
1 3J. Indian Inst. Sci. | VOL 104:1 | 229–248 January 2024 | journal.iisc.ernet.in

J. Indian Inst. Sci.

A Multidisciplinary Reviews Journal

ISSN: 0970-4140 Coden-JIISAD

R
EV

IE
W

 
A

R
T

IC
LE

© Indian Institute of Science 2024. 

Volume of Fluid Method: A Brief Review

Ananthan Mohan  and Gaurav Tomar* 

Abstract | Understanding and predicting multiphase flows is of great rel-
evance due to the ubiquitous nature of such flows in both nature and 
in many industrial applications. Rapid development of high speed com-
puters and problem-specific algorithms in the last 2 decades has ena-
bled the study of multiphase flows through numerical simulations. In this 
paper, we give a brief overview of different methods used in direct numer-
ical simulations of two-phase flows. In particular, we focus on the volume 
of fluid (VOF) method used for locating and advecting the interface. VOF 
method is a mesh based interface capturing method in which a scalar 
function called void fraction field (which is the ratio of tracked fluid to 
the cell volume) is advected in order to track the interface position. A 
geometric VOF algorithm is detailed in this work. which strikes a balance 
between accuracy, ease of implementation and volume conservation 
on a structured grid. Another challenge in two-phase flow simulations is 
the inclusion of surface tension forces accurately. Here, we give a brief 
overview of Eulerian surface tension models and detail an approach bal-
ancing computational cost, curvature estimation and imposed timestep 
restriction. Finally, we discuss the most recent advances in VOF methods 
and outline the various numerical challenges we expect to encounter.
Keywords: Multiphase flows, VOF, Simulations

1 Introduction
Multiphase flows are ubiquitous in nature and 
in many industrial processes. Examples include 
but are not limited to bubbly  flows2,3, spray 
 atomization4, breaking  waves5,6, ink-jet  printing7 
and rain  formation8. Due to rapid development 
in high-performance computing and problem-
specific algorithms, at present one can com-
putationally study realistic two-phase  flows9. 
Figure 1 gives an overview of different modeling 
approaches in numerical simulation of two-
phase flows and popular methods in use in each 
approach.

Over the past 3 decades, several approaches 
have been developed for the numerical simula-
tion of multiphase flows. Methods such as smooth 
particle hydrodynamics, two-fluid formulation, 
and one-fluid formulation are based on solving 

Navier–Stokes equations while lattice Boltz-
mann methods is based on solving mesoscopic 
kinetic equations on a  lattice10. In two-fluid for-
mulation in order to computationally simulate 
two-phase flows, we partition the domain into 
individual subdomains filled with distinct fluids. 
By solving Navier–Stokes equations in each sub-
domain and coupling the solutions at the inter-
face using interface jump conditions, one can 
simulate the entire domain. The interface jump 
conditions are obtained using mass and momen-
tum conservation principles. This approach was 
found to be extremely limiting for realistic flow 
simulations involving large deformations and 
topology  changes9. A detailed review of two-
fluid model is given by Ishii and  Hibiki11. Lat-
tice Boltzmann  method12 and smoothed particle 
 hydrodynamics13,14 are promising and rapidly 

1 Department 
of Mechanical 
Engineering, Indian 
Institute of Science, 
Bangalore, India. 
*gtom@iisc.ac.in

http://crossmark.crossref.org/dialog/?doi=10.1007/s41745-024-00424-w&domain=pdf
https://orcid.org/0000-0002-0611-8056
https://orcid.org/0000-0002-5060-4705


230

A. Mohan et al.

1 3 J. Indian Inst. Sci.| VOL 104:1 | 229–248 January 2024 | journal.iisc.ernet.in

advancing modeling approaches for two-phase 
flow simulations.

Numerical methods for tracking interfaces in 
one-fluid approach can be broadly classified into 
interface tracking and interface capturing meth-
ods. The most popular methods in interface track-
ing approach are Front  tracking15,16 and Marker 
and Cell (MAC) methods. A detailed review of 
MAC method is given by Mangiavacchi et  al.17. 
Popular interface capturing methods include 
volume of fluid (VOF), level-set approach, con-
servative level-set (CLS), phase field methods and 
constrained interpolation profile (CIP). An excel-
lent review of these methods is given by Zaleski 
et al.18. A recent review of the state-of-the-art in 
one-fluid interface capturing methods is given by 
Dodd et  al.1. A recent review of level-set meth-
ods is given by Osher et  al.19. In this article, we 
discuss in detail various implementation aspects 
of only one class of interface capturing method, 
namely volume of fluid (VOF) method.

This review is organized as follows. Section 2 
gives a brief overview on one-fluid formulation 
and discuss volume of fluid method in general. 
Section 3 gives a brief outline of the development 

of VOF methods over the years and explains 
in detail a few important landmarks. Section  4 
explains in detail the first step in VOF method, 
i.e., initialization of void fraction. Subsequently, 
Sects. 5 and 6 detail the critical steps in VOF, i.e., 
reconstruction of the interface and advection of 
void fraction, respectively. Section 7 gives a brief 
introduction into the numerical approximation 
of surface tension forces in one-fluid approach. 
Finally, Sect.  8 gives a brief overview of recent 
advances in VOF method and outlines the chal-
lenges that need to be addressed in the near 
future.

