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Abstract
Hydrological models are viewed as powerful tools that have a major importance for managing water resources and predict-
ing flows. It should be specified that the meteorological parameter rainfall is the main input in these models. In the current 
study, data from only one rainfall station are available over the analysis domain, which cannot represent the entire Hammam 
Boughrara watershed of Algeria. The precipitation data remotely detected by the tropical rainfall measuring mission (TRMM) 
provide good spatial coverage in the watershed and can be used to fill in the missing data. The use of raw TRMM data 
gives poor results from the simulated flow rates with a Nash–Sutcliffe efficiency NSE equal to 0.34 for the validation period 
that ranges from year 2000 to 2005; this is mainly due to uncertainties in the TRMM data. For this reason, it was deemed 
necessary to carry out a performance test of the model. The results obtained give an unsatisfactory percent bias (PBIAS) 
of − 46.24%, which suggests the need to perform a correction to decrease the PBIAS of satellite precipitation. For this, two 
methods were used: the linear regression method and the multiplicative method. These two techniques can only be applied 
if there is at least one rainfall measurement station available in the watershed. The obtained results are very satisfactory 
since the PBIAS reaches − 0.62% for the linear regression method and − 11.58% for the multiplicative method. In addition, 
the use of corrected TRMMs gives also very good results with a Nash–Sutcliffe efficiency that ranges from 0.74 to 0.88 for 
both validation and calibration periods. Overall, the current study is supportive to estimate the satellite-based rainfall, one 
of the very sensitive to measure the meteorological parameter, in northwestern Algeria.
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1 Introduction

Hydrological modeling is an effective procedure for under-
standing the hydrological process in a watershed and at the 
same time, it constitutes a tool for monitoring, planning and 
management of water resources (Rahmana et al. 2020; Tuo 
et al. 2016; Wellen et al. 2015). Rainfall is the main input 
parameter in rainfall–runoff simulation models. However, 
in arid and semi-arid zones, and particularly in developing 
countries, rainfall data are lacking due to the unavailabil-
ity of rain gauges stations (Kenabatho et al. 2017; Lekula 
et al. 2018). Therefore, approaches such as remote sensing 
through the use of satellite data are a way to fill gaps in the 
recorded rainfall data. When it comes to downloading rain-
fall estimate data from satellite, there are several internet 
sources. These include among others, TRMM sensor pack-
age, famine early warning systems network rain fall esti-
mation (FEWS-Net RFE), climate prediction center (CPC) 
morphing technique (CMORPH) and precipitation estimates 
from remotely sensed information using artificial neural net-
works (PERSIANN) (Lekula et al. 2018). However, a major 
problem arises regarding the reliability of the simulated 
precipitation compared to the observed one. In this context, 
several studies have focused on evaluating the accuracy of 
satellite rainfall data. The results were found to oscillation 
between satisfactory and unacceptable, depending on the 
study case. This suggests that corrections should be made 
to improve the quality of these results (Kawo et al. 2021; 
Khairul et al. 2018; Ma et al. 2019).

In this study, the main objective is to simulate the run-
off in a watershed located between two countries: Algeria 
and Morocco. It is useful to specify that recorded data from 

the single pluviometric station and the monthly outflows in 
the Algerian part are quite well known, while those of the 
Moroccan part are completely unknown. It should be noted 
that one single rainfall station is not sufficient for the hydro-
logical modeling. Therefore, the estimation of rainfall from 
satellite constitutes a solution as the recorded data can cover 
the entire watershed. In this context, several studies have 
indicated that hydrological modeling using TRMM data to 
estimate flows has given satisfactory performance (Meng 
et al. 2014; Wang et al. 2020; Soo et al. 2020). This encour-
aging result prompted us to investigate the same choice. It is 
worth specifying that the discharge forecast was made using 
the Zygos model.

2  Materials and Methods

2.1  Study Area

The watershed of Hammam Boughrara (Fig.  1), which 
has a semi-arid Mediterranean climate, is located between 
longitudes 1° 27′ W–2° 15′ W and latitudes 34° 19′ N–34° 
59′ N in the northwestern of Algeria. It covers an area of 
2921  km2, of which 57% is located in the Algerian terri-
tory and 43% in the Moroccan territory. With a capacity 
of 177 million  m3, the Hammam Boughrara Dam was built 
in 1999 at the outlet of the watershed. This dam is fed by 
the confluence of three rivers, namely Wadi Mouilah, Wadi 
Mohguen and Wadi Tafna. Wadi Mouilah is the main tribu-
tary; it is 124 km long (Fig. 1). This Wadi is called Wadi 
Sly and Wadi Bounaim on the Moroccan side, and Wadi 
Mouilah in Algeria.

