. In this toy example, a 3 channel 
RGB image is first convolved to 12 channels followed by 24 channels. 
A pooling operation reduces dimensionality as input to a fully con-

nected hidden layer. The hidden layer is fully connected to a smaller 
output layer, with each output neuron representing the probability of 
the input image containing a label

Fig. 2   Schematic for a simpli-
fied four patch Vision Trans-
former. Realistically, the image 
would be cropped into 16 or 32 
patches. Image patches along 
with position embedding are 
input to a multi-MLP head self-
attention modules denoted L. 
Final classification is by MLP 
to determine class labels and 
confidence score
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architecture is known as a Vision Transformer (ViT). For 
small-scale training the ViT did not match classification met-
rics of modern CNN architectures, however with large-scale 
pre-training using hundreds of millions of images, the ViT 
was able to outperform CNNs on the ImageNet (Deng et al. 
2009) classification task (Touvron et al. 2021) with state-
of-the-art accuracy emerging from several studies (Chen 
et al. 2021; Dosovitskiy et al. 2020; Zhai et al. 2021). Some 
studies have also shown that the ViT architecture may be 
more robust than the CNN architecture, meaning that they 
are more stable when presented with adversarial images dur-
ing training (Zhou et al. 2022).

An extensive study into the comparative performance of 
deep learning algorithms against hand-crafted feature extrac-
tion in the context of a large and diverse satellite image data-
set was performed by (Cheng et al. 2017a). This study noted 
that handcrafted methods were typically evaluated against 
small datasets, resulting in unknown performance at scale. 
They evaluated hand-crafted, unsupervised learning, and 
deep learning algorithms against a large dataset (NWPU-
RESISC45) consisting of 31,500 high-resolution image sam-
ples with an even distribution over 45 scene classes (Cheng 
et al. 2017b). It was shown that deep learning CNN models 
outperformed (on accuracy metrics) the tested handcrafted 
and unsupervised learning algorithms by a margin of at least 
30%. A further performance boost of over 6% was achieved 
by fine-tuning off the shelf CNN models with VGG-16 
(Simonyan and Zisserman 2015) achieving the highest accu-
racy for this task of over 90%. For comparison, none of the 
tested hand-crafted or unsupervised learning algorithms in 
this study achieved accuracy greater than 45%.

Training very deep neural networks such as CNNs is 
time-consuming and resource-intensive since multiple 
passes through large volumes of training data are needed 
to establish the optimum parameter values for millions of 
neurons in the network (Li et al. 2018). This has resulted 
in several researchers calling attention to the energy con-
sumed in training and retraining these models (Dhar 2020; 
García-Martín et al. 2019). Incorporating new data into a 
deep learning model typically requires the model to be either 
fully retrained on a revised release of the entire training data 
corpus, which is time-consuming and resource-intensive, or 
fine-tuned with new training data as new samples become 
available. Unfortunately, fine-tuning using a limited set of 
new samples may lead to biasing the model to new sample 
data (Gavrilov et al. 2018; Li and Zhang 2021) unless great 
care is taken to appropriately weigh these samples during the 
training process, or alternatively impose weight constraints 
as a regularization measure (Sarle 1996).

A final complication encountered in fine-tuning pre-
trained models is that new data may also bring new labels 
requiring a revised deep learning network architecture with 
the number of output neurons matching the revised number 

of class labels. In this case, a transfer learning approach 
(Chollet 2020) is not feasible, since this requires a match 
between the neural network architecture of the source and 
target models. Knowledge distillation (Hinton et al. 2015) 
techniques using the teacher/student paradigm provide a 
means of incorporating limited new data into student models 
(Nayak et al. 2019), but these methods are in their infancy 
and not proven at scale (Abbasi et al. 2020; Czyzewski 
2021). Although adaptable to new data, one practical hin-
drance to adopting teacher/student models is the complexity 
involved in managing large numbers of resultant specialized 
student models and the question of how student model label 
scores are best combined into a domain level prediction.