2  One‑Fluid Formulation
Consider a two-phase, incompressible fluid flow 
with a sharp (immiscible) interface between the 
fluid phases as shown in Fig. 2. Instead of solving 
the governing equations for each phase separately, 
one can use one set of governing equations for the 
whole domain with phase properties abruptly 
changing across the interface. Instead of using the 
jump conditions at the interface to conserve mass 
and momentum, a singular forcing term (Dirac-δ 

Figure 1: Modeling approaches for numerical simulation of two-phase  flows1 and popular methods used 
in each approach. Interface capturing methods are represented as ellipses and those with colored back-
ground use a diffused interface approach while white background implies a sharp interface method.
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function) is added to the governing equations so 
as to capture the “extra” forces at the interface 
boundary. Thus, the use of single set of govern-
ing equations to describe the complete two-phase 
flow domain is called “one-fluid” formulation.

Using one-fluid formulation, the modified 
Navier–Stokes equation governing the motion of 
the two fluids separated by an interface can be 
written  as18:

where φ represents an indicator function which 
is an implicit representation of the interface, ρ(φ) 
and µ(φ) are the density and viscosity functions, 
respectively, which gives us the fluid density and 
viscosity at any point in the domain based on the 
indicator function. The capillary forces which act 
only at the interface are made volumetric using 
smoothed surface Dirac delta function, and are 
denoted by fσv  . The formulation of volumetric 
capillary forces and its numerical approximation 
will be discussed in detail in a subsequent section. 

(1)

ρ(φ)

(

∂u

∂t
+∇·(uu)

)

= −∇p

+∇·

[

µ(φ)

(

∇u +∇uT
)]

+ ρ(φ)g + fσv

Other interfacial forces such as electrohydrody-
namic forces in leaky dielectric fluids in the pres-
ence of electric field are also generally included in 
fσv .

Here, the interface position determines the 
value of the indicator function that we have used 
in the one-fluid formulation. Figure 3 represents 
the various ways in which we can numerically 
represent an interface between two fluids in one-
dimensional flow. Here, the exact interface is rep-
resented by the Heaviside step function in the ith 
grid cell. This function represents the separation 
of the domain with fluid 1 on one side and fluid 
2 on the other. The various ways in which we can 
numerically represent this well-defined interface 
are shown in the schematic.

The void fraction function is defined as the 
ratio of the amount of fluid 1 inside each grid 
cell to the total volume of the grid cell. The void 
fraction function has a value zero in cells that 
are completely filled with fluid 2 and one in cells 
that are completely filled with fluid 1. For every 
cell which contains an interface, the void frac-
tion value lies in between zero and one. Thus, one 
can use an indicator function (denoted by I(x)) to 
numerically represent the interface. The interface 
can also be represented implicitly as the zero level 
set of a level-set function (denoted by dash–dot 
line), where level-set function is taken as a signed 
distance function which has a positive value in 
one fluid and negative in the other.

If we use void fraction field to represent the 
interface, we get a strongly discontinuous dis-
tribution of void fraction values in cells across 
the interface as shown in Fig.  4. since we have 
the underlying velocity field which advects each 
fluid phase, one can solve Eq. 2 to get an updated 

Figure  2: Schematic showing a two-phase fluid 
flow domain with phases �1 and �2 separated by 
a sharp interface ∂�.

Figure  3: Interface representation using an indi-
cator function I(x), a Heaviside step function H(x), 
a void fraction field C(x) and a level-set function 
φ(x).

Figure  4: Schematic showing a highly discon-
tinuous void fraction field with fluid 1 cells having 
C = 1 and fluid 2 having C = 0 and interfacial cells 
with 0 < C < 1.
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void fraction field and thus track the interface 
implicitly:

If we use higher order advection schemes to solve 
Eq.  2, we will incur too much dispersion error, 
due to strong discontinuity of the void fraction 
field across the interface thus making the void 
fraction field unphysical. In order to avoid this, if 
we choose a higher order non-oscillatory scheme 
to advect the interface, we observe diffusion of 
void fraction field across multiple cells around the 
interface thus losing the ability of the method to 
maintain a sharp interface. Thus, one needs spe-
cific algorithms and schemes to accurately advect 
Eq. 2 without losing the sharp nature of the inter-
face. Based on how one advects the void frac-
tion field and solve Eq.  2, VOF methods can be 
broadly classified into algebraic VOF and geomet-
ric VOF methods.

In algebraic VOF method, as the name 
implies, the fluxing of void fraction field through 
the cell faces is performed through algebraic 
approximation of the indicator function. Based 
on the flux calculation, these methods are clas-
sified as compressive schemes and THINC 
(tangent of hyperbola for interface capturing) 
schemes. Compressive schemes use the interface 
normal (orientation with respect to cell face) to 
determine the void fraction flux scheme. Exam-
ples of compressive schemes include but are not 
limited to high-resolution interface capturing 
scheme (HRIC)20, compressive interface captur-
ing scheme for arbitrary meshes (CICSAM)21, 
switching technique for advection and capturing 
of surfaces (STACS)22, high-resolution artificial 
compressive formulation (HiRAC) and modified-
CICSAM (M-CICSAM)23. Conventional alge-
braic VOF methods are generally not as accurate 
as geometric VOF methods and are subjected to 
stricter cell CFL number stability criteria. Recent 
progress in courant independent algebraic VOF 
 schemes24–27 looks very promising due to sim-
plicity of implementation and computational 
cost. THINC  schemes28 are a class of algebraic 
VOF methods in which the fluxes through the cell 
faces are computed after approximating the indi-
cator function with a hyperbolic tangent profile. 
THINC-based schemes have demonstrated com-
parable accuracy to certain geometric VOF meth-
ods without the computational  cost29,30 and has 
been validated for standard test cases including 

(2)
∂C

∂t
+ u · ∇C = 0

shear flows and vortex  flows31. Rigorous test-
ing and validation of THINC-based methods in 
realistic large-scale simulations are necessary to 
affirm these claims. Developing accurate algebraic 
VOF schemes is of great relevance due to the sim-
plicity of implementation and computational cost 
and the authors feel significant progress will be 
made in the near future in this area.