Fig. 1  The study area map
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2.2  Data Used

In this study, the monthly observed data from the pluvio-
metric station as well as the water inflows recorded at the 
Hammam Boughrara Dam were provided to us in Table 1. 
To complete the missing data, it was deemed necessary to 
use the monthly satellite values for TRMM 3B43V7 pre-
cipitation and GLDAS_NOAH025_M.V.2.1 for monthly 
evapotranspiration. All these data can be downloaded free 
of charge from the Giovanni website (https:// giova nni. gsfc. 
nasa. gov/ giova nni/). For this purpose, it is decided to con-
sider nine satellite data points, spatially distributed to cover 
the entire watershed, as shown in Fig. 1.

2.3  Bias Correction

The use of bias correction aims at optimizing as much as 
possible the consistency between the simulated precipita-
tion and the observed precipitation. This action can have a 
positive impact in rainfall–runoff modeling. Note that in this 
work, consistency will be checked by making a comparison 
between the use of raw TRMM data and observed precipita-
tion (Pobs). Several bias correction techniques, ranging from 
simple to complex, exist in the literature (Davis 1976; Ines 
and Hansen 2006; Kharin and Zwiers 2002; Schmidli et al. 
2006). In the present study, two simple selected techniques 
are used. They are presented below.

2.3.1  Multiplicative Shift Technique (M)

This method (Ines and Hansen 2006) consists in applying 
a multiplicative factor to correct the satellite precipitation 
as follows:

where M : multiplicative factor. i = 1:N, N: number of obser-
vations. TRMM(M) : monthly TRMM corrected by multipli-
cative shift technique method. Pobs and TRMM : monthly 
average of Pobs and TRMM.

(1)TRMM(M)i = TRMMi ⋅M,

(2)with M =
Pobs

TRMM
,

2.3.2  Linear Regression (R)

The principle of this method (Kharin and Zwiers 2002) con-
sists in studying the correlation between the TRMM with 
Pobs data. If the coherence between these two last types of 
data gives satisfactory results, then a correction should be 
made on the TRMM data using the linear regression line 
given by:

where the coefficients a0 and a1 are:

2.4  Hydrological Modeling

The Zygos model is a conceptual rainfall–runoff modeling 
tool which uses the reservoirs that schematically represent 
the soil and subsoil. This model is a simplified version of 
a semi-distributed simulation scheme that was developed 
at the National Technical University of Athens (NTUA) 
(Efstratiadis and Koutsoyiannis 2002; Rozos et al. 2004). It 
is similar to the Thornthwaite water balance model (Kozanis 
et al. 2010).The input and output parameters of the Zygos 
model are given in the following Table 2:

The Zygos model includes several parameters that allow 
defining the distribution of flows and the characteristics of 
each reservoir (Fig. 2). In addition, the Zygos model has a 
valve control system in open and closed mode, in order to 
truly represent the nature of the flows in each reservoir in 
the studied medium. These flows are the subsurface flow, the 
percolation, groundwater flow and the out flow catchment.

If the geological and hydrogeological environments are 
unknown, tests are carried out through the opening or clos-
ing of the functionalities of these flows in order to obtain the 
best optimization of the simulated runoff rate in comparison 
with the actual runoff rate. This option is done by iterating 
the eleven (11) variables of the calibration parameters (cp) 
until reaching the optimal value of NSE coefficient.

(3)TRMM(R)i = a0 + TRMMi ⋅ a1,

(4)a1 =
Cov

(

TRMMi, Pobsi
)

Var
(

TRMMi

) ,

(5)a0 = Pobs − a1 ⋅ TRMM.

Table 1  Data type and sources Datasets Unit Period Number of 
stations

Data source

Pobs mm/month 2000–2019 1 Water Resources Depart-
ment of Tlemcen city, 
Algeria

Runoff m3/month

TRMM mm/month 2000–2019 9 Giovanni website
Evapotranspiration kg/m2/s

https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
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The model simulates the runoff as follows (Kozanis 
et al. 2010):

• Runoff has four components

where Qc : calculated runoff; Qis : runoff on imperme-
able surfaces; Qss : runoff on saturated surfaces; Qsub : 
subsurface flow; Qg : groundwater flow.