3 � Materials and Methods

New data acquisition is simulated by splitting the very large 
So2Sat dataset into four increments representing four points 
in time. The 25% data split represents a point where only the 
HS-CNN is fully trained. Therefore, the classification model 
for this smallest data increment is the HS-CNN alone. At 
the 50% data split the ViT and the HS-CNN are both trained 
with 50% of the total data. At the 75% split the ViT is still 
trained with only 50% of the full data and the HS-CNN is 
trained with 75% of the data, representing the real-world 
experience in which the 25% incremental data is rapidly 
included in the HS-CNN, but not in the ViT, which is slower 
to train. At the 100% data split, both the ViT and the HS-
CNN are trained on all available data. The ensemble model 
is tested at each 25% increment against a holdout partition 
of the So2Sat data using a weighted average of the HS-CNN 
and ViT outputs. This experiment flow is depicted in Fig. 3.

It is envisaged that in a real-world implementation, this 
process of staggered training would continue indefinitely, 
using retraining of the HS-CNN to rapidly incorporate new 
data into the ensemble model whilst the ViT “catches-up” at 
a slower speed. For example, the HS-CNN could be trained 
hourly with the ViT trained on a daily or weekly basis as a 
real-world implementation of the scheme in Fig. 3. The most 
effective schedule would be determined empirically, using 
factors such as the rate of new data acquisition, compute 
resource availability, and cost.

3.1 � Datasets

The scalability advantages of the ViT architecture over the 
CNN architecture are emergent only for large-scale datasets 
(Dosovitskiy et al. 2020; Steiner et al. 2021). Additionally, 
this investigation is primarily concerned with how deep 
learning models can adapt when incremental data are added 
to large datasets. Therefore, the proposed two-speed ensem-
ble is trained against the very large So2Sat LCZ42 (So2Sat) 
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dataset consisting of 400,673 multispectral image patches 
from 42 cities at resolution of 10 m per pixel acquired from 
the Sentinel-1 and Sentinel-2 missions (Zhu et al. 2019a, 
b). The RGB subset of So2Sat used for this study contains 
376,485 image patches since it is based on the first edition 
of So2Sat which does not contain an additional 24,188 
multi-spectral test images from the second edition. So2Sat 
is an order of magnitude larger than other frequently cited 
sources of satellite/aerial data, such as UC-Merced (Yang 
and Newsam 2010), AID (Xia et al. 2017), Optimal31 (Wang 
et al. 2018), NWPU-45 (Cheng et al. 2017a), WHU-RS19 
(Xia et al. 2010), RSSCN7 (Zou et al. 2015), and SIRI-WHU 
(Zhao et al. 2015). The second largest is NWPU-45 (Cheng 
et al. 2017a) with 31,500 images.

So2Sat image patches are classified using 17 local cli-
mate zone (LCZ) labels assigned by a team using a rigorous 
workflow including peer verification and quantitative evalu-
ation resulting, in general, in human label confidence of 85% 
(Zhu et al. 2019b). Examples of each of the 17 LCZ labels 
in this dataset are shown in Fig. 4. Note that each So2Sat 
image patch measures only 32 × 32 pixels resulting in a small 
and pixelated appearance of the sample image patches, each 
being real-world dimensions of 320 m × 320 m.

The So2Sat authors established a baseline classification 
overall accuracy for several machine learning algorithms 
including RF, SVM, and attention augmented variation of 
ResNeXt (Xie et al. 2016). Overall accuracy metrics of 0.51 
and 0.54 were achieved by RF and SVM classifiers respec-
tively against the RGB version of So2Sat. The best overall 
accuracy in the source paper was 0.61 achieved using the 
ResNeXt based classifier, and this metric has been used as 
a baseline for this study. Similarly, this study makes use of 
the RGB subset of So2Sat to preserve a fair comparison to 
the So2Sat baseline metrics, since this study is focused on 
incorporating incremental data into deep learning models 

rather than state-of-the-art multi-spectral classification. It 
should be noted that classification accuracy was not the 
primary focus of (Zhu et al. 2019b), and that supervised 
machine learning classifiers including Maximum likelihood 
(ML), RF, and SVM have been employed with much higher 
accuracy in other studies of automated land-use classifica-
tion. For example, ML and SVM classifiers have been used 
to classify land-use from multi-spectral Landsat 5 images 
with accuracies of 0.80 and 0.87 respectively over 13 land-
use classes (Abbas et al. 2015). Similar results have been 
achieved for Sentinel-2 multi-spectral images using a RF 
classifier with various atmospheric correction techniques 
(Valdivieso-Ros et al. 2021) with best accuracy of 0.80 
over 10 land-use classes. A recent benchmarking study on 
the multi-spectral version of So2Sat by (Qiu et al. 2020) 
achieved the best overall accuracy of 69% using a complex 
multi-level fusion CNN with 16 filters for the width of the 
first block and a network depth of 17 layers.