Another way of solving Eq. 2 is to reconstruct 
the interface exactly from the underlying void 
fraction field and perform geometric flux calcu-
lation in order to update the void fraction field. 
This approach is often referred to as geomet-
ric VOF and in this review we will describe this 
interface tracking method in detail.

Geometric advection based VOF methods 
have become the standard method for the numer-
ical simulation of multiphase flows. Due to rapid 
development in computing power and problem-
specific algorithms, even complex multiphase 
flows with highly disparate time and length scales 
can be  simulated32,33. For example, Fig.  5 shows 
the breakup of a liquid drop under a cross-flow, 
where the bag formation and subsequent atomi-
zation of droplet particles is captured numeri-
cally.  Gerris34, an open source multiphase solver 
which employs geometric VOF to capture the 
interface, was used to simulate the above.

In this review, we describe the geometric 
VOF algorithm in detail. All the equations and 
examples are demonstrated for two-dimen-
sional square grid cells. Relevant references are 
provided for the extension of the algorithm to 
three-dimensional and axisymmetric coordinate 
systems.

3  Volume of Fluid Method: Historical 
Perspective

Noh and Woodward (1976)36 were first to attempt 
advection of void fraction using a reconstructed 
interface. In this method, called simple line inter-
face construction (SLIC), the void fraction is 
advected by time splitting, where C is advected 
in each direction sequentially. During advec-
tion in the x direction a mixed cell is divided by 
vertical lines separating full and empty parts, 
based on the void fraction values of the neigh-
boring cells. Thus, each mixed cell would have 
fluid occupation numbers. Now, one can recon-
struct interface geometry (a vertical line) accord-
ing to 3 base cases, considering left, center, and 
right fluid occupation numbers. Once interface 
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is determined, Eq.  2 is solved in x-direction by 
time integration of fluxes. We repeat the process 
for y-direction using horizontal lines for interface 
reconstruction.

Hirt and Nichols (1981)37 modified this 
method (coining the term volume of fluid) where 
reconstructed interface is parallel to the coordi-
nate axis but same orientation is used for advec-
tion in each direction. The orientation of the 
interface (whether it is horizontal or vertical) 
was determined by finding normal to the inter-
face (using gradient of the void fraction field in 
the neighboring cells) and determining whether 
interface is aligned more towards horizontal or 
vertical coordinate axis. Tests by Rudman et al.38 
showed that neither of these methods are particu-
larly accurate and resulted in islands of phase 1 
generated numerically called “floatsam” or “jet-
sam”. Even for simple flows, these islands of fluid 
1 which are numerically generated can make the 
flow completely unphysical (Fig. 6).

Figure 5: Numerical simulation of the disintegrating droplet under a cross-flow for Weber number, We = 80 
at different  times35.

Figure  6: Reconstruction of the interface in VOF 
in two dimensions. a The original interface. b The 
original SLIC reconstruction. c Hirt and Nichols 
reconstruction. d The PLIC reconstruction.
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Youngs (1982)39 proposed the method of 
piecewise linear interface calculation(PLIC)A 
where the interface is represented as a line seg-
ment with arbitrary orientation. The orienta-
tion of the line segment is determined by the 
interface normal obtained by finding the gradi-
ent of the void fraction field. Once the interface 
is reconstructed, the void fraction is advected 
geometrically across the cell faces. Accuracy of 
PLIC-based methods depends on the computa-
tionally obtained interface normal and curvature 
accuracy.

More accurate methods for interface recon-
struction like PROST (parabolic reconstruction 
of surface tension)40, where interface is assumed 
to be a parabola and geometrical area preserv-
ing VOF  method41, have been successfully used 
for interface reconstruction. Although more 
accurate, these methods have a significantly high 
computational cost compared to PLIC method. 
Hybrid methods have been proposed to com-
bine the advantages of the VOF method with 
other interface tracking methods, such as coupled 
level-set volume of fluid method (CLSVOF)42 and 
phase field coupled with  VOF43. Among these 
hybrid methods, CLSVOF is the most widely 
adopted as it significantly improves the accu-
racy of the normal and curvature  calculation44. 
Although the accuracy of CLSVOF is higher than 
conventional VOF, the computational cost and 
bottlenecks in achieving parallel scalability are 
issues yet to be resolved. Considering the ease 
of implementation, computational cost and high 
degree of accuracy, the authors recommend using 
a PLIC-based VOF  method44 with geometric 
advection.

4  Initialization of Void Fraction
The first step in VOF method is the initialization 
of volume fraction in each grid cell in the compu-
tational domain. It is trivial to initialize the vol-
ume fraction field for grid cells which are lying 
completely inside either fluid 1 (where C = 1 ) 
or completely inside fluid 2 (where C = 0 ). 
For interfacial cells which contain the interface 
between fluid 1 and fluid 2, an accurate initiali-
zation of volume fraction is very important since 
initial loss of volume of a fluid can result in erro-
neous simulations as the flow progresses. For 
accurate determination of volume fraction in 

mixed cells, we need to compute the volume cut 
by the interface and the cell boundary.

Given an implicit equation of an interface, a 
direct method for initializing volume fraction in 
an interfacial cell is to distribute internal points 
and then volume fraction is the ratio of number 
of points inside the fluid 1 with total number of 
distributed points inside the cell. Monte Carlo 
methods based sampling techniques can be used 
to increase the accuracy of such  methods45. 
Another strategy is to recursively refine each grid 
cell locally and to use a linear line segment as an 
approximation of the interface in the most refined 
sub-cell46. These methods while relatively easy to 
implement are computationally very expensive. 
The accuracy of these methods are directly pro-
portional to the computational cost.