• Surface hydrology processes
  Surface and subsurface flow simulations are per-

formed using the following calculation steps:

– Qist = k(Pt −min(εPt,EPt
)),

– Sint = St−1 + Pt −min(εPt,EPt
) − Qsit,

– Qsst = max
(

0, Sint − K
)

,

– Sint = Sint
[

1 −
(

1 − e−(EPt
−min(εPt ,EPt

))∕K
)]

− Qsst,

– Qsubt = max
{

0, λ
(

Sint − H1

)}

,

– Sint = Sint − Qsubt,

– Pert = max
(

0, μSint
)

,

– Sint = Sint − Pert, where Pt : monthly time series of 
precipitations; EPt

 : monthly time series of poten-

(6)Qc = Qis + Qss + Qsub + Qg ,

tial evapotranspiration; k (cp) : excess rain rate due 
to impermeable surfaces; ε(cp) : rain rate available 
to have direct water evaporation from the soil; S: 
soil moisture storage; Sint(cp) : initial soil moisture 
storage; K (cp) : maximum soil storage capacity; 
λ(cp) : discharge rate of the soil moisture tank, for 
production of the subsurface flow; H1(cp) : soil 
moisture reservoir level for the production of sub-
surface flow; Pert ∶ percolation; μ(cp) ∶ discharge 
rate of the soil moisture tank, for production of the 
percolation.

• Groundwater hydrology processes
  Groundwater flow is performed using the following 

calculation steps:

– Rint = Rt−1 + Pert − Pumt,

– Qgt = max
{

0, ξ
(

Rint − H2

)}

,

– Rint = Rint − Qgt,

– Qoutt
= �Rint,

– Rint = Rint − Qoutt
, where R: groundwater storage; 

Rt−1(cp) ∶ Initial reserve of the groundwater; Pumt : 
volume of the water pumped from the aquifer; ξ(cp) : 
discharge rate of the groundwater tank, for produc-
tion of the groundwater flow; H2(cp) : groundwater 
reservoir level for production of groundwater flow; 
�(cp) : discharge rate of the groundwater tank, for 
production of the outflow going outside the water-
shed; Qoutt

 : outflow going outside the watershed.

2.5  Operational Testing of Hydrological Simulation 
Models

The validation of the hydrological model is made with the 
split sample test (Klemes 1986). The principle consists of 
segmenting the sample into two different ways as follows:

a. The first 70% of the sample is reserved for calibration 
and the remaining 30% for validation.

b. The first 30% of the sample is reserved for validation and 
the remaining 70% for calibration.

The robust model is that gives satisfactory results in both 
cases.

2.6  Performance Test

To assess the efficiency of rainfall, it was deemed interesting 
to use the percent bias (PBIAS) and the determination coef-
ficient (R2), while the NSE criterion was used to assess the 
rain flow. Statistical analysis was performed using statistical 
standard tools.

Table 2  Zygos model input and output parameters

Input parameters Output parameters

Rainfall Simulated runoff
Potential evapotranspiration Evapotranspiration
Measured runoff Percolation
Pumping Outflow going outside the watershed

Soil storage
Ground storage
Error between observed runoff and 

simulated runoff

Fig. 2  Schematic view of Zygos rainfall–runoff model (Kozanis et al. 
2010) modified
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2.6.1  Percent Bias

It gives an indication of the error which exists between the 
observed data and the simulated ones. The optimal percent 
bias value is 0. Positive values indicate that the model has 
a bias that tends towards underestimation, while negative 
values indicate that the model has a bias that tends towards 
overestimation (Gupta et al. 1999). The percent bias is given 
by:

The PBIAS performance ranges are shown in the follow-
ing (Moriasi et al. 2007): unsatisfactory |PBIAS| ≥ 25%; sat-
isfactory 15% ≤ |PBIAS| < 25%; good 10% ≤ |PBIAS| < 15%; 
very good |PBIAS| < 10%.

2.6.2  Coefficient of Determination

Pearson’s linear coefficient of determination is used to 
assess the fit quality of the linear regression. Recall that the 
coefficient of determination is the proportion of variability 
obtained by the mathematical model compared to the total 
variability observed (Legates and McCabe 1999).

It is calculated by the following formula:

It should be indicated that R2 varies between 0 and 1. 
Values close to 1 indicate that there is a strong correlation 
between observed and simulated data. Generally values 

(7)PBIAS =

∑N

i=1

�

Pobsi − TRMMi

�

∑N

i=1
Pobsi

× 100%.