3.2 � Network Architectures

We chose two distinct network architectures as a comple-
mentary pair for this study. Firstly, a ViT network architec-
ture was selected as a highly accurate and scalable image 
classification network. Secondly, a HS-CNN architecture 
was handcrafted as an image classifier for high-speed train-
ing with few parameters, ideal for the incorporation of new 
data into a computer vision model.

CNNs tend to provide excellent performance on small to 
medium-sized datasets due to the relative ease with which 
CNNs identify inductive biases by automated feature extrac-
tion. For larger datasets, the scalability of the ViT archi-
tecture outweighs the inductive bias advantage of CNNs 
resulting in better classification performance at a large scale 
(Dosovitskiy et al. 2020). For this reason, ViT architectures 

Fig. 3   Two-Speed network ensemble process flow for incremental satellite image patch classification using staggered training over four simu-
lated time intervals
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have recently been proven highly effective in remote sensing 
applications using satellite imagery achieving state-of-the-
art (Bazi et al. 2021) results across four datasets, UC-Merced 
(Yang and Newsam 2010), AID (Xia et al. 2017), Optimal31 
(Wang et al. 2018), and NWPU-45 (Cheng et al. 2017a). For 
this study, we selected a 16 patch ViT architecture using 12 
encoder layers, a hidden size of 768, MLP size of 3072, and 
12 self-attention heads, resulting in a model with 85.7 mil-
lion trainable parameters. This ViT architecture was selected 
as the smallest and least training resource-intensive option 
given the small size of the So2Sat images. The ViT used 
was pre-trained on ImageNet classes and shared with the 
community by (Morales 2021).

Although the ViT architecture is efficient and scalable, 
it requires a large number of samples before overtaking 
traditional CNNs in terms of classification metrics (Dos-
ovitskiy et al. 2020). In the case of new data added to 
an already large data corpus, complete retraining of the 
ViT would be resource expensive and time-consuming. 
For this reason, we have handcrafted a high-speed CNN 

(HS-CNN) classifier with few parameters, derived from 
the VGG architecture (Simonyan and Zisserman 2015) but 
with only three layers, each comprising two convolution 
layers. This network was designed with the objective of 
minimizing training time while maintaining good accuracy 
for classifying new data.

The number of trainable parameters for the HS-CNN is 
2.8 M. For comparison, other commonly used CNN archi-
tectures such as VGG16 (Simonyan and Zisserman 2015), 
ResNet18 (He et al. 2016), and ResNeXt (Xie et al. 2016) 
have 138.4 M, 11.5 M, and 25 M trainable parameters, 
respectively. To minimize overfitting to this very sparse 
network architecture, each pooling layer is followed by a 
dropout layer, and fully connected layers were regularized 
using an L2 regularization penalty (Ng 2004). The HS-
CNN architecture used in this paper is shown in Fig. 5. 
The HS-CNN is initialized with random weights and 
biases and trained from scratch using the So2Sat image 
patch dataset.

Fig. 4   So2Sat samples showing 
17 land-use/land-cover types 
(using standardized LCZ labels) 
with a mix of local and global 
features

(a) Bare Rock or 

Paved 

(b) Bare Soil or 

Sand 
(c) Bush or Scrub 

(d) Compact high-

rise 

(e) Compact low-

rise 

(f) Compact mid-

rise 
(g) Dense Trees 

(h) Heavy 

Industry 
(i) Large low-rise 

(j) Lightweight 

low-rise 

(k) Low plants (l) Open high-rise 
(m) Open low-

rise 
(n) Open mid-rise (o) Scattered trees 

(p) Sparsely built (q) Water    
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3.3 � Ensemble Architecture