A more robust method for determining the 
volume fraction field is by direct integration of 
the implicit equation of the interface.  VOFI47 
is an open source library which initializes void 
fraction field upto machine accuracy given an 
implicit interface equation in square grid cells in 
Cartesian coordinate system using direct inte-
gration methods. For a given mixed cell, using 
the implicit interface equation, the local height 
function (see Fig. 14) is integrated with a variable 
number of nodes using double Gauss–Legendre 
quadrature rule. Table 1 shows the relative error 
in initialized volume fraction field between VOFI 
library and Gerris flow  solver34. We initialize a 
circle of radius r = 0.25 in the center of a com-
putational domain of size 1× 1 . The area of the 
circle is given by Vc = πr2 . The accuracy of ini-
tialization can be determined by calculating the 
relative error in the volumes given by

where V is the computed volume given by 
V = ��x�yC . Thus, it is quite clear that direct 
integration methods can initialize volume frac-
tion fields up to machine accuracy. Ananthan and 

(3)E =
|V − Vc|

Vc

Table 1: Results for relative error in volume for a 
circle of radius 0.25 for different grid sizes.

Relative error in volume

Grid VOFI Library Gerris Solver

16× 16 4.7× 10
−16

5.5× 10
−3

32× 32 2.8× 10
−16

6.4× 10
−3

64× 64 4.3× 10
−16 3.1× 10

−4

128× 128 7.1× 10
−16 5.1× 10

−4

A PLIC: piecewise linear interface calculation is a numerical 
representation of the interface using a line segment with an 
arbitrary orientation,
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 Tomar48 proposed an algorithm using which one 
can extend this method to axisymmetric coor-
dinate systems as well. An optimized version of 
VOFI library was recently released by Zaleski 
et al.49.

5  Reconstruction
Given a volume fraction field in each grid cell in 
the computational domain, the first step in VOF 
method is the reconstruction of the PLIC-based 
line segment representing the interface in each 
mixed cell. Assume the equation of this line seg-
ment for a two-dimensional case given by

Here, mx and my are the components of the nor-
mal to the line and α is the line constant (Fig. 7).

Since the void fraction within the cell does 
not provide any indication about the direction 
of the interface, the normals must be explicitly 
calculated. There exist many different methods 
to determine the normals, simplest approxi-
mation being the Youngs  method39. Here, the 
normal vector is given by the gradient of the 
volume fraction field:

Green–Gauss gradient is used which employs a 
3× 3 block of cells to determine the normal com-
ponents at the central cell (i, j) (see Fig. 8a) as

This method is first-order accurate and can 
lead to drastic errors in estimation of normals. 

(4)m.x = mxx +myy = α.

(5)m = −∇hC .

(6)

mx
i,j = −

1

�x

(Ci+1,j+1 + 2Ci+1,j + Ci+1,j−1

− Ci−1,j+1 − 2Ci−1,j − Ci−1,j−1)

(7)

m
y
i,j = −

1

�y

(Ci+1,j+1 + 2Ci,j+1 + Ci−1,j+1

− Ci+1,j−1 − 2Ci,j−1 − Ci−1,j−1).

Figure  7: Reconstructed PLIC-based line seg-
ment representing the interface separating fluid 1 
and fluid 2.

Figure 8: Various methods in determining interface normal in PLIC-based reconstruction. a Youngs gradi-
ent method. b Least square minimization of area. c Moment of fluid method. d Spline interpolation method. 
Figure adapted from Comminal et al.53.
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Scardovelli and  Zaleski50 introduced centered 
columns approach where in the same neighbor-
hood block of cells, volume fractions can be 
added in a vertical/horizontal direction to deter-
mine a height/width function, respectively (see 
Fig. 14). Using this function, one can compute the 
interface normal with a centered scheme. Aulisa 
et  al.51 introduced a method which combines 
Youngs method and centered columns approach, 
which is shown to perform accurately in both 
high and low resolutions. Due to low compu-
tational cost and high accuracy, this method, 
namely mixed Youngs centered (MYC), is widely 
adopted in several open source  codes34,52.

Puckett et al.54 proposed a least square VOF 
interface reconstruction algorithm (LVIRA) 
in which one minimizes the area between the 
extended interface into the nearby cells and 
the actual volume fractions in these cells (see 
Fig.  8b). Since the minimization requires solu-
tion of a non-linear problem, an iterative opti-
mization algorithm is used in this method. 
Pilliod and  Puckett55 introduced a more effi-
cient variation of this method called ELVIRA 
(Efficient LVIRA). Both LVIRA and ELVIRA are 
second-order accurate but computational cost is 
high compared to other methods especially for 
three-dimensional problems. Algorithm  1 dis-
cusses an efficient  implementation56 of ELVIRA 
algorithm of two-dimensional problems.

Algorithm 1 2D ELVIRA interface reconstruction  algorithm56

For each cell:
Skip if void fraction is 0 or 1.
Gather VOF data for neighboring 3× 3 block into working array.
Compute 6 ELVIRA candidate normals (using height function), and append
computational update of previous normal vector as 7th candidate.
for each candidate normal do

Compute correct location of interface to match center cell volume fraction.
for each of the cell in the 3× 3 block do
Extend the interface from the center cell and compute the implied volume
fraction.
Accumulate the square of the difference between the actual volume fraction
and the implied volume fraction.

end for
If the error for this normal vector is less than the minimum so far, Note this as
minimizing index.

end for
Set the interface normal to the minimizing value out of the candidates, and record
the interface state.