(8)

R2 =

∑N

i=1

�

Pobsi − Pobs

�

⋅

�

TRMMi − TRMM

�

∑N

i=1

�

Pobsi − Pobs

�2

⋅

∑N

i=1

�

TRMMi − TRMM

�2
.

superior to 0.5 are considered acceptable (Santhi et al. 2001; 
Van Liew et al. 2003).

2.7  Nash–Sutcliffe Efficiency

The NSE criterion (Nash and Sutcliffe 1970) gives an indi-
cation of error between the observed data and the simulated 
data. It varies from − ∞ to 1; the optimal value is 1. Usually, 
the values superior to 0.5 are considered acceptable.

The NSE coefficient is estimated by:

where Qobsi : monthly observed runoff; Qsimi : monthly 
simulated runoff; Qobs : average of observed runoff.

3  Results and Discussion

3.1  Precipitation Assessment Before Bias Correction

In our case, as there is only one observation station, the qual-
ity of the simulated precipitation is evaluated by comparing 
the data of two stations that have the same geo-referencing, 
i.e., the Pobs and TRMM1 (Fig. 1). First, the comparison 
is made on the basis of the annual monthly average to get a 
good graphical visualization.

As is clearly depicted in Fig. 3, TRMM1s are gener-
ally overestimated comparing to Pobs. Similar results have 
already been found in Casse et al. (2015), Li et al. (2018) 
and Zubieta et al. (2015).

Second, the linear regression graph (Fig. 4) indicates that 
there is a good adequacy between Pobs and TRMM1, with a 
correlation coefficient R2 equal to 0.722.

(9)NSE = 1 −

∑N

i=1

�

Qobsi − Qsimi

�2

∑N

i=1

�

Qobsi − Qobs
�2

,

Fig. 3  Comparison of monthly 
average precipitation per year 
(Pobs and TRMM1) (2000–
2019)
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Finally, according to PBIAS ranges in paragraph 2.6.1, 
it is shown that the PBIAS performance of TRMM1 
is − 46.24%, which means that the result obtained is not 
satisfactory.

One concludes from the results shown above that, despite 
the good correlation between Pobs and TRMM1, the PBIAS 
performance is considered unacceptable. These results are 
in good agreement with those reported in a previous study 
which is conducted by Meng et al (2014). This means that it 
is necessary to apply the bias correction in order to increase 
the PBIAS coefficient and to achieve acceptable results.

3.2  Results After the Bias Correction of the Raw 
TRMMs

3.2.1  Multiplicative Shift Technique (M)

One calculates the multiplicative factor M from the monthly 
series of Pobs and TRMM1, which gives the following 
result:

This method can be applied in hydrological modeling. It 
is assumed that all the coefficients of the other stations have 
values close to the multiplicative coefficient of the station 
TRMM1.

The arithmetic average of the monthly precipitations of 
all the satellite stations, (Fig. 1) is given by:

M =
Pobs

TRMM1
=

24.245

31.772
= 0.763,

TRMM1(M)i = TRMM1i ⋅ 0.763.

where k = 1:S, S: satellite stations number.
Afterwards, the coefficient M = 0.763 is multiplied by 

TRMMi ; this then gives:

3.2.2  Linear Regression (R)

The bias correction using the linear regression method is 
carried out by correlating all the TRMMs with the Pobs 
station (Table 3).

It can be observed that the coefficient R2 is satisfactory for 
all the TRMMs data provided by the stations in the water-
shed, which allows a reconstruction of all the TRMMs series 
using the results obtained from the linear regression line for 
each station (Table 3). For use in hydrological modeling, the 
monthly arithmetic mean of the corrected TRMM rainfall 
data by the linear regression method ( TRMM (R)i ) in the 
watershed is calculated using the formula (10).

3.3  Evaluation of TRMM1s After Bias Correction

The comparison is made on the basis of the annual monthly 
average. Figure  5 indicates clearly that there is great 
improvement in terms of approximation of TRMM1 cor-
rected and Pobs curves.

One can easily observe that the TRMM1(R) curve 
more closely approximates the observed precipitation 
(Pobs) curve, which is confirmed by the calculated PBIAS 
(Table 4).

On the other hand, the results reported in the table indi-
cate that the PBIAS performance exhibited a significant 
improvement in the TRMM1(R) which passed from − 46.24 

(10)TRMMi =

∑S

k=1
TRMMi(k)

S
,

(11)TRMM (M)i = TRMMi ⋅ 0.763.