Since the ViT breaks an image into patches (16 for this 
study) and then encodes each patch with positional embed-
ding as an input to the transformer encoder, the ViT learns 
global features of an image simultaneously with pixel values 
(Raghu et al. 2021). In contrast, since a CNN is trained by 
learning the co-relationships of overlapping small arrays of 
pixels, the CNN learns pixel-based local features first, with 
long-range global features becoming emergent as training 
proceeds. We expect that the contrasting learning strategies 
of ViT and HS-CNN make these models good candidate 
components for an ensemble model (confirmed in results 
Sect. 3.3), whereby outputs from each component model are 
combined via a weighted averaging algorithm to arrive at a 
final prediction according to Eq. 1.

Here, p is the predicted score for samples from the i 
classifier and w is the weight assigned to predictions from 
that classifier. As we are combining outputs of two classi-
fiers, n = 2. In this study, each classifier has been assigned a 
weight ranging from 0.1 to 0.9 with steps of 0.1 with each 
classifier’s weights adding to unity on each test. An indus-
trial-strength implementation of the proposed staggered 
learning scheme would include the classifier weights as a 
learnable parameter to automatically optimize the predictive 
value of the ensemble.

(1)p =

∑n

i=1
pi × wi

∑n

i=1
wi

3.4 � Staggered Training Schedule

Since this study is concerned with additional data at four 
points in time, four classification models are used in testing 
as detailed in Table 1. After an initial time interval, CNN-
25 is a HS-CNN, trained and validated on 25% of the data 
and representing a point in time (T1) where there has been 
sufficient time to train the HS-CNN but not the ViT. ENS-50 
represents the point in time (T2) where the ViT has com-
pleted training on 50% of the data along with the CNN also 
having been trained on 50% of the data. ENS-75 represents 
a point in time (T3) partway through the next ViT training 
cycle where the ViT model is still only available as trained 
on 50% of the data, but the high-speed CNN has been trained 
on 75% of the data. Finally, ENS-100 represents a point in 
time (T4) where both classifiers are fully trained on 100% 
of the data.

Fig. 5   HS-CNN architecture 
overview based on a VGG-
like structure with three layers 
and additional regularization 
designed to minimize training 
time whilst avoiding overfitting

Table 1   A staggered training schedule was used to mimic the avail-
ability of new data at four points in time denoted as T1 to T4

The high-speed CNN is trained every incement. The ViT is trained 
every two increments. Ensembles are created at each increment using 
the most completely trained component model

Model name Time 
increment

Training 
data (%)

CNN 
training 
(%)

ViT training (%)

CNN-25 T1 25 25 None
ENS-50 T2 50 50 50
ENS-75 T3 75 75 50
ENS-100 T4 10 100 100



532	 M. J. Horry et al.

1 3 Published in partnership with CECCR at King Abdulaziz University

3.5 � Experiment Setup with Incremental Data 
Simulation

The So2Sat corpus is available as a TensorFlow dataset pro-
viding both multi-channel and JPEG encoded red, green, and 
blue (RGB) images. For this study, we selected the RGB 
subset to allow for a fair comparison with the deep learn-
ing classifier results from the So2Sat source paper (Zhu 
et al. 2019b) and also to generalize the approach to other 
three-channel, visible spectrum computer vision tasks. The 
So2Sat dataset includes a standard split for model training 
and testing purposes. This split provides a total of 352,366 
images for training/validation and 24,119 for holdout test-
ing. Each model was trained and validated on increasing 
25% increments of the training data but tested against the 
entire holdout testing corpus to provide a fair comparison 
of predictive capability at each simulated time increment. 
Training data was augmented with random left/right/up/
down flipping along with random brightness, contrast, and 
saturation operations. Testing data was not augmented in 
any way. All images were shuffled before being used to train/
test classifiers to eliminate sampling biases that may have 

been caused by data collection order, for example local geo-
graphical confounders such as a regional standard for roofing 
materials, building, and industrial layouts.

3.6 � Compute Configuration

All experiments were executed on the University of Technol-
ogy Sydney Interactive High Performance Compute environ-
ment, using hardware and software as described in Table 2.