In moment of fluid interface reconstruction 
 algorithm57, one advects the center of mass of 
the liquid phase in each mixed cell. The algo-
rithm consists of minimizing the distance δ 
between the center of mass of reconstructed 
interface and the advected center of mass, see 
Fig. 8c. Since a line can be determined by only 
two parameters (an intercept and a slope), the 
linear interface in a cell is actually over-deter-
mined by specifying the volume fraction and 
centroid; thus, an exact reconstruction of the 
linear interface can be  computed58. Another 
advantage of this method is that this algorithm 
does not have a dependency on the neighbor-
hood volume fraction field. Recent  studies58–60 
present moment of fluid method as a viable 
alternative for standard void fraction-based 
reconstruction algorithms. Alternatively, one 
can reconstruct the interface by spline interpo-
lation of the slopes along the  interface61,62, see 
Fig.  8d. Using this algorithm, one can estimate 
the surface curvature more accurately which 
would be useful in modeling the surface tension 
forces.

Once the interface normal is obtained, the 
next step in PLIC interface reconstruction is 
the determination of the line constant α . Given 
void fraction field and interface normals, one 
can enforce conservation of volume to deter-
mine the line constant geometrically. For two-
dimensional square grid cell with unitary 
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normal vector |n| = 1 , for the case mx,my ≥ 0 , 
the volume/area enclosed by the PLIC interface 
is given by

(8)V =
α2

2mxmy
,

provided both the x and y intercepts of the PLIC 
line lie within the grid cell, that is,

If this condition is not met (see Fig. 9), relevant 
triangular areas are subtracted from right hand 
side of Eq. 8 to obtain the enclosed volume. Since 
we know that enclosed volume is a function of 
the void fraction, one can analytically solve this 
equation to obtain a relationship between the 
void fraction, line constant and interface normal. 
Zaleski et al.63 derived these relations for rectan-
gular grids in Cartesian coordinates for a stand-
ard case ( mx,my ≥ 0).

For a two-dimensional square grid cell, tak-
ing the positive normalized values of mx and my 
and using the relation below, one can get the 
line constant α . Let m1 +m2 = 1, (m1 ≤ m2) 
and A1 = m1/(2m2) , then, 

In practice since the normals can be nega-
tive, the geometry is mapped in to the standard 
case using linear transformations. Once the line 
constant is obtained, it is mapped back into the 
original configuration. Ananthan and  Tomar48 
have extended this approach for axisymmetric 
coordinate system. Zaleski et  al.63 derived these 
relations for three-dimensional problems and 
Lehmann and  Gekle64 extended these relations to 
capture all the edge cases.

6  Advection of Void Fraction Field
Once the interface is reconstructed, the second 
recurring step in VOF method is the advection of 
void fraction. Given locally divergence-free veloc-
ity field at the cell faces of a computational grid 
cell of void fraction field (see Fig. 10), we advect 
the void fraction field geometrically using the 
advection equation:

Equation 11 can be written as

(9)
α

mx,y
≤ �x.

(10a)α =
√

2m1m2A for : 0 ≤ A < A1

(10b)

α = m2A+
m1

2
for : A1 ≤ A ≤

1

2
.

(11)
∂C

∂t
+ u · ∇C = 0.

(12)
∂C

∂t
+ ∇·(uC) = C(∇·u).

Figure 9: The standard case considered for inter-
face reconstruction in which both m1,m2 ≥ 0 and 
fluid 1 is occupying the bottom left corner of the 
cell.

Figure  10: The control volume for a mixed cell 
where the void fraction values are stored in the 
cell center and velocities are stored in staggered 
positions in the cell faces.
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Thus, one can time integrate Eq.  12 by finding 
the void fraction fluxes across the cell faces accu-
rately. Based on the calculation of the fluxes of 
void fraction field, geometric advection methods 
can be classified into (a) unsplit  methods65 and 
(b) split  methods54. Split methods use operator 
splitting to advect the void fraction field in each 
spatial direction sequentially, while the unsplit 
methods advect in a single step.

In unsplit method, the right hand side term 
in Eq.  12 goes to zero since the advection takes 
just a single step. Thus, in an unsplit method, the 
void fraction flux calculation across the cell faces 
involves calculation of volume/area of complex 
polyhedra/polygon cut by the interface. These 
calculations are computationally expensive and 
difficult to implement accurately, but the advan-
tage being only a single advection and recon-
struction step is required per timestep. Rider 
and  Kothe65 introduced one of the first unsplit 
algorithms in PLIC-based reconstruction. In this 
approach, face-centered velocities were used to 
construct trapezoids (see Fig.  11a), which were 
used to determine the fluxing volumes/areas. This 
leads to regions of overlap resulting in overshoots 
or undershoots and the void fraction field was 
not locally conserved. Lopez et  al.62 introduced 
an unsplit method which uses cell vertex veloci-
ties to construct the advected polygon in two 

dimensions. This approach ensures no overlap 
between the fluxed volumes, see Fig. 11b. Owkes 
and  Desjardins66 extended this approach for three 
dimensions thus detailing a locally conserva-
tive and bounded unsplit algorithm. Interface 
reconstruction library is an open source code by 
Desjardins et al.67 which can be used for accurate 
computation of the volume of complex polyhedra 
generated during unsplit advection.