Fig. 4  Linear regression between Pobs and TRMM1 data (period 
2000–2019)

Table 3  Correlation coefficient between TRMMs and Pobs data, the 
constants of the linear regression

Precipitations R2 a
0

a
1

TRMM1 0.722 − 2.103 0.743
TRMM2 0.714 − 2.497 0.760
TRMM3 0.700 − 2.010 0.811
TRMM4 0.694 − 2.472 0.872
TRMM5 0.692 − 1.853 0.879
TRMM6 0.635 0.476 0.880
TRMM7 0.642 0.863 0.805
TRMM8 0.650 1.268 0.728
TRMM9 0.715 − 1.557 0.737
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to − 0.62; this corresponds to a shift from unsatisfactory to 
very good.

3.4  Hydrological Modeling

As the evaluation of the simulated precipitation after cor-
rection by the use of TRMM(R) gave a very good PBIAS 
performance, it would be more logical to choose it only for 
hydrological modeling. Note that in this work, various pre-
cipitation data are used as inputs to the model and a com-
parison is then made between the resulting calculated runoff. 
The results of the simulation performance are given in the 
following Table 5:

The table above clearly shows that the NSE is low for 
Pobs, which is quite normal since a single rainfall station 
cannot represent an entire watershed that covers an area of 
2900  km2.

On the other hand, it was also noticed that, for the raw 
TRMMi data, the results found are not very satisfactory for 
the validation period from 2000 to 2005, because the NSE 
is equal to 0.341.

However, it is worth noting that some studies have shown 
that using monthly raw TRMMs proved to be quite success-
ful in forecasting rainfall (Abdelmoneim et al. 2020; Le et al. 
2018; Wang et al. 2020). This would certainly depend on the 
quality of the input data of the model used, the geographic 
location and the performance of the model used.

According to the ranges in paragraph 2.6.1, the TRMMs 
corrected performance is very satisfactory. The simulated 
results found are quite logical because the bias correction 
has significantly improved the quality of the simulated pre-
cipitation, which contributed to increase the reliability of 
the hydrological model. This is quite common in the field 
of rainfall–runoff modeling since the reliability of the input 
data has a great impact on the output parameters of the 
model (Liu et al. 2017; Meng et al. 2014).

It was deemed necessary to show the simulated results for 
the calibration period (between 2006 and 2019) as well as 
for the validation period from 2000 to 2005 for the purpose 
of illustrating (Fig. 6) the case where the modeling with 
TRMM (R)i presents a better NSE performance than with 
TRMM (M)i.

4  Conclusions

As the ground precipitation data are not adequately avail-
able in this study area, it was essential to choose TRMM 
data to capture rainfall data covering the entire Hammam 
Boughrara watershed in northwestern Algeria. The applica-
tion of raw TRMMs for the simulation of discharges gave 
unsatisfactory results, so it was imperative to use a model 

Fig. 5  The average monthly 
precipitation comparison during 
the year of Pobs, raw TRMM1, 
TRMM1(R) and TRMM1(M)

Table 4  Performance PBIAS of raw and corrected TRMM1s

Precipitations Raw TRMM1 TRMM1(M) TRMM1(R)

PBIAS − 46.24 − 11.58 − 0.62

Table 5  NSE values for the different precipitation data used

NSE

Precipitations Calibration Validation

2000–2013 2006–2019 2014–2019 2000–2005

Pobs 0.185 − 1.3 − 0.729 − 4.8

Raw TRMMi
0.69 0.657 0.62 0.341

TRMM (R)i
0.88 0.793 0.74 0.864

TRMM (M)i
0.79 0.837 0.67 0.78
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that allows correcting the difference between the simulated 
and observed precipitation.

In this study, two simple bias correction methods were 
used: the multiplicative method and the linear regression 
method. It should be noted that these two methods require 
the availability of precipitation data from at least one moni-
toring station in the study area. The results of this correc-
tion made it possible to considerably improve the PBIAS 
performance of the TRMMs from unsatisfactory to very 
good. This had a positive impact on hydrological mod-
eling with very good performance results of the simulated 
runoff by the meteorological inputs. This study confirms 
that the TRMMs based on precipitation measured on the 
ground surface proved their effectiveness in the simulation 
of flows. They are certainly a good alternative in the field of 
hydrometeorology.
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