4 � Results

4.1 � Model Training and Validation

Training curves for the ViT and HS-CNN classifiers, when 
trained against the complete So2Sat training data set, are 
presented in Fig. 6a and b. The ViT classifier training chart 
shows good convergence without overfitting with excellent 
validation accuracy of 0.92. The HS-CNN training curve 
also shows good convergence, especially for a scratch-
trained network, but with an overall lower validation accu-
racy of 0.82. Training convergence was essentially identical 
regardless of the data split used, with the only noticeable 
difference being a slower convergence for the ViT classifier 
when trained with the 25% split.

Table 2   Summary of hardware and software configuration for this 
study

Hardware Software

CPU: Intel Xeon E-2288G @ 3.70 GHz OS: Red Hat 
Enterprise 
Linux v7.9

Memory: 64GiB Python: 3.8.12
GPU: Nvidia Quadro RTX 6000 with CUDA v 

11.2
TensorFlow: 2.7.0

Fig. 6   Training curves for component models trained for 10 Epochs for the full So2Sat training dataset. a ViT training converged, resulting in 
high validation accuracy of 0.92. b HS-CNN training converged, reaching a validation accuracy of 0.82
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4.2 � ViT and HS‑CNN Training Metrics and Holdout 
Testing

Training and validation results for the ViT and HS-CNN 
are presented in Table 3. The HS-CNN achieved a best 
holdout test overall accuracy of 0.61 when using 25% 
of the training data and 0.60 when using the full train-
ing data set. This is lower than the benchmark of 0.61 
set by (Zhu et al. 2019b) using complex attention aug-
mented ResNeXt architecture but still a reasonable result 
given that the HS-CNN has an order of magnitude less 
training parameters (2.8 M vs ~ 25 M) than the ResNeXt 
architecture used in that study (Xie et al. 2016). The HS-
CNN meets its design objective of good accuracy at high 
training speed, with the full training dataset of 317,129 
images processed in 28 min. As expected, the ViT showed 
improved performance over the HS-CNN with peak over-
all accuracy of 0.63 using 50% of the training data, drop-
ping to 0.62 when 100% of the training data was used. 
It is likely that this minor drop in accuracy at the 100% 
dataset increment is an indicator that the network has 
started to overfit, given that the validation overall accu-
racy (OA) metric showed a minor increase in accuracy 
for the same data increment. The ViT performance repre-
sents a marginal improvement on the benchmark overall 
accuracy of 0.61. The ViT took over 4 h to train with the 
full training set, which is over 8 times the training time 
of the HS-CNN.

4.3 � Ensemble Model Holdout Testing Results

Three ensemble models were created using variously trained 
HS-CNN and ViT models as follows:

1.	 ENS-50 consisting of the HS-CNN and the ViT each 
trained on 50% of the training data,

2.	 ENS-75 consisting of the HS-CNN trained on 75% of the 
training data and the ViT trained on 50% of the training 
data, and

3.	 ENS-100 consisting of the HS-CNN and the ViT each 
trained on 100% of the training data.

Results of holdout testing for the models at each time 
increment are presented in Table 4. At time increment T1 
using 25% of the training dataset partition, the only trained 
model is the HS-CNN. Therefore, results are identical to 
those obtained using HS-CNN at a 25% training split. For 
time increment T2, the ViT and HS-CNN are both trained 
using 50% training data. At time T3, the ViT and HS-CNN 
are trained on 50% and 75% of training data, respectively. 
At T4, both the ViT and the HS-CNN are trained on 100% 
of training data. This allows the HS-CNN and ViT to be 
combined with predictions used as inputs to the weighted 
averaging function described in Eq. 1. A scripted experi-
ment varied the HS-CNN:ViT weighting by 10% from 10:90 
to 90:10. Best, and identical, results were achieved using 
ENS-75 with weighting ratios of 40:60, 50:50, and 60:40 
as shown in Fig. 7.