In split method, we use operator splitting to 
advect the void fraction field in each spatial direc-
tion sequentially, thus the RHS term (called dila-
tation or divergence correction term) in Eq.  12 is 
needed since the velocity field is not divergence 
free in each direction independently. Split methods 
can be broadly divided into Eulerian and Lagran-
gian  methods18. In Lagrangian methods the end 
points of the reconstructed interface are advected 
by the flow in each direction sequentially. Here, the 
local velocity maybe interpolated between the cell 
faces. A detailed overview of Lagrangian advection 
method is given by Tryggvasson et al.18. In Eulerian 
advection methods, the flux through each cell face 
is computed sequentially. We will be discussing 
Eulerian-based advection methods in detail here.

Given a volume fraction ( Cn
i,j ) and velocity field 

( uni+1/2,j , v
n
i,j+1/2 ) at the nth timestep, the discre-

tized Eq. 12 is given by

Figure  11: Unsplit advection methods with different flux polygon constructions. a Rider and  Kothe65 
used staggered velocities to construct the trapezoid. b Lopez et al.62 introduced a method where veloci-
ties interpolated to cell vertices were used to construct the trapezoid. Figure adapted from Tryggvasson 
et al.18.
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where δVi+1/2,j = (uC)ni+1/2,j is the amount of 
volume fraction fluxed through the right cell face. 
Similarly, fluxes δVi−1/2,j , δVi,j+1/2 and δVi,j−1/2 
can be computed for other cell faces.

Using operator splitting, we can split the above 
equation as following:

(13)

Cn+1
i,j = Cn

i,j +
�t

�x

(

δVi−1/2,j − δVi+1/2,j

)

+
�t

�y

(

δVi,j−1/2 − δVi,j+1/2

)

+ Cn
i,j

(

�t

�x

(

uni+1/2,j − uni−1/2,j

)

+
�t

�y

(

vni,j+1/2 − vni,j−1/2

)

)

where C∗
i,j is the intermediate value of the volume 

fraction. Here, Cc
i,j is a function based on which 

we can get different operator splitting approaches. 
If Cc

i,j = C∗
i,j , then we get Puckett’s operator split 

 approach54. An implicit scheme is used in the first 
direction and an explicit scheme in the second 
direction to maintain the conservation of vol-
ume  fraction54. The order of sweep direction is 
alternated every  timestep68 (“Strang splitting”) to 
achieve second-order accuracy in time. If we use,

where Cc
i,j depends only on the previous timestep 

value of volume fraction, we get Weymouth and 
Yue’s operator split  approach69. This method is 
explicit in both the sweep directions.

For an operator split method to be 
strictly conservative, it has to fulfill (follow-
ing Weymouth and  Yue69) a set of concurrent 
requirements: 

(14)

C∗
i,j = Cn

i,j +
�t

�x
(

δVi−1/2,j − δVi+1/2,j

)

+ Cc
i,j

(

�t

�x

(

uni+1/2,j − uni−1/2,j

)

)

(15)

Cn+1
i,j = C∗

i,j +
�t

�y
(

δVi,j−1/2 − δVi,j+1/2

)

+ Cc
i,j

(

�t

�y

(

vni,j+1/2 − vni,j−1/2

)

)

(16)Cc
i,j =

{

1 Cn
i,j ≥ 0.5

0 Cn
i,j < 0.5

Figure  12: The fluxed volume through the right 
face of the cell when ui+1/2,j is positive.

Figure 13: A few standard test cases for the validation of reconstruction and advection of void fraction.
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1. The volume flux terms are conservative, and
2. the dilatation term sums to zero, and
3. no clipping or filling of a cell is needed to 

impose 0 ≤ C ≤ 1.

Using geometric advection for volume fluxing 
and a divergence-free velocity field, both Puck-
ett’s and Weymouth and Yue’s methods satisfy 
the first two requirements. Puckett’s method 
does require clipping or filling of a cell to 
impose 0 ≤ C ≤ 1 and, therefore, is not strictly 
conservative. However, the mass conserva-
tion errors introduced in this method are small 
and thus it has been widely adopted previously. 
Weymouth and  Yue69 proved that, by imposing 
a grid Courant number restriction of,

one can satisfy the third requirement for the oper-
ator split approach to be conservative. Here, N is 
the number of sweep directions, and ud and �xd 
are the maximum velocity and grid size in each 
of those directions. Thus, using Weymouth and 
Yue’s operator splitting approach, we can preserve 
the mass exactly when advecting the volume frac-
tion field. Note that this method can be easily 
extended to three-dimensional calculations.

The volume flux through cell faces, δVcell−face , 
is computed geometrically. Consider the sche-
matic in Fig. 12, where the shaded region shows 
the volume of fluid-1 in the cell to be fluxed 
through the right face ( δVi+1/2,j ). Considering 
the face velocity ( ui+1/2,j ) to be positive, the flux 
can be computed as

where V is the volume of fluid 1 fluxed through 
the right face (shown as the shaded region in 
Fig. 12). Since we have the equation of the PLIC 
line and the line of total fluxing (dashed line in 
Fig.  12), one can easily calculate the fluxed vol-
ume V through each face. Ananthan and  Tomar48 
extended Weymouth and Yue’s approach for 
axisymmetric coordinate system.