Table 3   Base model training 
metrics summary for each data 
increment

Holdout test results were obtained against the full So2Sat test set of 24,119 images regardless of training 
data increment

Data split (%) Training 
image count

Validation 
image count

Training time 
(h:mm:ss)

Validation OA Holdout test OA

HS-CNN ViT HS-CNN ViT HS-CNN ViT

25 81,044 7,048 0:07:23 1:03:45 0.78 0.82 0.61 0.63
50 158,565 17,618 0:14:36 2:04:30 0.81 0.89 0.60 0.63
75 239,609 24,665 0:21:35 3:07:29 0.81 0.91 0.58 0.62
100 317,129 35,237 0:28:34 4:09:39 0.82 0.92 0.60 0.62

Table 4   Results of inference 
for each staggered training time 
interval

Holdout test results were obtained against the full So2Sat test set of 24,119 images. Ensembles were 
weighted 50:50 for each classifier

Model Time incre-
ment

Total training time Precision Recall F1 OA Kappa

CNN-25 T1 0:07:23 0.59 0.61 0.58 0.61 0.57
ENS-50 T2 2:19:06 0.63 0.64 0.62 0.64 0.60
ENS-75 T3 2:29:05 0.64 0.65 0.63 0.65 0.61
ENS-100 T4 4:38:03 0.64 0.64 0.63 0.64 0.61
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The result of holdout testing including the combined 
models is provided in Table 4. In general, the overall accu-
racy results at times T2, T3, and T4 given by the combined 
models are better than those of either component model 
at the same data partition. ENS-50, comprising HS-CNN 
trained on 50% data and ViT also trained on 50% data, 
achieved an overall accuracy of 64% on the holdout test. 
The highest overall accuracy was achieved by ENS-75, com-
prising HS-CNN trained with 75% data and ViT trained on 
50% data. This ensemble achieved an overall accuracy of 
65%, which is an improvement over the baseline overall 
accuracy of 61% (Zhu et al. 2019b). This result also repre-
sents an improvement in overall accuracy of the component 
HS-CNN and ViT classifiers (at the equivalent data split 
T3) being 58% and 62%, respectively. Such an improvement 
may be considered empirical to this study/dataset, and fur-
ther investigation is needed to prove a more generalized link 
between the ensemble architecture employed and this small 
improvement in overall accuracy. ENS-100, consisting of 
an ensemble of fully trained HS-CNN and ViT achieved an 
overall accuracy of 64%. This represents a 1% reduction in 
overall accuracy at T4 compared to T3, and can be inter-
preted as a likely result of minor overfitting of the HS-CNN 
as indicated by the uptick in validation loss visible in Fig. 6b 
from epoch 7.

Where classes are highly imbalanced in object classifica-
tion tasks, an algorithm may return artificially high accuracy 
metrics simply by classifying all samples as a majority class. 
For this reason, the measures of precision and recall are 
frequently used to report the quality and sensitivity of an 
algorithm, respectively. Precision is the proportion of true 
positive labels that are assigned by an algorithm against the 
sum of true positive labels and false positive labels. Recall is 
a measure of the correctness of the labels assigned for each 
class calculated as true positive labels divided by the sum 
of true positive labels and false negative labels. F1 score 

is the harmonic mean of the precision and recall metrics 
(Pedregosa et al. 2011). Finally, since precision, recall (and 
thereby F1) metrics do not take account of true negative 
the Cohen’s Kappa coefficient of agreement (Artstein and 
Poesio 2008) is frequently employed in remote sensing stud-
ies to eliminate the role of pure chance from reported met-
rics, thereby providing a better real-world measure of the 
algorithms utility.

Precision and recall metrics were well balanced for all 
tests indicating that the accuracy was not achieved through 
simple over-classification of majority classes. The Cohen’s 
Kappa score for the ensemble classifiers was in the range 
0.60–0.61, indicating a moderate level of agreement between 
the predicted and true labels.

To illustrate the effectiveness of the ensemble approach 
in relation to both accuracy and efficiency, Fig. 8 presents 
comparative plots of all tested models. Figure 8a shows that 
the combined models improved accuracy over component 
models for all models at all data partitions. ENS-75 pro-
vided the highest accuracy of all tests with training time 
approximately half that of the fully trained ViT model as 
shown in Fig. 8b.

4.4 � Ensemble Model Classification Analysis using 
Confusion Matrices

Confusion matrices associated with each classifier and the 
ensemble at training interval T3 were generated to analyze 
the relative strengths of each approach. The confusion matri-
ces for HS-CNN, ViT, and ENS-75 are shown in Fig. 9a, b, 
and c, respectively.

As the ViT achieved higher overall accuracy than the HS-
CNN we first consider the class labels contributing most to 
this accuracy delta. The top three such classes are “Open 
high-rise”, “Bare rock or paved”, and “Bare soil or sand”. 
The HS-CNN failed to classify any “Open high-rise” cor-
rectly, and instead classified the majority (n = 442) of true 
“Open high-rise” as “Open mid-rise”. Recalling Fig. 4l and 
n as examples of these two classes, the “Open high-rise” 
examples show regular building alignments that are not pre-
sent in the open mid-rise. The pattern of these regular align-
ments is apparent as long-range diagonal features, explaining 
the ViT superior performance in classifying these classes. 
Similarly, the ViT outperformed the HS-CNN in separating 
the classes with sparse local features such as the “Bare” 
classes in Fig. 4a and b, where the visible features are long-
range features across the image patch, such as topographical 
features in the case of bare rock or paved, or sand dune for-
mations in bare soil or sand. The two classifier types provide 
similar performance for image classes that lack long-range 
features such as water, dense trees, and bush or scrub, as 
evident from the confusion matrices in Fig. 9.

Fig. 7   Ensemble weighting results. Effect of different weight ratios 
for ensemble component models. Best accuracy is achieved using a 
balanced HS-CNN:ViT weighting ranging from 40:60 to 60:40
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To further investigate the differences between the ViT and 
the HS-CNN, class activation maps were generated for the 
divergent classes are shown in Fig. 10a–i. Class activation 
mapping is a technique that provides a visual representation 
of the parts of an image that gain the attention of a deep 
learning algorithm (Zhou et al. 2016) via an image overlay 
of pixel intensity at the last convolution layer of the network.

Figure 10b illustrates the ViT attention to the long-range 
feature of building alignments for the Open high-rise class 
whereas the HS-CNN in Fig. 10c attends to less focused 
regions of pixels that are a mix of buildings and open space, 
resulting in the HS-CNN proving to be unable to distinguish 
between Open high-rise and Compact high-rise, Open mid-
rise, and Heavy Industry. In a similar manner, Fig. 10e illus-
trates the ViT attending to the bare rock feature in the upper 
right corner of the image patch, which is an area of low 
attention to the HS-CNN 10(f). Finally, the ViT appears to 
have identified sand dune areas in Fig. 10h with the HS-
CNN failing to attend to any feature at all in Fig. 10i. The 
“Bare soil or sand” image patch is featureless to the HS-
CNN since it is poor at identifying the long-range sand dune 
edges when compared to the ViT.

5 � Discussion

Incorporating new data into deep learning computer vision 
systems will remain a challenging problem, since complete 
re-training of such systems is resource-intensive, and alter-
nate methods such as teacher-student modelling, and fine-
tuning with new data are also problematic. Increases in com-
puting power over time, particularly GPU processing, tend 
to be quickly consumed by the desire to train deep learning 

systems on more significant numbers of high-definition 
images, thereby instantly consuming compute improve-
ments. The proposed two-speed ensemble network com-
prising a low-parameter HS-CNN combined with a slower 
but more accurate ViT provides a practical means of incor-
porating incremental data to a large dataset by leveraging a 
staggered training schedule, with our experiments confirm-
ing lower overall training time needed to reach maximum 
accuracy. Additionally, the complementary natures of these 
different deep learning architectures lead to improved classi-
fication metrics for the So2Sat dataset with accuracy of 65% 
achieved in holdout testing, using a fully trained HS-CNN 
and a ViT trained on 50% of the complete data corpus. This 
result improves on the overall accuracy baseline of 61% and 
is, to the best of our knowledge, the current state-of-the-art 
for the RGB version of the So2Sat dataset.

Although the objective of this study was to improve effi-
ciency of incremental image patch classification for very 
large datasets, the contributing factors to our results were 
interesting. Image classes that were better separated by the 
ViT over the HS-CNN were identified, with network atten-
tion maps indicating that the ViT is superior to the HS-CNN 
in detection of long-range features, even in the small So2Sat 
image patches where such features are limited to around 
10 m. The suitability of the ViT for identifying long-range 
features stems from the ViT inclusion of patch position rela-
tionships in training input, whereas the HS-CNN training 
input is limited to highly localized pixel arrays without posi-
tion context. Therefore, the ViT can better train on features 
that span the image patch, such as building alignments and 
topographical features, making this architecture highly suit-
able for land-use classification.