(17)�t

N
∑

d=1

|
ud

�xd
| <

1

2

(18)δVi+ 1
2
,j =

ui+1/2,jV

ui+1/2,j�t�y
=

V

�t�y

Table 2 Results for relative error in change in volume for different test cases for �x = 0.25 
and CFL = 0.25

Using Weymouth and Yue’s69 method one can discretely conserve mass upto machine precision ǫ

Relative error in volume

Case Domain u velocity v velocity Puckett’s method Wey-
mouth 
and Yue

(a) 1× 1 0.1 0.1 3.1× 10
−7 ǫ

(b) 1× 1 x −y 5.1× 10
−6 ǫ

(c) π × π sin x cos y − cos x sin y 1.5× 10
−7 ǫ

Figure 14: Schematic showing the height function 
calculation for the case |ny | > |nx | in the cell (i,  j). 
Adapted from Afkhami et al.80.
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Figure 13 shows a few standard test cases for 
the validation of reconstruction and advection 
of the void fraction field. Void fraction field is 
initialized in a circle and subjected to under-
lying velocity fields and this velocity field is 
reversed after a certain number of timesteps for 
the same duration and final and initial geome-
tries are then compared. Case (a) is a translating 
circle, case (b) is circle in a corner  flow69 and 
case (c) is circle in a  vortex65,70. Table  2 gives 
the relative change in volume for each of these 
cases for both Puckett’s method and Weymouth 
and Yue’s approach. Other standard test cases 
include Zalesak’s  disk71 and three-dimensional 
deformation case proposed by  Leveque72.

Note that geometric advection of void frac-
tion conserves mass upto machine precision if 
the underlying discretized velocity field is diver-
gence free. Ananthan and  Tomar48 found that as 
the divergence-free nature of the velocity deterio-
rates so does the accuracy of the geometric VOF. 
In practice, accuracy of the velocity field is deter-
mined by the error tolerance of the pressure Pois-
son equation. Thus, multiphase flow simulations 
require use of efficient and highly accurate pres-
sure Poisson  solvers73.

7  Numerical Calculation of Surface 
Tension Forces

Consider one-fluid formulation of Navier–Stokes 
equation:

Here, fσ is the surface tension force per unit vol-
ume. Numerical approximation of the surface 
tension forces in two-phase flow simulations is an 
area which has seen considerable progress in the 
last 2 decades. An excellent review of these differ-
ent methods is given by  Popinet74. Here, we will 
look into the numerical approximation of surface 
tension forces through volumetric formulation 
(body forces) since this approach ensures discrete 
balance of surface tension and pressure gradient 
 terms75.

In an elementary volume � intersected by the 
curve at two points A and B, the total surface ten-
sion force is given by 

∫

�
fσ =

∮ B
A σdt where σ is 

the surface tension and t is the unit tangent vec-
tor. Using the first Frenet formula for parametric 
curves dt = κnds where κ is the curvature, n is 

(19)

ρ(φ)

(

∂u

∂t
+∇·(uu)

)

= −∇p

+∇·

[

µ(φ)

(

∇u +∇uT
)]

+ ρ(φ)g + fσ .

the unit normal and s the curvilinear coordinate, 
we get

where δs is the surface Dirac δ-function which 
is non-zero only at the  interface18. For variable 
surface tension, tangential (Marangoni) stresses 
have to be included in this formulation. Afkhami 
et al.76 extended this formulation for variable sur-
face tension forces.

Based on the computation of curvature κ , 
the normal n and the Dirac δ-function, differ-
ent numerical approximation for volumetric 
surface tension forces are obtained such as con-
tinuous surface force (CSF)77, ghost-fluid method 
(GFM)78 and smoothed Heaviside  method79. We 
discuss here the continuous surface force model 
of Brackbill et al.77. The  relation74

where H is the Heaviside function and xs is the 
position of the interface gives a smoothed Dirac 
delta representation of the surface tension force. 
In CSFB model, we choose void fraction field, 
Hǫ = C to represent the Heaviside function 
where ǫ = � , the grid size such that

Depending upon the choice of the numerical 
method, one can choose different approximations 
for the Heaviside function. The next step is to 
accurately estimate the interface curvature. One 
can use the relation n = − ∇C

|∇C| and κ = −∇ .n . 
Even if we use a smoothed void fraction field C̃ 
as originally proposed by Brackbill et  al., this 
approach does not result in a numerically consist-
ent curvature estimation. A widely adopted and 
accurate method to estimate the curvature is to 
use the height function approach.

The height function approach is based on the 
simple idea that any interface can be described 
as a graph of a function defined in a local coor-
dinate system. One can thus determine the 
derivatives of this function to estimate the cur-
vature.  Sussman81 introduced the height function 
approach for curvature calculation. Cummins 

(20)

∫

�

fσ =

∮ B

A
σκnds

=

∫

�

σκnδs

(21)σκnδs = σκ∇H(x − xs)

(22)lim
ǫ→0

Hǫ = H .

B CSF: continuous surface force model is a numerical repre-
sentation of surface tension forces where the volumetric sur-
face tension forces are approximated using void fraction field 
as the Heaviside function.
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et al.82 and  Popinet83 have analyzed and extended 
this approach for robust calculation of the cur-
vature on a structured mesh. Estimation of the 
curvature using height function involves the fol-
lowing steps: 

1. Determine the local coordinate orientation 
using the maximal component of the nor-
mal n.

2. Estimate the height function in this orienta-
tion by summing over the void fraction val-
ues.

3. Compute the curvature using central differ-
encing.

In Fig. 14 for cell (i,  j), we have |ny| > |nx| ; thus, 
we use a 3× 7 stencil to compute the vertical 
height function y = h(x) . In order to compute the 
discrete height function, we use

Thus, we can compute the curvature as

(23)hi = �x

3
∑

k=−3

Ci,j+k .