Fig. 8   Comparison of holdout test accuracy results for all models 
including HS-CNN, ViT and ensembles. a is Classification Accuracy 
by Training Data Size. Ensemble models composed of ViT and Light-
weight CNN show higher accuracy with less training data than ViT 
or CNN trained on larger datasets. b is Classification Accuracy by 

Training Duration. Ensemble model consisting of ViT trained on 50% 
data and Lightweight CNN trained on 75% of data provides the best 
accuracy of 65% with training time approx. 40% lower than a fully 
trained ViT
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In summary, this study shows that the high resource cost/
training time required by a ViT architecture can be mitigated 
by combining it with a low-parameter count HS-CNN that 
can quickly retrain with new incremental data, with better 
results than the ViT alone trained on the same dataset.

6 � Conclusions

This study presents a first investigation into the use of a 
two-speed network as a means of incorporating incremental 
data into deep learning-based classification schemes. Our 
focus was on showing that the proposed method succeeds at 
this task, with potentially broad-ranging application to other 
domains where new image data is generated at high velocity. 

This limited the study in two ways. Firstly, although the 
So2Sat dataset provides multi-band data, we have restricted 
our experiments to the visible spectrum to facilitate repro-
ducibility beyond the remote sensing use case. Secondly, we 
restricted the study to deep learning-based algorithms, rather 
than the combination of hand-crafted feature extraction with 
RF or SVM classifier commonly employed in remote sensing 
studies. Our next study will further investigate the remote 
sensing use case, using multi-spectral images to improve 
the goodness of fit along with side-by-side comparisons of 
ensembles composed of both deep learning and machine 
learning classifiers such as RF, SVM, and clustering.

In the future, we intend to progress the two-speed net-
work to an industrial trial whereby empirical performance 
data will be used to tune the ViT and HS-CNN architectures, 

Fig. 9   Confusion matrices relating to the best ensemble model ENS-75. a Lightweight CNN trained on 75% of data. b 16 patch ViT using 50% 
of training data. c Ensemble model ENS-75 taken at T3
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hyperparameters, and classifier weightings, resulting in a 
domain-specific ensemble that is efficient to train and adapt-
able to new data. This will provide a valuable tool for stra-
tegic planning agencies to formulate actions in response to 
changes in the landscape. We also note that the proposed 
two-speed network approach allows the model production 
release to be undertaken using an agile software method-
ology/pipeline, whereby the resource costly ViT model is 
considered a major release, with the frequently updated HS-
CNN model component considered to be a point release. 
Such as scheme would allow for stable continuous improve-
ment of computer vision models in a manner that has not 
been previously reported in the literature. Finally, we are 
investigating how the two-speed network ensemble might 
be enhanced by the inclusion of a few-shot learning engine 
based on an edge-labelling graph neural network as sug-
gested by (Kim et al. 2019) as a means of adding real-time 
classification capability for previously unseen image classes.
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Fig. 10   ViT activation maps 
for class labels more accurately 
separated by the ViT over the 
HS-CNN. a Open high-rise with 
b Open high-rise ViT activa-
tion map accurately tracking the 
building alignment, and c Open 
high-rise HS-CNN activation 
map also tracking the building 
alignment but at a much lower 
resolution. d Bare rock or paved 
with e ViT activations tracking 
long-range topographical fea-
tures as a feature in the top right 
corner, and f HS-CNN also 
tracking some topographical 
features but with poor resolu-
tion resulting in widespread 
activation over the image and 
no attention to the bare rock in 
the top right corner, g Bare soil 
or sand with h ViT activations 
again tracking the long-range 
sand dune edges, and i HS-CNN 
with no relevant activations for 
this patch attributable to lack of 
long-range attention

(a) Open High-Rise Image Patch 
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Activations 

(c) Open High-Rise HS-CNN 
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(d) Bare Rock/Paved Image Patch 
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(g) Bare Soil/Sand Image Patch 
(h) Bare Soil/Sand Activations 

ViT Activations 
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