(24)κ = −
hxx

(1+ h2x)
3/2

where the derivatives hx and hxx are computed 
using central differencing. Similarly, we can 
choose a 7× 3 stencil for the horizontal case. It 
is found that the height function approach is sec-
ond-order accurate and fairly easy to implement 
in comparison to other methods of comparable 
accuracy. In order to reduce the computational 
expense and increase the accuracy of estima-
tion of the curvature, one can adopt a variable 
stencil height function approach as described 
by  Popinet83 and Lopez et  al.84. Accuracy of 
curvature estimation using Height function 
approach deteriorates rapidly when the interface 
is not well resolved.  Popinet74 reported that when 
κ�x > 1/5 , it is extremely difficult to obtain con-
sistent height functions. One has to use alterna-
tive techniques like parabolic reconstruction of 
interface (PROST)40 in these scenarios. Desjar-
dins et al.85 introduced a mesh decoupled height 
function approach which is found to improve the 
curvature calculation for under-resolved inter-
faces thus alleviating this issue.

Since volumetric formulation of surface 
tension forces are neither well balanced nor 
momentum  conserving74, we see spurious veloc-
ity currents generated at the interface. These 
numerically generated velocity currents can lead 
to artificial generation of kinetic energy and 

Figure 15: The static drop test case in which a drop of diameter, D = 1 is initialized into a domain of size 
4× 4 . The test parameters are Laplace number, La =

ρliquidDσ

µ2
liquid

= 0.120 , the density and viscosity ratios are 

unity and D
�x

= 30.
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heat  transfer86,87. Dodd et  al.88 found that only 
if the root mean square velocity of the spurious 
currents is negligible in comparison to velocity 
fluctuations due to turbulence, one can resolve a 
turbulent flow fully. The standard benchmark test 
to access the accuracy of numerical implementa-
tion of surface tension forces is the static drop test 
 case89.

Figure 15 shows the static drop test case where 
we see spurious velocity currents in the long time 
limit. In this test case, the timescale required to 
reach equilibrium depends upon the oscillation 
timescale, Tσ =

√

ρD3

σ
 and the viscous dissipa-

tion timescale Tµ =
ρD2

µ
 . In order for the simula-

tions to correspond to the equilibrium state, one 
needs to run the simulation longer than either of 
these  timescales74. As Magnini et  al.90 reported, 
it would be more insightful if one were to look 
at the time averaged norm of the spurious cur-
rent than the spurious current magnitude at an 
instant. Detailed parameters and test case setup 
can be found in Lafaurie et  al.91 and Popinet 
and  Zaleski92. One can argue that if the current 
implementation of surface tension force limits 
the maximum magnitude of spurious current 
in the long time limit then it can be used accu-
rately for simulation of multiphase flow. Other 
than the static drop test case one needs to look 
at the translated droplet test  case83. This test case 
is more relevant for practical applications and an 
interesting comparative study was presented in 
Abadie et al.93. Other standard test cases include 
capillary oscillations of a drop/bubble in the limit 
of vanishing amplitude and viscosity both for 
planar and circular/spherical  interfaces94. Other 
more challenging variants can be found in Torres 
and  Brackbill95,  Herrmann96 and Fuster et  al.33. 
Another standard test case is that of the analyti-
cal solution of exponential damping of oscillatory 
modes of a capillary wave when viscosity is intro-
duced.  Prosperetti97,98 derived closed-form solu-
tions for this case and details for the test case are 
given in Popinet and  Zaleski92.

8  Looking Ahead
Using VOF methods, many areas of practi-
cal interest other than two-phase flows have 
been extensively investigated including but 
not limited to heat  transfer99,100, thermocap-
illary  motion101,102, mass  transfer103,104, 
insoluble and soluble  surfactants105,106, 
 electrohydrodynamics107,108, boiling and 

 evaporation109–111, solidification and dendrite 
 formation112–114 and particle-laden  flows115. In 
most of these cases, one needs to modify VOF 
or couple it with additional governing equa-
tions so as to capture the physics of the phe-
nomenon under study. The authors anticipate 
significant advancements in these domains in 
the near future, both in terms of development of 
computational algorithms and in study of highly 
specialized areas using the VOF method.

Multiphase flows typically involve highly dis-
parate time and length scales; thus, for numerical 
simulation of any realistic flow, one needs to use 
either unstructured grid or adaptive mesh refine-
ment (AMR). Although VOF algorithm described 
here is for structured mesh, it is straight forward 
to adapt them for AMR grid structures. In both 
cell-based34,83,116 and block-based117 AMR grids, 
geometric VOF methods have been implemented 
successfully. For unstructured grids, algebraic 
VOF is the preferred method due to inherent 
computational cost and difficulty of implemen-
tation of geometric VOF. In the last decade, we 
have seen open source tools and libraries like 
 VOFTools118,119 being used for geometric VOF in 
unstructured grids and we expect to see the com-
munity adopting these resources.

As in every other field of science and tech-
nology, machine learning (ML), Artificial 
intelligence (AI), and data science are rapidly 
adopted and used in fluid dynamics research 
 also120. In VOF methods, machine learning has 
been successfully used for the estimation of 
 curvature121–123, reconstruction of  interface124 
and design of accurate schemes for advection of 
void  fraction125. Machine learning techniques are 
also being used for developing new robust predic-
tive models for multiphase flows and reducing the 
overall computational effort and  time126. It is the 
firm belief of the authors that this is the begin-
ning of a promising transformative paradigm and 
we are at its infancy.

In summary, in this review, we have given 
an overview of geometric VOF method and 
described in detail the methods and algorithms 
that maintain a balance between the ease of 
implementation, computational cost and accu-
racy of the solution. Using the framework of 
VOF method, one can tackle several interesting 
and relevant multiphase flow problems which in 
turn are expected to lead to creative extensions 
of these existing methods and development of 
entirely problem specific novel algorithms.
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